

No Target Function Classifier
Fast Unsupervised Text Categorization using Semantic Spaces

Tobias Eljasik-Swoboda1, Michael Kaufmann2 and Matthias Hemmje1
1Faculty of Mathematics and Computer Science, University of Hagen, Universitätsstraße 47, 58084 Hagen, Germany

2Data Intelligence Research Team, Lucerne School of Information Technology, Suurstoffi 41, 6343 Rotkreuz, Switzerland

Keywords: Text Categorization, Unsupervised Learning, Classification, Text Analytics.

Abstract: We describe a Text Categorization (TC) classifier that does not require a target function. When performing
TC, there is a set of predefined, labeled categories that the documents need to be assigned to. Automated TC
can be done by either describing fixed classification rules or by applying machine learning. Machine
learning based TC usually occurs in a supervised learning fashion. The learner generally uses example
document-to-category assignments (the target function) for training. When TC is introduced for any
application or when new topics emerge, such examples are not easy to obtain because they are time-
intensive to create and can require domain experts. Unsupervised document classification eliminates the
need for such training examples. We describe a method capable of performing unsupervised machine
learning-based TC. Our method provides quick, tangible classification results that allow for interactive user
feedback and result validation. After uploading a document, the user can agree or correct the category
assignment. This allows our system to incrementally create a target function that a regular supervised
learning classifier can use to produce better results than the initial unsupervised system. To do so, the
classifications need to be performed in a time acceptable for the user uploading documents. We based our
method on word embedding semantics with three different implementation approaches; each evaluated
using the reuters21578 benchmark (Lewis, 2004), the MAUI citeulike180 benchmark (Medelyan et al.,
2009), and a self-compiled corpus of 925 scientific documents taken from the Cornell University Library
arXiv.org digital library (Cornell University Library, 2016). Our method has the following advantages:
Compared to key word extraction techniques, our system can assign documents to categories that are
labeled with words that do not literally occur in the document. Compared to usual supervised learning
classifiers, no target function is required. Without the requirement of a target function the system cannot
overfit. Compared to document clustering algorithms, our method assigns documents to predefined
categories and does not create unlabeled groupings of documents. In our experiments, the system achieves
up to 66.73 % precision, 41.8 % recall and 41.09% F1 (all reuters21578) using macroaveraging. Using
microaveraging, similar effectiveness is obtained. Even though these results are below those of
contemporary supervised classifiers, the system can be adopted in situations where no training data is
available or where text needs to be assigned to new categories capturing freshly emerging knowledge. It
requires no manually collected resources and works fast enough to gather feedback interactively thereby
creating a target function for a regular classifier.

1 INTRODUCTION AND
MOTIVATION

Text Categorization (TC) is the assignment of
documents to predefined categories based on their
content. TC can be done manually or automatically
(Sebastiani, 2002). Some examples of automated TC
are classification of scientific documents or news
articles, spam filtering, and work order routing to

appropriate personnel. Automated TC uses two
fundamental strategies: Fixed rules and machine
learning. Formally, a target function
,ሼܶ		ܥ	ݔ	ܦ	:‘ߔ 	݀ ሽ defines whether a documentܨ ∈
	ܿ belongs to a certain category ܦ ∈ A classifier .ܥ
,ሼܶ		ܥ	ݔ	ܦ	:ߔ ሽ then attempts to achieve resultsܨ
as similar as possible to the target function.

When introducing TC functionality to arbitrary
applications, difficulties arise. Besides simple
technological integration effort and dealing with

Eljasik-Swoboda, T., Kaufmann, M. and Hemmje, M.
No Target Function Classifier - Fast Unsupervised Text Categorization using Semantic Spaces.
DOI: 10.5220/0006847000350046
In Proceedings of the 7th International Conference on Data Science, Technology and Applications (DATA 2018), pages 35-46
ISBN: 978-989-758-318-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

35

heterogeneous data formats for different TC
implementations, the main challenge is curating the
necessary data to attempt either TC strategy. Rule
based TC requires domain experts and information
engineers to define rules, whereas machine learning
TC requires already-labeled example documents to
define target functions. Albeit crowd working can be
used to mass-produce learning examples, some
applications require a higher amount of expertise
captured in the examples. In that case, domain
experts must define target functions by manually
tagging example documents. This is a challenge
because experts usually have limited time to spend
for this task.

In order to have a target function, an expert
committee or a predefined gold-standard must fix
the set of categories beforehand. If one has a
document corpus ܦ but no predefined set of
categories ܥ, unsupervised clustering algorithms are
applicable after vectorization of the documents. This
problem differs from TC because there is no fixed
set of categories. Clustering documents does not
always yield human-readable category labels. If one
has a predefined C, or wants to identify specific
emerging topics in large text corpora, neither
document clustering or regular supervised learning
classifiers can be used.

Our research originates from the Deutsche
Forschungsgeselschaft (DFG) sponsored project
RecomRatio, which is part of the Robust
Argumentation Machines emphasis program (DFG,
2016) currently ramping up activities. The goal is to
automatically provide medical professionals with
treatment recommendations mined from current
medical literature along with the analyzed literature
that supports the recommendations. An Information
Retrieval (IR) component that identifies relevant
clinical studies is an integral part of the system. Text
categorization is a central part of the IR component.
Albeit there are plenty examples and target functions
for medicine, emerging topics are not classifiable
using legacy target functions. To address this issue,
our system suggests a category for a new document
upon ingestion within a 30-second limit. A human
user can then confirm or correct this category. This
way, a target function can be collected and the
overall system has classification results that can be
rapidly used.

