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Abstract: Recent IEEE 802.11 wireless LANs provide high speed data transfer using the newly introduced physical and 
MAC technologies. Although packet losses over a wireless link are also decreased by the help of new MAC 
technologies, some packet losses still occur randomly. Those packet losses invoke TCP congestion control, 
which reduces the TCP level throughput, even if congestion does not occur at al. In order to resolve this 
problem, some machine learning based approaches have been proposed, which use K-means clustering in 
order to discriminate congestion triggered packet losses and wireless error triggered packet losses. However, 
those proposals use only delay related parameters, but delay may increase due to non-congestion reasons, in 
which case the conventional proposals fail discrimination. This paper proposes a method to classify packet 
losses by the K-means clustering focusing on congestion window size and round-trip delay, and to stop 
decreasing congestion window when losses are triggered by wireless errors. We develop the proposed method 
as a Linux kernel module and show the performance evaluation results that the throughput increases by 40% 
without increasing unnecessary packet losses. 

1 INTRODUCTION 

Recently, the data transfer throughput over IEEE 
802.11 WLANs (Wireless LANs) has increased 
significantly. The recent IEEE standards, such as 
IEEE 802.11n and 11ac, introduced new PHY 
(physical) and MAC (medium access control) 
mechanisms (IEEE, 2016). The PHY mechanisms 
including new modulation methods, MIMO 
(multiple-input and multiple-output), and channel 
bonding realize high data rate, and the MAC 
mechanisms such as frame aggregation and block 
acknowledgment (Block Ack) provide not only low 
protocol overheads but also powerful data 
retransmission capability. 

Most of communications over IEEE 802.11 
WLAN, such as web access and e-mail, use TCP 
(transmission control protocol) as their transport 
prptocol (IETF, 1981). One of noteworth functions in 
TCP is the congestion control. When congestion 
occurs at some nodes within a network, the TCP 
module in a data sending node decreases its data 
sending rate. However, since TCP works only at an 

end node, it cannot detect a precise condition of the 
node suffering from congestion. So far, dozens of 
congestion control methods have been proposed 
(Afanasyev et al., 2010), and most of them consider 
that, if there are any packet losses, congestion occurs 
somewhere in a network. 

When a WLAN link exists within a path between 
communicating nodes, the possibility of packet losses 
will be larger than a path consisting of wired links 
only, even if the recent IEEE 802.11 standards are 
used. In such a case, TCP in a sending node considers 
that congestion occurs and decreases the congestion 
window size unnecessarily. This is a traditional issue 
on TCP over wireless links and has been studied 
actively (Sardar and Sara, 2006). There are many 
proposals, such as modifying TCP, dividing TCP 
connections, and support by lower layer protocols. 
Recently, there are new trends; a machine learning 
approach, i.e., the discrimination of TCP packet 
losses by use of machine learning technologies.  

Machine learning is a useful method which can be 
applied to various fields. TCP communication is one 
of the targets and several studies are proposed. 
(Nunes et al., 2011) applied the Experts Framework 

Moriyama, T., Yamamoto, R., Ohzahata, S. and Kato, T.
TCP Congestion Control over IEEE 802.11 Wireless Lans based on K-Means Clustering Focusing on Congestion Window Size and Round-trip Time.
DOI: 10.5220/0006836800250032
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS, pages 25-32
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

25



 

technique to RTT (round-trip time) estimation. 
(Mirza et al., 2010) proposed how to predict TCP 
throughput using the SVR (support vector regression) 
technique. (Chung et al., 2017) applied the random 
decision forests to an MPTCP scheduler that selects a 
subflow to send data segments by considering 
performance metrics such as the MAC data rate, 
signal strength, and network congestion.  

As for the packet loss discrimination, 
(Sooriyabandara et al., 2010) and (Morifuji and 
Hiraki, 2013) proposed approaches that a data sender 
infers the cause of packet losses by use of the K-
means clustering method (Hand et al., 2001). (Deng 
and Cai, 2009) focused on MANET (mobile ad hoc 
network) and adopted SVM (support vector machine) 
to allow a data receiver to differentiate packet losses.  

