
KAuth: A Strong Single Sign-On Service based on PKI

Panayiotis Charalambous, Marios Karapetris and Elias Athanasopoulos
University of Cyprus, Cyprus

Keywords: Authentication, Passwords, PKI.

Abstract: We deploy PKI for human authentication. We use a publicly available infrastructure, namely Keybase, for
managing public-key pairs across devices. In addition, Keybase offers us several features for identifying
users in social networks and a login-to-Keybase process which is password-less, meaning that authentication
takes place using digital signatures produced by an Elliptic Curve (EC) cryptosystem. By using Keybase, we
minimize the required cryptographic keys to the absolute minimum: one. We transform Keybase to a Single
Sign-On (SSO) service which can vet users for using other services, exactly as it happens now with very
popular, but entirely password-based, services. We implement two authentication schemes based on Keybase,
KAuth and KAuth+, and we evaluate them using a state-of-the-art methodology.

1 INTRODUCTION

Human-to-machine authentication is still based on
text-based passwords, despite the many different
proposals for better authentication systems and the
clearly negative stance of IT vendors against pass-
words (Wired.com, 2013; PayPal, 2013). This
has significant implications, since passwords are
reused (Florencio and Herley, 2007), are leaked due
to services’ vulnerabilities (Ars Technica, 2013) and
not due to user mistakes (Juels and Rivest, 2013;
Kontaxis et al., 2013), are phished (Dhamija et al.,
2006), and the overall user experience is severely de-
graded (Mail, 2015).

Cryptology has built several tools for building
strong authentication. Unfortunately, such techniques
have been used so far for machine-to-machine au-
thentication (Dierks, 2008) or ad hoc for password
hardening (Everspaugh et al., 2015; Schneider et al.,
2016; Lai et al., 2017), where a cryptographic ser-
vice is used to add layers of encryption thus mak-
ing password cracking more difficult. Although cryp-
tography has progressed, the techniques provided are
marginally applied to human authentication, since
they are still deemed as user-unfriendly and crypto-
graphic systems, for instance based on a public-key
infrastructure (PKI), are not deployed.

So far, although PKI can offer strong authenti-
cation, for human-to-machine authentication PKI is
still considered unfriendly due to the following major
problems:

P1 Key Maintenance. Cryptographic keys have to
be present during authentication, while users fre-
quently use several devices to access services.
Moving cryptographic keys from device to device,
especially upon buying a new one, is considered
a tough process even though passwords can be
memorized, or easily recovered using password
reminders.

P2 Key Revocation. Compared to changing a pass-
word by following an e-mail link, finding the ser-
vices that are associated with a particular (leaked)
cryptographic key and revoking the key is chal-
lenging.

In this paper, we attempt to deploy PKI for hu-
man authentication by attacking both aforementioned
problems, P1 and P2. In particular, for solving P1 we
use a publicly available infrastructure, namely Key-
base (Keybase, 2018), for managing public-key pairs
across devices. In addition, Keybase offers us sev-
eral features for identifying users in social networks
and a login-to-Keybase process which is password-
less, meaning that authentication takes place using
digital signatures produced by an Elliptic Curve (EC)
cryptosystem. Furthermore, for solving P2, we min-
imize the required cryptographic keys to the absolute
minimum: one. We transform Keybase to a Single
Sign-On (SSO) service which can vet users for using
other services, exactly as is happening now with very
popular, but entirely password-based, services (Mic-
ulan and Urban, 2011; Google, 2018; Twitter, 2018).
Our proposed system, KAuth, uses PKI to authenti-

478
Charalambous, P., Karapetris, M. and Athanasopoulos, E.
KAuth: A Strong Single Sign-On Service based on PKI.
DOI: 10.5220/0006851904780483
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 478-483
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



cate users, without suffering from P1, and once a user
is authenticated, they can proceed and enjoy a third-
party service. In the case of private key leakage, a
user can simply revoke their key which is known only
to our system, without being affected by P2.

Why Keybase? We build KAuth on Keybase for
two major reasons. First, Keybase offers several op-
tions for cryptographic operations. We, also, assume
that in the future Keybase can incorporate additional
cryptographic ciphers. Second, Keybase offers most
of the features through a user-friendly environment,
such a web browser. For instance, when a user needs
to authenticate with Keybase, a passphrase is used to
derive a cryptographic key that will carry out an Ed-
DSA signing process. The whole process is imple-
mented in the web browser and resembles a typical
password-base authentication routine, but it is not.