Our research goal is to create a classifier that
does not require a target function, that can assign
documents to a predefined set of categories, and that
spends less than 30 seconds per categorization while
being able to recognize new, emerging categories.
Striving for this goal, we attempt to answer the

following research questions: (1) How can an
unsupervised classifier be created that labels
documents efficiently? (2) How well can a classifier
without target function perform in terms of
effectiveness? And (3) what influences classifier
performance? The overreaching goal is to design a
TC classifier that requires as little manually
compiled information as possible while being able to
quickly perform TC to predefined categories.

In this paper, we describe three approaches to
implementing a No Target Function Classifier
(NTFC) and evaluate their results using three
benchmarks. Even though its effectiveness is below
that of contemporary supervised learning classifiers,
NTFC offers a number of intrinsic advantages:
Compared to regular classifiers, no target function is
needed. Without a target function, overfitting is
impossible. Compared to key word or key-phrase
extraction algorithms, documents can be assigned to
categories that have words in their labels, which do
not occur in the documents. Compared to clustering
algorithms, our system does not create named or
unnamed clusters of documents from a document
collection but assigns documents to predefined
categories. These features make the NTFC uniquely
suited for emerging knowledge domains. After
thorough experimentation, we conclude with a
discussion and analysis of the evaluation results.

2 STATE OF THE ART

2.1 Text Vectorization

Machine learning algorithms usually work with
scalars or vectors as input and output for their
models (Mohri et al., 2012). If one aims to use these
algorithms for any Natural Language Processing
(NLP) task, then one must first generate vector
representations of texts. One approach to capture
natural language is to use ontologies (Busse et al.,
15). These manually created, machine-readable
representations of semantics are used to conceive
meaning from natural language texts. We chose not
to use ontologies because they must be manually
created. This makes them unfit for emerging
knowledge scenarios where quick results are needed
and useful ontologies might not yet be available.

Fortunately, there is a large collection of
mathematical approaches to capture document
meaning that do require no other inputs than the
documents themselves. In order to capture the
meaning of documents, the sense of the terms
making up the documents need to be grasped. The

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

36

Term Frequency Inverse Document Frequency
(TFIDF) measure is an information retrieval method
that models how representative term t is for
document d (Salton and McGill, 1983). It contains
the term frequency #ሺݐ, ݀ሻ which is defined as the
absolute number of how often t occurs in d and the
document frequency #ܦሺݐሻ, which is defined as the
number of documents t occurs in.

,ݐሺܨܦܫܨܶ ݀ሻ ൌ #ሺݐ, ݀ሻ ∗ ݈݃
|ܦ|
ሻݐሺܦ#

 (1)

Equation 1 models two important intuitions: Firstly,
the more often a term occurs in a document, the
more it is representative for said document.
Secondly, the more documents term t occurs in, the
less discriminating it is between individual
documents. Given that categories have natural
language labels consisting of words, TFIDF can be
used to generate relationships between documents
and categories. A TFIDF vector represents a
document as a set of TFIDF values, one for each
possible term or for the most relevant terms. The
terms making up the category labels have
dimensions of the TFIDF vectors associated with
them. This can be exploited for vectorization of free
text.

For example, the Reuters benchmark contains the
category corn. Every TFIDF vector representing a
document has one dimension associated with the
word corn. Without optimization, this is computed
for every term occurring in either the set of
documents or set of terms. This makes document
representation by TFIDF vectors high dimensional,
leading to the curse of dimensionality (Bellman,
1961). TFIDF vectors are usually sparse. Given the
size of the vocabulary of an entire language, many
individual terms do not occur in documents and are
thus encoded with a 0 in the TFIDF vector.
Analogous to TFIDF, TFICF is the same measure
but used on category labels instead of documents
(Cho and Kim, 1997).

The collection of all TFIDF vectors yields a
TFIDF matrix. This matrix, or a simple matrix
indicating how often which term occurs in which
document, can be used for topic modeling. Topic
modeling techniques rely on the fact, that every
matrix can be expressed as the product of three
individual matrices (equation 2).

ሾൈሿܣ ൌ ሾܷൈሿߑሾൈሿሺ ሾܸൈሿሻ⊺ (2)

The document-to-term matrix A is broken up into the
document-to-topic matrix U, a diagonal topic matrix
with positive entries ߑ and a term-to-topic matrix V.

Here, topics are abstract statistical entities.
Documents are interpreted as probabilities of
different topics to occur, while topics are interpreted
as probabilities for different terms to occur. This
insight is the basis for Latent Semantic Analysis
(LSA), a method to remove terms from the
document-to-term matrix while preserving similarity
structures and Latent Dirichlet Allocation (LDA), a
method to spot hidden structures in the document-to-
term matrix (Dumais, 2005); (Blei et al., 2003). LSA
and LDA are important techniques for text analysis.
They however do not yield unsupervised classifiers,
as the recognized topics are abstract statistical
entities and not predefined, labeled categories. The
resulting topics can be used to assign computable
meaning to terms as every term can be expressed as
vector of topic probabilities.

Explicit Semantic Analysis (ESA) (Egozi et al.,
2011) also assigns meaning to individual terms. To
do so, all Wikipedia articles of a given language are
analyzed by computing the TFIDF values for each
term across all articles. Then the resulting matrix is
transposed. This creates term vectors in which each
dimension represents the corresponding Wikipedia
article’s TFIDF value. Unfortunately, the resulting
vectors are sparse and of a very high dimensionality
as the English Wikipedia has over 5,500,000
articles. LSA can be used to compress these vectors
to lower dimensionality. Using knowledge mined
from Wikipedia can be useful in many NLP
applications, as it is freely available, frequently
updated and provides plenty examples of language
usage (Gabrilovich and Markovitch, 2006).