This paper improves the work done by 
(Sooriyabandara et al., 2010) and (Morifuji and 
Hiraki, 2013). These two papers focused only delay 
related parameters such as one way delay and RTT. 
In this paper, we use congestion window size (cwnd) 
as well as RTT, and classify two types of packet 
losses, i.e. congestion losses and wireless losses, by 
use of the K-means clustering. Moreover, we propose 
a congestion control method that skips the cwnd 
decreasing when a packet loss is classified as a 
wireless loss. The rest of this paper is organized as 
follows. Section 2 gives some background 
information including the overview of IEEE 802.11 
WLAN and the TCP congestion control, some 
previous comments on packet losses over WLAN, the 
overview of K-means clustering, and some related 
work. Section 3 describes the proposed method and 
Section 4 gives the performance evaluation results. In 
the end, Section 5 concludes this paper.  

2 BACKGROUNDS 

2.1 IEEE 802.11 WLAN and TCP 
Congestion Control 

As described above, the recent IEEE 802.11 
standards, 11n and 11ac, introduce new MAC 
mechanisms for high speed and efficient data frame 
transmission; the frame aggregation and Block Ack. 
The frame aggregation allows multiple data frames 
(called MAC protocol data units: MPDUs) to be 
aggregated and sent together. The whole transmitted 
frame is called A-MPDU (Aggregation MPDU), and 
is a collection of A-MPDU subframes, each of which 
includes an MPDU delimiter, an MPDU body, and a 
padding, as shown in Figure 1. An MPDU delimiter 
contains the MPDU length, a cyclic redundancy 

check (CRC) to detect bit errors within the delimiter 
itself. A padding consists of 0 through 3 bytes, which 
make the length of an A-MPDU subframe a multiple 
of 4 bytes. 
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A-MPDU subframe PLCP: physical layer convergence protocol, 
MPDU: MAC protocol data unit, 
A-MPDU: Aggregation MPDU, PAD: padding  

Figure 1: Structure of A-MPDU. 

The IEEE 802.11n and 11ac standards adopt an 
acknowledgment scheme called high throughput 
(HT)-immediate Block Ack. When a receiver 
receives an A-MPDU, it replies a Block Ack frame 
which contains a Block Ack Bitmap parameter 
indicating whether it correctly receives a MPDU with 
a specific sequence number. The Bitmap indicates 
receipt or non-receipt of 64 MPDUs. The data sender 
retransmits non-received MPDUs according to the 
Bitmap. When a Block Ack frame itself is lost, the 
whole A-MPDU is retransmitted by timeout.  

TCP uses cwnd in addition with an advertised 
window size (awnd) which a data receiver reports in 
a TCP header. A data sender transmits data segments 
according to the smaller of cwnd and awnd. TCP 
Reno / NewReno (Henderson et al., 2012) is a 
traditional congestion control method, which is still 
used widely. cwnd is controlled in an AIMD (additive 
increase and multiplicative decrease) mechanism. 
When receiving an ACK segment reporting the 
receipt of new data segments (a new ACK), cwnd is 
increased by 1/cwnd (segments), and when any data 
segments are retransmitted in response to three 
duplicate ACKs (fast retransmit), cwnd is halved. 
CUBIC (Ha et al, 2008) is a relatively new congestion 
control method, which is a default in the Linux 
operating system. cwnd increases in a cubic function 
of time from the last fast retransmit. At the fast 
retransmit, cwnd decreases to 70% (80% in the 
original version) of the cwnd value just before the 
retransmission.  

In those methods, a data sender detects congestion 
by a packet loss (retransmission). In TCP Vegas 
(Brakmo and Peterson, 1995), on the other hand, a 
data sender monitors RTT and estimates the queue 
length at a bottleneck node. If the estimated queue 
length is smaller than a threshold, a sender increases 
cwnd by one segment during one RTT timeframe. If 
the queue length is larger than another threshold, a 
sender decreases cwnd by one segment during one 
RTT timeframe. Otherwise, a sender keeps cwnd as it 
is. That is, TCP Vegas is a mechanism based on the 
delay.  
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There are some congestion control methods based 
on packet losses and delay. TCP Veno (Fu and Liew, 
2003) and Compound TCP (Tan et al., 2006) are 
examples. They decrease cwnd at a packet loss, and 
control the cwnd increase and decrease depending on 
the congestion status estimated by RTT. If network is 
congested, they work like TCP Reno, and if not 
congested, they increase cwnd more aggressively.  