Is Keybase Secure? Keybase is a relatively new
platform and it is likely to suffer from vulnerabili-
ties that are not exploited, yet. For instance, Keybase
uses Elliptic Curves for user authentication, which are
much more under-researched than RSA. In this paper,
we use Keybase mostly as a reference implementation
and we argue that cryptographic primitives can be of-
fered in a user-friendly way, while realizing a much
more stronger authentication to users.

In fact, our vision is that authentication should be
provided with options and users should be able to be
selective. Nowadays, many authentication proposals
are never implemented because they are deemed
non friendly. Our philosophy is that users do not
fall all under the same catergory and many may be
willing to sacrifice convenience for more security.
Having said that, we view our prototype more as
complementary to other SSO implementations and
not as a competitor. For instance, currently deployed
SSO services can be inspired from Keybase and our
work, and integrate (optional) cryptographic-based
authentication schemes in addition to their typical
password-based authentication.

Contributions
1. We design and implement KAuth, a system which

provides strong PKI human-to-machine authenti-
cation.

2. We evaluate KAuth with an established frame-
work (Bonneau et al., 2012) and show how KAuth
can defend users against several password-related
attacks, such as phishing and password leakage,
without severely affecting the user’s experience.
In fact, the user is hardly aware that PKI is in
place.

2 KAuth ARCHITECTURE

One of the most popular and widely adopted mecha-
nisms that is really similar to our approach is Face-
book Connect (Miculan and Urban, 2011). Identi-
cal to KAuth, if a user wants to access a third-party
website using Facebook Connect, they follow the ex-
act same procedure. Due to the massive integration
of this feature by developers, this has led to many
different implementations, each one of them offering
different functionalities. What stays the same for all
implementations is how Facebook validates user cre-
dentials however this is where KAuth tries to make a
difference. Our system has a simple architecture as
there are two big parts that end up working together.
On one side, the OAuth server handles the token re-
quests, waits for the Keybase login procedure to be
completed, and then serves as a resource server, pro-
viding an interface to the API of Keybase.

OAuth Server. The OAuth server is split into 3 con-
trollers. The token controller, authorizer controller
and resource controller. The token controller is re-
sponsible to generate an authorization code for the
client website. This authorization code is sent to the
authorizer controller by the Client website, with the
Client ID and Client Secret, and is exchanged for an
access token. This access token is then passed to the
resource controller, in order to make API calls to Key-
base and access the user’s data. This architecture de-
fined by the library we used to apply the OAuth pro-
tocol (Brent Shaffer, 2014).

Keybase Login System. The Keybase Login Sys-
tem operates in two modes. The basic version where
the user has to enter a username and a passphrase,
and the + version where they have to enter username,
password and also sign a message using their PGP
key.

KAuth Login System. This login system procedure
starts by requesting a salt using the user’s username
or email. Then, the passphrase and the salt (unhexed)
are entered as parameters in the scrypt function which
generates a 256 byte stream. The last 32 bytes of this
stream, are handled as a private key. This private key
is used to sign a JSON blob whose structure is defined
by Keybase. An EdDSA signature is generated and
then packaged into a Keybase-style signature (Key-
base, 2018). The result is sent to the Keybase server
as the pdpka5 parameter.

KAuth+ Login System. The KAuth+ login system
differs from the Basic one as it executes an additional

KAuth: A Strong Single Sign-On Service based on PKI

479



Figure 1: The flow a user follows to login at a third party
website and they choose to do so using KAuth or KAuth+.

action. It follows all steps of the basic login system,
but also uses the user’s private key to sign a message.
This signed message is sent to the server, gets vali-
dated and completes the Login procedure, if success-
ful.

3 IMPLEMENTATION

For the implementation of our system we have created
a client website that offers the KAuth and KAuth+
service, an OAuth2 server offering the Authorization
Code flow and a simple website that works as an in-
terface for the user to connect to Keybase. The only
difference between the two versions of our scheme, is
the login procedure where in one case only the user’s
Keybase username and passphrase are required, while
in the other version, the username/passphrase as well
as a private key are required. Both Client side and
Server side (OAuth and Keybase) of the system are
hosted on the Heroku Platform.