Word embeddings are a new class of approaches
to reduce the dimensionality of sparse document
vectors by mapping them into lower dimensional
vectors with no information loss. Intriguingly,
contemporary word embedding algorithms form
semantic spaces by encoding meaning with the
coordinates generated for the words. One such
semantic space library is Mikolov’s Word2Vec,
which captures syntactic as well as semantic
relationships by encoding similar offsets between
term vectors (Mikolov et al., 2013). Figure 1
illustrates this in two-dimensions showing offset
vectors for gender and age. To the best of our
knowledge, such semantic coordinate systems have
not been observed in topic modeling based term
vectors.

Given a large text as input, Word2Vec uses
supervised learning by creating text windows of 2݉
words. The two Word2Vec algorithms are based on
the assumption that words similar to each other
occur in the context of the same surrounding words.

No Target Function Classifier - Fast Unsupervised Text Categorization using Semantic Spaces

37

,ିሺିଵሻݓ,ିݓ … , ,ିଵݓ ,ݓ ,ାଵݓ … , ,ାሺିଵሻݓ ାݓ

This is a fundamental difference to TFIDF, LSA,
LDA and ESA, where terms are considered similar if
they occur in the same document. Word embeddings
are much finer grained, which could explain the
offset encoding of relationships between terms.

In the Continuous Bag Of Words (CBOW)
algorithm, the ݉ words before and after ݓ are
taken as input for a neural network while ݓ is the
expected output. The skip-gram algorithm reverses
this pattern and uses the context as expected output
and ݓ as input for these outputs. The
implementations are open source and publicly
available (Mikolov, 2013).

Figure 1: 2D example of a semantic space.

Mikolov et al.’s algorithms optimize the vectors
representing each word ݒሺݓሻ in such a way that the
cosine similarity (equation 3) for words in their
individual context windows is maximized. If for
example the terms ݐଵ ൌ ଶݐ and ”ݕݑܾ” ൌ ”݁ݏ݄ܽܿݎݑ”
are accompanied by the same surrounding words
frequently enough, their representing vectors are
optimized for maximum cosine similarity.

݉݅ݏ ൌ 	
∑ ଶሻݐሺݒଵሻݐሺݒ

ୀଵ

ට∑ vሺtଵሻ
ଶ

ୀଵ ට∑ vሺtଶሻ
ଶ

ୀଵ

(3)

Goldberg and Levy published an in-depth
explanation of the math behind Mikolov’s approach
(Goldberg and Levy, 2014). Pennington et al.,
developed an additional method called Global
Vectors (GloVe) (Pennington et al., 2014). In
GloVe, the context windows stretch the entire
document but distant words are increasingly lightly
weighted.

The fundamental advantage of Word2Vec and
GloVe is that they can generate and encode
relationships between terms by analyzing a large text
file (or the concatenation of many smaller text files).
In comparison to LDA term-to-topic vectors,
relationships are encoded in offsets while in

comparison to ESA, much lower dimensional term-
vectors can be produces.

In our scenario, we have text files but no target
functions. Additionally, concatenations of text files
are easily retrievable from the Internet, for example
by downloading Wikipedia.

The aforementioned methods yield vectors
representing single words and their semantic
relationship to each other. The problem of
transforming a sequence of word vectors into a
single vector representing this sequence is referred
to as Compositional Distributional Semantics
(CDS). One of many CDS models is the Basic
Additive Model (BAM, equation 4) (Zanzotto et al.,
2010). It sums up and weights the vectors’
representing individual terms. In the following
equation, the ߚ function yields a scalar weighting for
terms ݐ, and ݒ provides the term vector for a given
term.

ܯܣܤ ൌߚሺݐሻݒሺݐሻ

ୀଵ

 (4)

The BAM omits ordering of individual words. Text
sequences with a broad vocabulary tend to get
higher BAM values if the ߚ function does not
compensate for that. In contrast to other CDS
models, BAM does not require additional
information about the individual terms to work. The
easiest implementation for a ߚ function is ߚ ൌ 1/݊,
which equally weighs every term occurring in a
word sequence. The resulting vectors can then be
compared using similarity measures like the cosine
similarity (equation 3). The BAM is mathematically
equivalent to the centroid of the individual term
vectors when using an adequate ߚ function.

Kusner et al. proposed a completely different
approach to comparing sequences of word vectors
with each other by introducing the Word Mover’s
Distance (WMD) (Kusner et al., 2015). Given two
documents ݀ଵ and ݀ଶ, the WMD between these
documents is defined as the minimum cumulative
distance between the words constituting these
documents.

If ݓ ∈ ݀ଵ also occurs in ݀ଶ, it does not add to
,ሺ݀ଵܦܯܹ ݀ଶሻ.

If ݓ ∉ ݀ଶ, it adds min݀݅ݐݏሺݒ൫ݓ൯, ሻሻ forݓሺݒ
ݓ ∈ ݀ଶ to ܹܦܯሺ݀ଵ, ݀ଶሻ.

The cosine distance is defined as ݀݅ݐݏ ൌ 1 െ
 .݉݅ݏ

Both the BAM and WMD methods result in a
distance measure between two word sequences (i.e.,
category labels or documents). Of course, word
vectors encoding semantic similarity are required.

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

38

Mikolov et al. proposed the paragraph2vec method.
It builds on the CBOW and skip-gram algorithms,
which were extended with an additional document
ID that was added to the context windows. Besides
generating vectors for each individual word, vectors
for documents are generated in the same high
dimensional space. When pre-processed vectors are
available, BAM and WMD can be used in an online
document-by-document fashion. Paragraph2vec can
only be computed by analyzing the entire set of
documents.

These methods are useful to compute semantic
meaning from documents and terms. This allows
assessing the similarity between documents or
between documents and words without explicitly
encoding these or any form of target function. All
that is required is a set of texts. None of these
methods directly generates a classifier for a
predefined set of categories.