2.2 Packet Losses over 802.11 WLAN 

As mentioned in the previous subsection, the recent 
IEEE 802.11 WLANs provide highly reliable data 
transfer by use of the HT-immediate Block Ack 
mechanism, compared with the older IEEE standards 
that used the one-to-one mapping between data and 
Ack frames. However, a few packet losses occur 
resulting from the retry-out in the MAC level 
retransmission.  

 

 
(a) Network configuration 

 
(b) Packet loss rate 

Figure 2: UDP data transfer over 802.11ac WLAN. (Dianu 
et al., 2014). 

Figure 2 shows a result of the performance 
evaluation of 802.11ac LAN in an indoor 
environment given in (Dianu et al., 2014). As shown 
in Figure 2 (a), a sender is located at position S and a 
receiver is at one of positions R1 through R5. A 

sender generates 30 second UDP data traffic using 
iperf. Figure 2 (b) shows the result of packet error 
ratio in response to the distance between the sender 
and the receiver. In the case that the distance is 10.1 
m (position R2), there are some packet losses 
although the rate is under 1%, which means that 
wireless losses happen in an IEEE 802.11ac WLAN. 

Figure 3 shows another example of performance 
evaluation of 802.11n WLAN, which was conducted 
for evaluating Bufferbloat problem (Nomoto et al, 
2014). As shown in Figure 3 (a), a station starts 
sending data to the server at the far most position for 
30 seconds, moves to the nearest position, and stays 
there for 30 seconds. Then, it moves to the far position 
again. At the far most position, the station uses 6.5 or 
13 Mbps data rate, and uses rate close to 300 Mbps at 
the nearest position. Figure 3 (b) shows the time 
variation of cwnd measured at the station. From time 
0 to 40 seconds, and 80 to 120 seconds, that is, while 
the station is moving or in the far most position, cwnd 
keeps increasing. This means there are no packet 
losses. On the other hand, while the station stays at 
the nearest position, there are ten drops in the cwnd 
graph, each of which corresponds to a packet loss. 
Since there are no bottlenecks in the data transfer 
from the station to the server, these losses are 
considered as wireless losses. This result shows 
wireless losses happen in an 802.11n WLAN. 

 

 
(a) Network configuration 

 
(b) cwnd vs. time 

Figure 3: TCP data transfer over 802.11n WLAN. (Nomoto 
et al., 2014). 
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2.3 K-Means Clustering 

In this subsection, we explain the K-means clustering 
that we use to classify TCP packet losses. The K-
means algorithm is a type of unsupervised learning. 
The goal of this algorithm is to categorize unlabelled 
data into K groups. Specifically, it minimizes an 
objective function ∅; 

∅ ൌ෍෍‖ݔ െ .௜‖ଶݔ̅
௫∈௑೔

௄

௜ୀଵ

 (1)

 

Here, ሼݔሽ is a set of data, ௜ܺ is a cluster, i.e. a disjoint 
subset such that ⋃ ௜ܺ

௄
௜ୀଵ ൌ the set of data, and ̅ݔ௜  is 

the cluster center of ௜ܺ in a Euclidean distance sense. 
The algorithm is summarized in the following way.  
1. Assign data into K clusters randomly. 
2. Calculate the center of each cluster by 

௜ݔ̅ ൌ 	
1
| ௜ܺ|

෍ ݔ
௫∈௑೔

. (2)

3. Reassign all data ݔ into a new cluster in a way that 
a Euclidean distance ‖ݔ െ  ௜‖ is the minimum forݔ̅
 .௜ݔ̅

4. Repeat steps 2 and 3 until there are no changes in 
clusters or the maximum repeat count is exceeded.  

Figure 4 shows an example of the K-means clustering. 
A hundred points are selected randomly in the field of 
(0, 0) through (100, 100). The above algorithm is 
applied once, twice, three times and eight times. As 
the repeat count increases, the total of distance 
between individual points and the corresponding 
cluster center becomes small.  

2.4 Related Work 

repeat count = 1 repeat count = 2

repeat count = 3 repeat count = 8

 

Figure 4: Example of clustering by K-means clustering. 

In order to classify TCP packet losses as a congestion 
loss and a wireless loss, (Sooriyabandara et al., 2010) 
uses two delay based parameters, one way delay 
(OWD) and inter-arrival time (IAT) of ACK 
segments, as data for the K-means clustering. A TCP 
data sender keeps a record of OWD and IAT for the 
three most recent ACKs, and if there is a packet loss, 
that is, a duplicate ACK is received, a sender 
classifies this loss event into two groups. A sender 
determines this loss as a congestion loss or a wireless 
loss depending on the mean OWD of last three ACKs. 
If it belongs to a congestion loss category, then a 
sender follows the standard TCP back-off procedure, 
and if not, cwnd is not decreased. (Sooriyabandara et 
al., 2010) shows some performance results by use of 
the network simulator ns-2 successfully, but OWD is 
difficult to measure in an actual network.  