Client Website. First we registered our client web-
site on the OAuth server in order to determine which
data the client website would ask permission for (re-
ferred to as scope). The OAuth server generated a
Client ID and Client Secret required for all OAuth
communication between the client website and the
OAuth server. This was handled by the token con-
troller. The client website was written in PHP and
had two main pages. The main welcoming page and
the login page. The login page offered the user the
option to login using a username and password or to
"Login with KAuth". Choosing to login with KAuth,
the user was redirected to the Authorize controller of
the OAuth server. This controller redirected the user
to our login page of Keybase Website (if they hadn’t
already) and then asked for permission to access the
data that was defined in the scope. If the user autho-
rized the client website to access their data, the OAuth
server sent an Authorization Code back to the client

Figure 2: Login validation for KAuth and KAuth+.

website in a GET request. Then the client website ex-
changed the Authorization code as well the Client ID
and Client secret for an access token using POST. Op-
tionally they could have requested a refresh token so
that this procedure did not need to be repeated every
time. This token would be used each time the client
website wanted to use any of the user’s Keybase data.

OAuth2 Server. For the implementation of the
OAuth2 protocol, we used Brent Shaffer’s open
source OAuth2 PHP library (Brent Shaffer, 2014).
This library offers all OAuth grant types although
we used the Authorization code grant. The library
supports many database schemas but we used Post-
greSQL since this is the one that fit our needs best
with Heroku.

Keybase Login Procedure. Regarding the login
procedure of Keybase, we used an open source
nodeJS module provided by Keybase (Keybase,
2018). This module handled everything during lo-
gin for our basic version. For the extended version,
there was an additional procedure where the user had
to sign a message generated by Keybase, using their
private key. Every time a user was redirected to our
Keybase login page they were presented with a form
requiring a username and passphrase. When they sub-
mitted the form, the nodeJS script was called and
replicated the official Keybase login procedure as de-
scribed on their API (Keybase, 2018). Recall that
even though the login procedure regarding the user-
name and passphrase, looked like a text based authen-
tication scheme, it was actually much more compli-
cated. As soon as the user entered their username and
passphrase and the script was called, a two round lo-
gin protocol (as called by Keybase) was started. The
first round consisted of a GET request to the Keybase
API requesting the user’s salt which was sent along
with a csrf token and a login session token. For the
second round, the salt retrieved was used to generate
a passphrase Stream using the scrypt function which
worked as a Key derivation function. The user’s
passphrase was also used in this function. Scrypt re-

SECRYPT 2018 - International Conference on Security and Cryptography

480



Table 1: Comparative evaluation of KAuth and KAuth+ and other similar password-replacement schemes.
• = Offers the benefit; ◦ = almost offers the benefit; no circle = does not offer the benefit
↑ = better than passwords; ↓ = worse than passwords; no arrow= no change.

Usability Deployability Security

Category Scheme R
ef

er
en

ce

M
em

or
y-

w
is

e
E

ff
or

tle
ss

Sc
al

ab
le

-f
or

-U
se

rs

N
ot

hi
ng

-t
o-

C
ar

ry

Ph
ys

ic
al

ly
-E

ff
or

tle
ss

E
as

y-
to

-L
ea

rn

E
ffi

ci
en

t-
to

-U
se

In
fr

eq
ue

nt
-E

rr
or

s

E
as

y-
R

ec
ov

er
-F

ro
m

-L
os

s

A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-

pe
r-

U
se

r

Se
rv

er
-C

om
pa

tib
le

B
ro

w
se

r-
C

om
pa

tib
le

M
at

ur
e

N
on

-P
ro

pr
ie

ta
ry

R
es

ili
en

t-
to

-P
hy

si
ca

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-T
ar

ge
te

d-
Im

pe
rs

on
at

io
n

R
es

ili
en

t-
to

-T
hr

ot
tle

d-
G

ue
ss

in
g

R
es

ili
en

t-
to

-U
nt

hr
ot

tle
d-

G
ue

ss
in

g

R
es

ili
en

t-
to

-I
nt

er
na

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-L
ea

ks
-f

ro
m

-O
th

er
-V

er
ifi

er
s

R
es

ili
en

t-
to

-P
hi

sh
in

g

R
es

ili
en

t-
to

-T
he

ft

N
o-

Tr
us

te
d-

T
hi

rd
-P

ar
ty

R
eq

ui
ri

ng
-E

xp
lic

it-
C

on
se

nt

U
nl

in
ka

bl
e

Web passwords • • • ◦ • • • • • • • ◦ • • • •
KAuth ◦ • • ◦ ◦ • • ◦ • • • • ◦ • • • • • •

↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓
KAuth+ ◦ • ◦ • ◦ ◦ • • • • • • • • • •

↑ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓
Federated OpenID ◦ • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ ◦ • • •

↑ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↓
Facebook Connect ◦ • • ◦ • • • • • • • • ◦ ◦ ◦ ◦ • •

↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓

turned a 256 byte output. The last 32 bytes of the
output were interpreted as an EdDsa key. This key
was used to sign a JSON blob of a certain form given
in Keybase’s API. Then the EdDSA signature was
packaged as a Keybase-style signature also mentioned
in the Keybase API. This was posted to the server
as a pdpka5 parameter (pdpka stands for Passphrase-
Derived Public Key Authentication). This completed
the login request. If the server replied with a session
cookie, this meant that the login was successful. For
our KAuth+ version the same procedure was followed
but after a successful username/passphrase procedure,
the user was redirected to a wizard-like page which
asked them to download and run a script, and then
upload the signature that was generated. If the signa-
ture was valid and generated less than 1 minute ago,
the login procedure was completed successfully.

4 EVALUATION

In evaluating KAuth, we note that it looks like a typ-
ical username/password scheme but what happens on
the client before contacting the server is what makes
it different. The passphrase never leaves the user’s
device and all validation happens using Public Key
Infrastructure with Elliptic Curves. We discuss the
evaluation of the 2 systems (KAuth and KAuth+) sep-
arately. The evaluation is based on a state-of-the-art
evaluation framework (Bonneau et al., 2012). This
framework uses 25 properties split into 3 catergories,
Usability, Deployability and Security. The framework
is created for evaluation of other schemes compared
to web passwords.

KAuth: Usability Evaluation. The scheme is
Quasi-Memorywise-Effortless as users have to reme-
ber their Keybase passphrase. It is scalable-for-users
since OAuth2 gives you the option to have access and
refresh tokens stored for a certain amount of time,
in order to skip the authorization process the next
time you want to log in. The scheme can remem-
ber arbitrarily many passwords since the client must
give permission to each client only once. It also
satisfies the Nothing-to-Carry and Quasi-Physically-
Effortless requirements as the user only needs to type
the passphrase on Keybase’s login page once per ses-
sion. It is Quasi-Easy-to-Learn since the user must
choose to login with Keybase and enter their Keybase
credentials. A bad interface at the third party client
could harden the process for a user. We rate our sys-
tem Efficient-to-Use and Infrequent-Errors in that it is
presented as a simple password authentication to the
user or can occur semi-automatically if the user has
been logged in with cached login cookies in Keybase
(The user still needs to grant the application access
to their information if it is the first time). Our sys-
tem is Quasi-Easy-Recovery-from-Loss. If someone
loses their passphrase they can recover their account
if they have Keybase installed and logged in on any
device. If they are not logged in Keybase in any de-
vice, they can still recover their account using a reset
link though they will lose all their keys and data. Like
OpenID and Facebook Connect, KAuth offers all Us-
ability benefits at a satisfying level.
KAuth: Deployability Evaluation. KAuth is Acces-
sible and Negligible-Cost-per-User. Anyone who can
use passwords, is able to use KAuth. It not Server-
Compatible since Keybase must offer OAuth2 ser-