In the context Text Categorization in emerging
knowledge domains, the work of Nawroth et al.,
(2018) is highly interesting as it investigates how to
recognize emerging Named Entities (Nadeau and
Sekine, 2017). Depending on perspective, a named
entity can be seen as possible category for TC in any
knowledge domain.

2.2 Unsupervised Text Classification

Broadly speaking, one can define unsupervised text
classification as methods to assign documents to
categories without examples. Three groups of
methods can further be distinguished: Methods that
yield unlabeled clusters, methods that extract
keywords or key phrases from documents, and
methods that assign documents to predefined
categories. Documents that have the same keywords
or key phrases can be regarded as being of the same
category. Nevertheless, contemporary approaches
usually do not classify documents to predefined
categories.

An interesting approach in this direction is
Slonim et al.’s work (Slonim et al., 2002) using
clustering for unsupervised document classification.
They clustered documents so that each one belonged
to one cluster. Then the predominant category of the
documents in a cluster was used as categorization
decision and subsequent performance measurement.
That means they knew the correct category per
cluster from the beginning and used it as a
benchmark for their clustering algorithm. This
method requires knowing the target function.

In the context of bootstrapping TC, McCallum
and Nigam created a Naïve Bayes classifier that was

trained by providing a set of key words for each
category (McCallum and Nigam, 1999). They
achieved up to 66% accuracy in a 70-leaf taxonomy.
Compared to our approach, this actually requires
someone to provide key words for each category.
Even though this takes vastly less time than
manually assigning categories to all documents, it is
additional knowledge that might not be available in
our bootstrapping scenario.

Ko and Seo build on McCallum and Nigam’s
results to create a semi-supervised classifier (Ko and
Seo, 2009). Their method generates key words for
each category by computing which words most often
accompanied the category label words within the
text. This notion of context is equal to that used in
word embedding algorithms. These key words for
each category are then used to train a naïve Bayes
classifier. The results of the naïve Bayes classifier
are subsequently used to train an actual supervised
classifier. This multi step approach achieves up to
80% F1 in the Reuters benchmark. Even though this
outperforms our approach in F1, it is noteworthy that
Ko and Seo’s method requires manually compiled
external knowledge resources; such as stop word
lists and ontologies as for example all adjectives
were filtered from the model. In contrast to our
approach, this model cannot identify new categories
based on a set of documents.

Dai et al. also use a word embedding based
approach to construct a classifier (Dai et al., 2017).
This classifier discerns whether Twitter tweets are
about the flu or not. This way they proposed a
method for disease monitoring using social media.
The method is related to our NTFC. For every tweet,
a random amount of clusters is generated. Then,
based on a distance threshold in semantic space,
words making up the tweet are assigned to these
clusters. Every cluster is then represented using the
BAM. In the next step, the distance of every cluster
to the term “flu” is measured. If it was under a
specified threshold, the cluster is considered flu-
related. If one cluster of a tweet is flu-related, the
entire tweet is considered flu-related. In their work,
they used vectors generated with CBOW based on
Google-news articles. The difference in approach is
the breaking up of tweets into a random number of
clusters. This requires external knowledge in order
to correctly parameterize the cluster creation
probability and distance between terms and
documents. Dai et al., only use very short texts
(Twitter Tweets are limited to 140 characters) and
one single-word category “flu”.

No Target Function Classifier - Fast Unsupervised Text Categorization using Semantic Spaces

39

3 DOCUMENT CLASSIFICATION
USING WORD EMBEDDING
DISTANCES

In the first step, we reduce document content and
category labels to lower-case Latin letters. We
regard a category as concatenation of individual
words constructed from the labels representing the
category. This makes categories small documents.
Based on these word sequences, we create a word
occurrence matrix that maps each term to each
document. In order to perform any meaningful
categorization, we require a distance measure
,ሺܿݐݏ݅݀ ݀ሻ between categories and documents.

For single label classification, the classifier is
generated by the distance measure and the minimum
function: The category with the lowest distance to a
document represents the classification for this
document.

,ሺܿߔ ݀ሻ ൌ min	ሺ݀݅ݐݏሺܿ, ݀ሻሻ (5)

The adopted distance measure always defines the
classifier. Multilabel classification can be achieved
in two ways: (1) Assigning the ݊ categories with the
lowest distance to a document or (2) implementing a
distance threshold, which assigns documents to all
categories with sufficiently low distances. We
decided for the first option because it is an easier to
choose parameter when introducing TC. The generic
NTFC algorithm can be expressed by the following
pseudo-code:

NTFC
INPUT: Set of categories ܥ
INPUT: Document ݀
INPUT: Assigned categories ݊
INPUT: Distance measure ݀݅ݐݏ
OUTPUT: Classifier Φሺܿ, ݀ሻ
Start.
01: ∀ܿ ∈ ,Φሺܿ	:ܥ ݀ሻ ൌ ܨ
02: IF ݀݅ݐݏ==TFIDF OR ݀݅ݐݏ==BAM
03: update TFIDF matrix with ݀
 ሾ݊ሿݐ݊݅ ሾሿ = new݀݊ܫ݊݅݉ :04
 ሾ݊ሿ݈ܾ݁ݑ݀ ሾሿ = newݐݏ݅ܦ݊݅݉ :05
06: FOR ݅ ൌ 0;݅ ൏ ݊;݅
07: FOR ܿ	 ∈ ܥ	
08: IF ݀݅ݐݏሺܿ, ݀ሻ ൏ ሾ݅ሿݐݏ݅ܦ݊݅݉
09: AND ܿ ∉ ሾሿ݀݊ܫ݊݅݉
,ሺܿݐݏ݅݀	=ሾ݅ሿݐݏ݅ܦ݊݅݉ :10 ݀ሻ
 ܿ	=ሾ݅ሿ݀݊ܫ݊݅݉ :11
12: FOR ݅ ൌ 0;݅ ൏ ݊;݅
13: Φሺ݉݅݊݀݊ܫሾ݊ሿ, ݀ሻ ൌ ܶ
End.