(Morifuji and Hiraki, 2013), on the other hand, 
uses RTT for discriminating packet losses. It records 
RTT for packets and discriminates the type of losses 
based on RTT records. Only if a packet is classified 
into the congestion loss, a data sender decreases cwnd. 
Through a simulation based performance evaluation, 
they confirmed that this method improves TCP 
throughput.  

3 PROPOSAL 

Basically, both of the related work discussed in the 
previous section use a delay based parameter for the 
K-means clustering. That is, if congestion occurs, 
OWD or RTT will increase, and so a packet loss with 
a large delay may be a congestion loss in a high 
probability. On the other hand, a packet loss with a 
small delay might be a wireless loss. However, over 
an IEEE 802.11 WLAN link, delay may change for 
other reasons. For example, IEEE 802.11 WLAN 
uses multiple data rates and the dynamic rate 
switching, and when a station is located far from an 
access point and the data rate is low, the transmission 
delay will increase. Besides, in our previous paper 
(Moriyama et al., 2017), we showed that, if there is 
an unbalanced traffic load when the multi-user 
MIMO is used together with the frame aggregation in 
802.11ac, transmission delay may increase. Therefore, 
it is possible that the K-means clustering using only 
delay based parameters may lead to wrong 
categorization.  

In this paper, we focus on cwnd itself together 
with RTT to apply the K-means clustering, because it 
is considered that the probability of congestion 
increases when the value of cwnd is large. In the 
proposed method, cwnd is decreased as in the original  
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Figure 5: Flow chart of proposed method. 

TCP if the data retransmission is classified as a 
congestion loss, but if classified as a wireless loss, a 
data sender does not decrease cwnd.   

Figure 5 shows detailed algorithm flow of the 
proposed method. For new ACKs, a sender records 
(cwnd, RTT) pair, and the average of three of these 
pairs is maintained as y[j]. If a sender receives a 
duplicate ACK segment, then it applies the newest 
y[j] to the K-means clustering. If y[j] is categorized as 
a wireless loss, then the cwnd decreasing is stopped 
in the original ACK processing. Otherwise, the 
original TCP congestion control is performed.  

4 PERFORMANCE EVALUATION 

4.1 Experiment Conditions 

In order to evaluate the performance of the proposed 
method, we implemented it over the Linux operating 
system (Ubuntu 16.04LTS). We also implemented 
the method described in (Morifuji and Hiraki, 2013), 
which uses only RTT for the K-means clustering (we 
call this method conventional method). The 
maximum number of data used in the K-means 
clustering is 10,000 and the maximum repeat count is 
set to 50,000.  

Figure 6 shows the experimental configuration. A 
server, a data sender, is connected to Gigabit Ethernet, 
which is connected with an IEEE 802.11ac access 
point at the other end. There is one station, a data 
receiver, in this WLAN.  

We used two scenarios in the experiment. In 
scenario 1, 30 msec delay and random packet errors 
are inserted at the output port in the server. The 
distance between the access point and the station is 
about 1 m. The inserted packet loss rate is 0.03%, 

0.3%, or 3%. In scenario 2, on the other hand, only 30 
msec delay is inserted at the server, and the distance 
between the access point and the station is about 7 m. 

 
Server 

(sender)
Access point

802.11ac
Station (receiver)Ethernet

1Gbps

insert 30 msec delay and 
random packet errors 〜 1m

(a) Scenario 1

Server 
(sender)

Access point

802.11ac
Station (receiver)Ethernet

1Gbps

insert 30 msec delay
〜 7m

(b) Scenario 2  

Figure 6: Experimental configuration. 

In the experiment, the communication duration is 
90 sec. We compare the performance of TCP Reno, 
the conventional method (Morifuji and Hiraki, 2013), 
and the proposed method. For each method, we 
executed twenty-five experiment runs for measuring 
throughput and number of duplicate ACKs.  