KAuth: A Strong Single Sign-On Service based on PKI

481



vices (Client registration/interaction). It is Browser-
Compatible since a user can use KAuth on any device
without having to install any plugins or other soft-
ware. We rate the system as not Mature, since no im-
plementation of such authorization has been deployed
in large scale before. Finally, it is Non-Proprietary as
Keybase and OAuth2 are open-source and free to use.
KAuth: Security Evaluation. Our scheme is Quasi-
Resilient-to-Physical-Observation as an attacker can
target the infrequently typed passphrase. It is
Resilient-to-Targeted-Impersonation as someone im-
personating a user cannot get access to their ac-
count using personal information. Due to Keybase’s
strong authorization method, the scheme is Resilient-
to-Throttled-Guessing and Resilient-to-Unthrottled-
Guessing. It is not Resilient-to-Theft as a loss
of a user’s username and passphrase grants ac-
cess to their account. In addition, KAuth is No-
Trusted-Third-Party, Requiring-Explicit-Consent but
not Unlinkable. The scheme is not Resilient-to-
Internal-Observation as malware on the user’s device
can log their key presses and capture the input of
the passphrase. It is Resilient-to-Leaks-from-Other-
Verifiers but not Resilient-to-Phishing as it involves
redirection to Keybase’s login page. Regarding the
extended version of our approach, there are differ-
ences mainly at usability and security benefits.

KAuth+: Usability Evaluation. For the same
reasons as KAuth the system is rated as offering the
Quasi-Memory-Wise-Effortless, Scalable-for-Users
and Efficient-to-Use benefits. It is rated Quasi-
Infrequent-Errors as the procedure of signing a
message to log in might look complex to some users.
Due to the nature of private keys, the scheme does
not satisfy the Nothing-to-Carry and Easy-to-Learn
benefits as the user must carry a device that has their
private key on to use for the second step of the login
procedure. We rate it Quasi-Physically-Effortless
as the user must choose their private key although
this process can be automated using a default key
location/name or by an automated procedure through
the Keybase client. Regarding recovery from loss, we
rate our system as Quasi-Easy-Recovery-from-Loss
as users can still recover their account using a reset
link though they will lose all their keys and data.
KAuth+: Deployability Evaluation. From a
Deployability standpoint, KAuth+ offers the same
deployability benefits as KAuth with the exception of
the Browser-Compatible benefit. It is not Browser-
Compatible since the user has to install the Keybase
client in order to handle their keys.
KAuth+: Security Evaluation. The system
is Resilient-to-Physical-Observation due to the

signing process. It is also Resilient-to-Targeted-
Impersonation, Resilient-to-Throttled and Un-
throttled guessing, Resilient-to-Leaks-from-other-
Verifiers, Phishing and Requiring-Explicit-Consent.
It is not Resilient-to-Theft since the private key and
the passphrase can be lost, and not Resilient-to-
Internal-Observation as there is malware that can
intercept the input of the passphrase as well as the
(even encrypted) private key from the user’s device.
KAuth+ also offers the no-Trusted-Third-Party
benefit. When it comes to security It is evident that
KAuth+ offers stronger security with a marginal
reduction of usability compared to KAuth. It might
also offer stronger security than other password-
replacing schemes. Its password-less nature defeats a
lot of attacks and might make it a good alternative to
authentication methods.

5 RELATED WORK

Passwords. Researchers have analyzed a corpus of
70 million passwords and have concluded that they
provide little entropy, in particular 10 bits of se-
curity against an online, trawling attack, and only
about 20 bits of security against an optimal offline
dictionary attack (Bonneau, 2012). Additionally to
little entropy, researchers have identified significant
password reuse (Florencio and Herley, 2007; Das
et al., 2014). Towards minimizing passwords, re-
searchers have built a password-based authentication
system on top of password reminders (Tzagarakis
et al., ). KAuth does not rely on passwords, but on
passphrases. The user needs to memorize a strong
secret, but the secret is never transmitted in the net-
work. Moreover, KAuth can use a private PGP key,
which is not derived from a user secret to sign a sec-
ond message for authenticating the user.

SSOs. The large interest in SSO services has led
to doubts about its security benefits. Various re-
search papers have studied the security of such mech-
anisms (Cao et al., 2014) and have addressed vul-
nerabilities (Owano, 2014). Also, there are tools
like SSOScan (Zhou and Evans, 2014) that scan web-
sites with SSO integrations searching for vulnerabili-
ties using the Facebook SSO APIs. SSOScan was run
on 1600+ websites that used Facebook SSO and the
results showed that more than 20% suffered from at
least one of the five major SSO vulnerabilities. KAuth
works in a similar way but offers a unique mechanism
that strengthens the user’s account security.