The NTFC is a straightforward method that relies
on pre-processed word embeddings to generate
distance measures between categories and
documents. Because these vectors can be generated
or downloaded before any classification takes place,
high classification efficiency can be achieved.
Additionally NTFC can work on individual
documents and does not need to analyze all
documents to create a classification decision.

We propose three variations of the NTFC, which
differ in the utilized distance measures. The first
variation is based on TFIDF and omits the usage of
information derived from word embeddings. As it is
the simplest approach and essentially equal to
querying category label terms, we use it as baseline
for all other implementations. The TFIDF variation
works by limiting the set of possible keywords to
terms that occur in category labels. Out of these
terms, the top n keywords for a document sorted by
TFIDF are computed. A document is subsequently
assigned to the category with the most representative
label. That means that the highest TFIDF value
between a term occurring in a category label and a
document is equal to the minimum distance between
the category and the document. For example, the
MAUI benchmark has the categories social
networks, bookmarking, and search. For each
document, the TFIDF measure for the individual
words making up the labels, (social, networks,
bookmarking, and search) are computed. If
bookmarking has the highest TFIDF out of all label
words, bookmarking is the category assigned to the
document. In another example, if social has the
lowest TFIDF value but networks the highest, the
document is assigned to the social networks
category. This approach only considers terms as
candidates that literally occur in a document,
because the TFIDF value for terms not occurring in
a document is 0. Categories with long, multi-word
labels have increased chances of representing a
specific document. If the documents are classified in
a document-by-document fashion, the TFIDF matrix
is frequently updated. Alternatively, the TFIDF
matrix can be computed for the entire set of
documents before categorization allowing skipping
steps 2 and 3.

Also utilizing a TFIDF matrix, our second
variation is using the BAM model (equation 4) to
generate vectors for each document and category.
For categories that only have a single term as label,
the vector representing this term is loaded from the
pre-processed word embeddings. We base our ߚ
function on TFIDF using softmax normalization, so
that all resulting vectors are of equal length. The

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

40

Figure 2: Illustration of the pre-processing process and internal dataflow.

 .function depends on the document and term (6) ߚ

,ݐሺߚ ݀ሻ ൌ ,ݐሺܨܦܫܨሺܶݔܽ݉ݐ݂ݏ ݀ሻሻ (6)

This variation is inspired by physics as it creates a
point similar to the center of mass. The word vector
defines the location of the individual mass point.
The TFIDF value defines the mass of each point.
The same computation is performed for categories,
simply substituting ݀ with ܿ. The classifier then uses
the cosine distance between documents and
categories to find the closest objects and thereby
decide which document to assign to which category.
For example, the category graph theory will have a
representing point in the semantic space that is
between the vectors for graph and theory. Each
document has a representing point in this semantic
vector space. Cosine similarity then detects the
minimum distance/maximum similarity documents
to the category vector.

The third variation of the NTFC algorithm uses
the Word Mover’s Distance between categories and
documents to detect the closest category. Category
labels are much shorter than documents. If all words
of a category label occur in a document, the WMD
between the category and the document is 0, which
ensures that the document is assigned to this
category. If they do not all occur in the document,
the semantically closest words influence the WMD
and overall categorization decision. Reusing the
graph theory example, a document that contains the
words graph and theory will have WMD = 0. If a
document does not contain these words, the cosine
distance to the semantically closest words will be
added to the WMD between the document and the
category. This allows finding the minimum
distance/maximum similarity categories for each
document.

Besides the utilized distance measure, the NTFC
variations depend on the utilized word embedding/
semantic space algorithms, which in turn depend on
the texts that are used to compute the word
embeddings. Using our model, categories can be
added as needed by simply specifying their labels.
No examples are needed in order to define a target
function. Additionally, the available semantic space
can be used to identify new categories by clustering
the document vectors and identifying terms central
to the document vector clusters.

4 IMPLEMENTATION

We implemented our system in Java. The
preprocessing of word vectors is performed with the
open source C implementations of the individual
algorithms. Their results are stored to a file system
and loaded into our system. There, they are stored in
a two-dimensional double array where each line
corresponds to a specific term and each column to
the dimension of the word vectors. We implemented
a term list by storing the individual words indices to
find the correct vectors quickly.

When not working in the online document-by-
document mode, the first step for the BAM and
TFIDF baseline implementation is a word
occurrence counter. TFIDF values cannot be
computed without knowing how often which word
occurs in which document. Without TFIDF values,
the BAM model cannot be computed. To assess
multiple documents at once, we implemented a
multi-threaded class, which spawns an arbitrary
number of workers. These workers read the text
documents from the file system and write the

No Target Function Classifier - Fast Unsupervised Text Categorization using Semantic Spaces

41

occurrences of individual words to a synchronized,
two-dimensional integer array.

The lines of this array correspond to the words
the word vector array. The columns correspond to
the documents. This information is written to the file
system so that it can be re-used by the individual
implementations allowing for faster
experimentation. We encode categories in simple
XML. The TFIDF implementation only computes
TFIDF values for terms that actually occur in the
category labels. With each ingested document,
 .ሻ and the term occurrence file/array is updatedݐሺܦ#
As all information is kept in memory, the individual
categorizations can be performed in less than one
second for < 2,000 categories on a contemporary
Intel i7 CPU. Based on this information and the
chosen distance measure, min൫݀݅ݐݏሺܿ, ݀ሻ൯ is
computed and used for classification by returning
the top ݊ most similar categories per document.