4.2 Evaluation Results in Scenario 1 

Figure 7 shows the average throughput measured in 
scenario 1. The graph shows the results of Reno, the 
conventional method (Conv. Method in the figure), 
and the proposed method (Prop. Method). Along with 
the increase of packet error rate inserted artificially, 
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the throughput decreases in all the cases. The 
throughput is the lowest in the original TCP Reno. 
The two K-means clustering methods improve the 
throughput. The conventional method provides better 
throughput than the proposed method. Figure 8 shows 
the number of duplicate ACKs during one 
experimental run. This has a similar trend with the 
average throughput. TCP Reno is the smallest and the 
conventional method is the largest.  

Those results mean that the conventional method 
is the most aggressive, that is, the conventional 
method handles large number of packet losses as 
wireless losses and does not decrease cwnd. As a 
result, the average throughput becomes high, and 
consequently the number of packets sent increases, 
which increases the packet losses again. 

 

 

Figure 7: Throughput in scenario 1. 

 

Figure 8: Number of duplicate ACKs in scenario 1. 

4.3 Evaluation Results in Scenario 2 

Figure 9 shows the average throughput in scenario 2. 
In this scenario, both the conventional method and the 
proposed method realize 40% improvement 
compared with the original TCP Reno. On the other 
hand, as shown in Figure 10, the number of duplicate 
ACKs is 3.4 times in the conventional method and 1.5 

times in the proposed method, compared with Reno. 
This means that, although the throughput 
improvement is similar for the conventional method 
and the proposed method, the conventional method 
induces the increase of packet losses. 

The number of transmitted packets increases as 
the throughput increases. Along that, the number of 
duplicate ACKs also increases. In order to evaluate 
the number of duplicate ACKs independently of the 
amount of transmitted packets, we define the 
congestion index α by the following equation; 

α ൌ
ݎܾ݁݉ݑ݊ ݂݋ ݏܭܥܣ	݁ݐ݈ܽܿ݅݌ݑ݀

݈ܽݐ݋ݐ ݎܾ݁݉ݑ݊ ݂݋ ݏݐ݁݇ܿܽ݌	݀݁ݐݐ݅݉ݏ݊ܽݎݐ
. (3)

Figure 11 shows the average of congestion index. 
From this graph, the proposed method does not 
increase the congestion index from the original Reno, 
while the congestion index of the conventional 
method increases, as twice as the original Reno. This 
result means that the proposed method realizes high 
performance without increasing unnecessary packet 
losses, that is, without deteriorating congestion. 
 

 

Figure 9: Throughput in scenario 2. 

 

Figure 10: Number of duplicate ACKs in scenario 2. 
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Figure 11: Ratio of duplicate ACKs for total segments in 
scenario 2. 

In the end of this subsection, we show a detailed 
result for individual experimental run for 90 seconds. 
Figure 12 shows the time variation of RTT and cwnd 
for TCP Reno, the conventional method, and the 

proposed method. Red dots in the graph of RTT show 
three duplicate ACKs triggering fast retransmit. In the 
case of TCP Reno, every three duplicate ACK 
decreases cwnd as indicated in Figure 12 (a). Some of 
these decreases are wireless loss driven events. In the 
conventional method given in Figure 12 (b), cwnd 
does not decrease when RTT is small, and so, there 
are many chances that cwnd take larger value than 
TCP Reno. But, sometimes cwnd does not decrease 
even if the value is large (see around 50 seconds and 
80 seconds). It is considered that these situations 
deteriorate congestion. On the contrary, in the 
proposed method given in Figure 12 (c), cwnd does 
not decrease while RTT is small and cwnd decreases 
when the cwnd value itself is large. 

5 CONCLUSIONS 

In this paper, we proposed a method to classify TCP 
packet losses over IEEE 802.11 WLAN into conges-

 

 
(a) TCP Reno 

 
(b) Conventional method 

 
(c) Proposed method 

Figure 12: Time variation of RTT and cwnd in scenario 2. 
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congestion losses and wireless losses by the K-means 
clustering focusing on both congestion window size 
and round-trip time. The proposed method modifies 
the TCP congestion control such that if packet losses 
are categorized as wireless losses, the congestion 
window size does not decrease. We implemented the 
proposed method within the Linux operating system 
and conducted the performance evaluation using real 
WLAN network. The results showed that the 
proposed method provides 40% higher throughput 
than TCP Reno and that it does not increase the ratio 
of duplicate ACKs to the total packets, which the 
conventional method focusing only on RTT suffered 
from. 
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