SECRYPT 2018 - International Conference on Security and Cryptography

482



6 CONCLUSION

In this paper we presented an SSO service based
on PKI that builds on Keybase. KAuth validates a
user using their Keybase username and passphrase
and KAuth+ validates using the user’s username,
passphrase but also their PGP key. The results show
that our approaches offer similar benefits regarding
usability with OpenID and Facebook Connect, never-
theless, we are better in terms of security. KAuth and
especially KAuth+ achieve better scores than most
similar approaches, and a significant improvement on
security compared to web passwords.

REFERENCES
Ars Technica (2013). Twitter detects and shuts down

password data hack in progress. http://arstechni
ca.com/security/2013/02/twitter-detects-and-shuts-
down-password- data-hack-in-progress/.

Bonneau, J. (2012). The science of guessing: Analyzing an
anonymized corpus of 70 million passwords. In SP,
2012.

Bonneau, J., Herley, C., Oorschot, P. C. v., and Stajano, F.
(2012). The quest to replace passwords: A frame-
work for comparative evaluation of web authentica-
tion schemes. SP ’12.

Brent Shaffer (2014). OAuth2 Server Library for PHP.
https://bshaffer.github.io/oauth2-server-php-docs.

Cao, Y., Shoshitaishvili, Y., Borgolte, K., Kruegel, C., Vi-
gna, G., and Chen, Y. (2014). Protecting web-based
single sign-on protocols against relying party imper-
sonation attacks through a dedicated bi-directional au-
thenticated secure channel. In RAID 2014.

Das, A., Bonneau, J., Caesar, M., Borisov, N., and Wang, X.
(2014). The tangled web of password reuse. In NDSS,
2014.

Dhamija, R., Tygar, J., and Hearst, M. (2006). Why phish-
ing works. In CHI ’06.

Dierks, T. (2008). The transport layer security (tls) protocol
version 1.2.

Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., and Ris-
tenpart, T. (2015). The pythia prf service. In USENIX
Security Symposium.

Florencio, D. and Herley, C. (2007). A large-scale study of
web password habits. WWW ’07.

Google (2018). Google+ Sign-in. https://developers.
google. com/+/web/signin/.

Juels, A. and Rivest, R. L. (2013). Honeywords: Making
password-cracking detectable. CCS ’13.

Keybase (2018). Keybase. https://keybase.io.
Kontaxis, G., Athanasopoulos, E., Portokalidis, G., and

Keromytis, A. D. (2013). Sauth: Protecting user ac-
counts from password database leaks. CCS ’13.

Lai, R. W. F., Egger, C., Schröder, D., and Chow, S.
S. M. (2017). Phoenix: Rebirth of a cryptographic
password-hardening service. In USENIX Sec 2017.

Mail, D. (2015). Do YOU suffer from pass-
word rage? A third of people have thrown
a tantrum after forgetting login details.
http://www.dailymail.co.uk/sciencetech/article-
3115754/Do-suffer-password-rage-people-thrown-
tantrum-forgetting-login-details.html.

Miculan, M. and Urban, C. (2011). Formal analysis of face-
book connect single sign-on authentication protocol.
In SOFSEM 2011.

Owano, N. (2014). Math student detects OAuth,
OpenID security vulnerability. https://techxplore.
com/news/2014-05-math-student-oauth-openid-
vulnerability.html.

PayPal (2013). PayPal Leads Industry Effort to Move
Beyond Passwords. https://www.thepaypalblog.
com/2013/02/paypal-leads-industry-effort-to-move-
beyond-passwords/.

Schneider, J., Fleischhacker, N., Schröder, D., and Backes,
M. (2016). Efficient cryptographic password hard-
ening services from partially oblivious commitments.
CCS ’16.

Twitter (2018). Sign in with Twitter. https://dev.twitter.com/
docs/auth/sign-twitter.

Tzagarakis, G., Papadopoulos, P., Chariton, A. A., Athana-
sopoulos, E., and Markatos, E. P. Øpass: Zero-storage
password management based on password reminders.
In EuroSec 2018.

Wired.com (2013). Google Declares War on the Password.
http://www.wired.com/wiredenterprise/2013/01/google-
password/all/.

Zhou, Y. and Evans, D. (2014). Ssoscan: Automated testing
of web applications for single sign-on vulnerabilities.
In USENIX Security 14.

KAuth: A Strong Single Sign-On Service based on PKI

483