NTFC performs the same operations for each
new document. The required time on equal hardware
depends on the text used to generate the semantic
space. Depending on the complexity of the text
examples, the word vector array size can differ. For
the setup described in the next chapter, classification
time for each category was far below our 30-second
limit. Storing a 200-dimensional semantic space as
double precision floating point values and
combining it with the word occurrence arrays for D
and C resulted in memory requirements of about 10
GB for the evaluated scenarios. This is well within
the limits of modern computing equipment but
requires 64-bit addressing. NTFC can work with
arbitrary vectors that encode semantics for words.
We decided to use 200-dimensional word
embeddings because we lack the computing
equipment for 5,500,000-dimensional ESA vectors
and LDA based term-to-topic vectors have not been
observed to create semantic spaces encoding
relationships in offsets.

The WMD approach does not require the TFIDF
array and only works with the word occurrence array
when accessing all documents at once. To do so, an
outer loop runs through the categories comparing
their label words with the words making up the
document. It performs quicker than the BAM model
and stays within our 30-second limit.

5 EVALUATION

We generated 200-dimensional word vectors using
CBOW, skip-gram, and GloVe based on a
concatenation of Google news articles and the first

billion characters of a Wikipedia dump. This
resulted in six semantic spaces. We then
benchmarked the system’s results against the three
aforementioned benchmarks. For key-phrase
extraction benchmarks, individual key phrases were
modeled as categories in our target function ߔ‘.
Even though our classifier doesn’t need the target
function, we require it for the evaluation. If category
ܿ	is specified to be in document ݀, then
,ሺܿ‘ߔ ݀ሻ ൌ ܶ. Otherwise ߔ‘൫ܿ, ݀൯ ൌ .ܨ

If our algorithm assigned a document to a correct
category according to ߔ‘, then we regarded this as
True Positive (TP) for the category. If our algorithm
assigned a document to an incorrect category, then
we regarded this as a False Positive (FP). Missing
documents for categories were regarded as False
Negatives (FN). For each category, we computed
precision ߨሺܿሻ, recall ߩሺܿሻ, and 1ܨሺܿሻ using their
standard formulae (Sebastiani, 2002).

https://github.com/SirTobiSwobi/NTFCeval
contains the raw data of all our experiments. Taking
the Reuters single label classification case as an
example, our experiments yielded the microaverage
results shown in table 1. The bold entries indicate
results where an approach outperformed the TFIDF
baseline. TFIDF obtains relatively high precision
results for unsupervised single label classification.
This means that in many cases (MAUI: 62.84%,
Reuters: 55.5%, ArXiv: 26.59%), the exact word
most representative of a document (out of all
category labels according to TFIDF) is part of the
correct category. The TFIDF method achieves much
higher precision than recall due to only assigning a
document to a category if the exact label words of
the category have the highest TFIDF for the
document. The other methods performed at about
half to a third of the precision as the TFIDF
approach, whereas almost all experiments produced
higher recall than TFIDF because the exact label
term does not need to be within the document. BAM
performed constantly, relatively independently of
the utilized word embedding algorithm and source
material yielding F1 results between 11.56% and
18.74%. WMD is more strongly influenced by these
parameters, yielding F1 results between 15.63% and
36.35% (the best microaverage results in this
experiment).

In the next step, we let our algorithm assign the
top two categories to each document. When
changing from single label to dual label
classification, TFIDF precision is reduced, as many
more documents were assigned to incorrect
categories. This directly boosted the TFIDF recall to
about double that of the single label case. Many

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

42

Table 1: Reuters21578 TC benchmark results for one category per document.

Variation Algorithm Corpus Precision Recall F1
TFIDF 55.50% 11.59% 19.17%
BAM CBOW Google 19.57% 17.98% 18.74%
BAM CBOW Wiki 19.46% 17.88% 18.64%
BAM Glove Google 13.80% 12.69% 13.22%
BAM Glove Wiki 15.00% 13.79% 14.37%
BAM skip-gram Google 12.07% 11.09% 11.56%
BAM skip-gram Wiki 16.85% 15.48% 16.14%
WMD CBOW Google 35.04% 32.17% 33.54%
WMD CBOW Wiki 33.95% 31.17% 32.50%
WMD Glove Google 35.04% 32.17% 33.54%
WMD Glove Wiki 16.32% 14.99% 15.63%
WMD skip-gram Google 28.51% 26.17% 27.29%
WMD skip-gram Wiki 37.98% 34.87% 36.35%

Figure 3: F1 comparison for TFIDF and WMD for different category amounts.

documents that had more than one category in their
target function could now get a second correctly
assigned category. Overall, TFIDF outperformed all
BAM implementations. Interestingly, the WMD
implementations now had better precision than
TFIDF when no GloVe-based vectors were used.
This means that even though TFIDF yielded the best
single label microaverage precision, WMD
algorithms yielded higher precision and better F1
than TFIDF for non-GloVe-based vectors when two
categories per document were assigned. In further
experiments, we increased the number of
categorizations per documents to three and five.

The previously shown trends of decreased
precision for increased recall continued. When
moving from two to three categories per document,
TFIDF precision drops by about 7% while all WMD
implementations have a recall decrease of less than

1%. In the Reuters top 5 experiment, TFIDF had a
microaverage precision of 18.8% with a recall of
86.41% resulting in 30.89% F1. In the same
experiment, non-GloVe-based WMD
implementations yielded higher precision (up to
33.75%) and subsequently F1 values (up to 41,62%).
In the Reuters top 3 and top 5 experiments,
CBOW/Google Vectors achieved 40.36% and
41.62% F1 with skip-gram/Wikipedia vectors a
close second with 39.06% and 37.92% respectively.
Over all Reuters and ArXiv experiments, the WMD
implementation based on skip-gram/Wikipedia-
generated word vectors created the best results. In
the MAUI experiments, the BAM implementations
worked better than WMD. However, in MAUI
TFIDF outperformed WMD and BAM by a large
margin. In general, the more categories assigned to
each document, the higher the recall. TFIDF tends to

No Target Function Classifier - Fast Unsupervised Text Categorization using Semantic Spaces

43

reduce in precision with increasing categories while
other implementations, especially the WMD, are
more stable. The three benchmarks have interesting
relationships between the number of documents and
categories. Where for the Reuters Benchmark
|D|>>|C|, for the MAUI Benchmark, |D|<<|C|. For
ArXiv, |D|>|C|. This can explain the results of the
NTFC as it seems to perform better the smaller the
set of categories is compared to the amount of
documents.

6 CONCLUSIONS

We have shown three methods of constructing an
unsupervised text classifier. This gives us three
answers to our first research question of how an
unsupervised classifier can be created that labels
documents efficiently? In single label classification,
different distance implementations and word
embeddings optimize different measures. 55.5% of
microaverage precision can be achieved by using the
TFIDF approach. However the TFIDF approach
yields relatively low recall. Regarding recall and F1,
the WMD method performed best. The best
implementation of WMD, skip-gram, and Wikipedia
source material achieved 36.35% of microaverage
F1. Moving to multilabel classification, the TFIDF
implementation can achieve higher recall values
while simultaneously losing precision. This effect is
far less for the WMD implementation. This answers
our second research question of how well a classifier
without a target function and minimal additional
information can perform in terms of effectiveness.

To answer our third research question of what
influences classifier performance: The amount of
categorizations performed per document strongly
influences classifier performance. The closer the
amount is to the average amount of categories per
document of the target function, the better the
results. The relationship in size between the set of
categories and the set of documents also influences
classifier performance. The less categories there are,
the better the performance of the NTFC. The
classifier performance also directly depends on the
word vectors that are used. We found that using the
skip-gram algorithm on Wikipedia produced the best
vectors in single label classification. For multi-label
categorization, word vectors generated using CBOW
on Google news material achieved slightly better
precision, recall, and F1 than those in second place
which were generated using skip-gram on
Wikipedia. The better performance of WMD over
BAM can be explained with a stronger dependence

on word embeddings, because no TFIDF measures
are taken into consideration. Wikipedia based
vectors allow to capture more exotic terms that do
not occur in the vocabulary extracted from Google
news. This leads to the usually better performance of
Wikipedia based vectors in the ArXiv benchmark,
which consisted out of scientific documents
containing a more complex vocabulary than the
other benchmarks.

Regarding computation time, all approaches need
to count how often which word occurs in which
document. Having performed that task, TFIDF
requires computation time based on the size of the
vocabulary T per category word per document. This,
as well as finding the highest TFIDF value per
document, costs ܱሺ|ܥ| ∗ |ܦ| ∗ |ܶ|ሻ. Performed in an
online fashion, this usually requires less than a
second per document in the utilized benchmarks. For
BAM, the TFIDF values are required to create the ߚ
function. The results then need to be multiplied with
the individual word vectors increasing
computational complexity by the factor of their
dimension to ܱሺ|ܥ| ∗ |ܦ| ∗ |ܶ| ∗ ሺሻ|ሻ. Thisݒ|
dominates computing the cosine similarity between
all documents and categories, as it requires looping
through the dimensions. The WMD implementation
also loops through all categories and documents.
There it computes the cosine similarity between all
words making up the document to those making up
the category. This computation also costs ܱሺ|ܥ| ∗
|ܦ| ∗ |ܶ| ∗ .ሺሻ|ሻݒ|

We extracted the possible terms from the word
vector file. The size of the vocabulary depends on its
source (Wikipedia: 281,317 words; Google news:
71,291 words). When using 200-dimensional word
vectors and a Wikipedia-based corpus, WMD and
BAM require less than 10 seconds per
categorization. In a Google news-based corpus, the
required time is less than 3 seconds on a
contemporary i7 CPU, which is within our 30-
second limit. This distinguishes our approach from
available other state-of-the-art approaches: The
system can work online and does not require
assessing the whole corpus of documents for every
document ingestion. Additionally, categories can be
added when needed without requiring any target
function. Besides the word embeddings, no
additional information than the documents and
categories is required.

As mentioned in the introduction, our intended
information system presents the computed categories
after document ingest to the user, who then affirms
or corrects the categorizations. This interactive
process then builds a target function over time.

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

44

When there is a sufficiently large target function, the
system can switch to a classic supervised
classification algorithm like SVM to mimic the
users’ document classification behavior. The
decision of which system to use can be answered by
comparing the supervised learning classifier results
to the NTFC results in the background. As soon as
the classifier can outperform the NTFC, the system
can switch to the regular classifier. Alternatively, the
supervised learning classifier and the NTFC can
form a classifier committee. Because the NTFC
cannot overfit, this can prevent the regular classifier
from overfitting. The model can also be used to
extract potential new categories from an existing text
corpus. Documents can be clustered in semantic
space and cluster means in can be computed. These
cluster means can be used to find terms most
descriptive for the cluster. Clusters can then be
regarded as categories while the words closest to the
cluster mean can be used as category labels. The
nature of semantic spaces allows assessing the
relationships between the clusters. For example
hyponymy- and hypernymy relationships between
the labels of different categories. We intent to
investigate this further in future works as well as
extending the NTFC to work with multiple clusters
for text representation as proposed by Dai et al.,
(2017). Different to Dai et al.’s work, we will try to
minimize the necessity of external knowledge to
parameterize the solution.

REFERENCES

Bellman, R. (1961). Adaptive Control Processes. A
Guided Tour, Princeton University Press, USA.

Blei, D.M., Ng, A.Y., Jordan, M. I. (2003) Latent Dirichlet
Allocation, Journal of Machine Learning Research,
vol. 3, pp. 993-1022, doi:10.1162/jmlr.2003.3.4-5.993.

Busse J., Humm, B., Lübbert, C., Moelter, F., Reibold, A.,
Rewald, M., Schlüter, V., Seiler, B., Tegtmeier, E.,
Zeh, T. (2015). Actually, What Does “Ontology“
Mean? A Term Coined by Philosophy in the Light of
Different Scientific Disciplines. In: ournal of
Computing and Information Technology – CIT 23, pp.
29-41 doi:10.2498/cit.1002508.

Cho, K., Kim, J. (1997). Automatic text categorization on
hierarchical category structure by using ICF (inverse
category frequency) weighting. In: Proceedings of
KISS conference. pp. 507-510.

Cornell University Library (2016) arXiv.org [online]
Available at: https://arxiv.org [Accessed 15 Dec.
2016]

Dai, X., Bikdash, M., Meyer, M. (2017).From social
media to public health surveillance: Word embedding
based clustering method for twitter classification. In

Proceedings SoutheastCon, pp. 1-7,
doi:10.1109/SECON.2017.7925400.

DFG (2016) Schwerpunktprogramm “Robust
Argumentation Machines” (SPP 1999), 27 June.
[online] Available at: http://www.dfg.de/
foerderung/info_wissenschaft/2016/info_wissenschaft
_16_38/index.html [Accessed 6 Mar. 2018]

Dumais, S. T. (2005). Latent Semantic Analysis. In:
Annual Review of Information Science and
Technology, vol. 38, pp. 188-230 DOI:
10.1002/aris.1440380105.

Egozi, O, Markovitch, S., Gabrilovich, E. (2011).
Concept-Based Information Retrieval using Explicit
Semantic Analysis. In ACM Transactions on
Information Systems, vol. 29, pp. 8:1-8:34. doi:
10.1145/1961209.1961211.

Gabrilovich, E., Markovitch, S., (2006). Overcoming the
brittleness bottleneck using Wikipedia: Enhancing text
categorization with encyclopedic knowledge. In: AAAI
Vol. 6, pp. 1301-1306.

Goldberg, Y, Levy, O. (2014). word2vec Explained,
Deriving Mikolov et al.’s Negative-Sampling Word-
Embedding Method [online] Available at:
https://arxiv.org/pdf/1402.3722v1.pdf [Accessed 25
Jan. 2017]

Ko, Y., Seo, J. (2009). Text classification from unlabeled
documents with bootstrapping and feature projection
techniques. In Journal of Information Processing and
Management 45, pp. 70-83.

Kusner, M. J., Sun, Y., Kolkin, N., Weinberger, K. Q.
(2015). From Word Embeddings To Document
Distances. In Proceedings of the 32nd International
Conference on Machine Learning, Lille, France.

Lewis, D. (2004) The Reuters-21578 text categorization
benchmark. [online] Available at: http://www.
daviddlewis.com/resources/testcollections/reuters2157
8/reuters21578.tar.gz [Accessed 02 Aug. 2017]

McCallum, A., Nigam, K. (1999). Text Classification by
Bootstrapping with Keywords, EM and Shrinkage. In:
Workshop On Unsupervised Learning In Natural
Language Processing, pp. 52-58.

Medelyan, O., Frank, E., Witten, I. H., (2009). Human-
competitive tagging using automatic keyphrase
extraction. In Conference on Empirical Methods in
Natural Language Processing EMNLP 09. Singapore.
pp. 1318-1327.

Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013).
Efficient Estimation of Word Representation in Vector
Space. In: Proceedings of Workshop at ICLR. [online]
Available at: http://arxiv.org/pdf/1301.3781.pdf
[Accessed 29 Dec. 2015]

Mikolov, T. (2013) Word2Vec C Code [online] Available
at: https://code.google.com/archive/p/word2vec/
source/default/source [accessed 05 Dec. 2015]

Mohri, M., Rostamizadeh, A., Talwalkar, A. (2012).
Foundations of Machine Learning, MIT Press,
Cambridge, Massachusetts, USA.

Nadeau, D., Sekine, S. (2007). A survey of named entity
recognition and classification, Lingvisticae
Investigationes, 30(1), pp. 3-26.

No Target Function Classifier - Fast Unsupervised Text Categorization using Semantic Spaces

45

Nawroth, C., Engel, F., Hemmje, M., Eljasik-Swoboda, T.
(2018). Emerging Named Entity Recognition for
Clinical Argumentation Support. In Submitted to
Proceedings of DATA 2018.

Pennington, J., Socher, R., Manning, C. (2014). GloVe:
Global Vectors for Word Representation. In Empirical
Methods in Natural Language Processing, pp. 1532-
1543.

Salton, G., McGill, M. (1983). Introduction to Modern
Information Retrieval, McGraw-Hill.

Sebastiani, F. (2002). Machine Learning in Automated
Text Categorization. In ACM Computing Surveys. Vol
34, pp. 1-47.

Slonim, N., Friedman, N., Tishby, N. (2002).
Unsupervised document classification using sequential
information maximization..In Proceedings of the 25th
ACM SIGIR conference on Research and development
in in-formation retrieval, doi:10.1145/564376.564401.

Zanzotto, F. M., Korkontzelos, I., Fallucchi, F.,
Manandhar, S., (2010). Estimating linear models for
compositional distributed semantics. In Proceedings of
the 23rd International Conference on Computational
Linguistics, pp. 1263-1271.

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

46

