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Abstract: The presence of equivalent mutants is a recurrent source of aggravation in mutation-based studies of 
software testing, as it distorts our analysis and precludes assertive claims. But the determination of whether 
a mutant is equivalent to a base program is undecidable, and practical approaches are tedious, error-prone, 
and tend to produce insufficient or unnecessary conditions of equivalence. We argue that an attractive 
alternative to painstakingly identifying equivalent mutants is to estimate their number. This is an attractive 
alternative for two reasons: First, in most practical applications, it is not necessary to identify equivalent 
mutants individually; rather it suffices to know their number. Second, even when we need to identify 
equivalent mutants, knowing their number enables us to single them out with little to moderate effort. 

1 EQUIVALENT MUTANTS 

1.1 A Survey of Equivalent Mutants 

The issue of equivalent mutants has mobilized the 
attention of researchers for a long time; mutation is 
used in software testing to analyze the effectiveness 
of test data or to simulate faults in programs, and is 
meaningful only to the extent that the mutants are 
semantically distinct from the base program (Jia and 
Harman, 2011; Just et al., 2014; Andrews et al., 
2005; Namin and Kakarla, 2011). But in practice 
mutants may often be semantically undistinguishable 
from the base program while being syntactically 
distinct from it (Yao et al., 2014; Schuler and Zeller, 
2012; Gruen et al., 2009; Just et al., 2013; Just et al., 
2014; Wang et al., 2017; Papadakis et al., 2014).    

Given a base program P and a mutant M, the 
problem of determining whether M is equivalent to 
P is known to be undecidable (Budd and Angluin, 
1982). In the absence of a systematic/ algorithmic 
procedure to determine equivalence, researchers 
have resorted to heuristic approaches.  In (Offutt and 
Pan, 1997) Offutt and Pan argue that the problem of 
detecting equivalent mutants is a special case of a 
more general problem, called the feasible path 
problem; also they use a constraint-based technique 
to automatically detect equivalent mutants and 
infeasible paths. Experimentation with their tool 

shows that they can detect nearly half of the 
equivalent mutants on a small sample of base 
programs. Program slicing techniques are proposed 
in (Voas and McGraw, 1997) and subsequently used 
in (Harman et al., 2000; Hierons et al., 1999) as a 
means to assist in identifying equivalent mutants.  In 
(Ellims et al., 2007), Ellims et al. propose to help 
identify potentially equivalent mutants by analyzing 
the execution profiles of the mutant and the base 
program. Howden (Howden, 1982) proposes to 
detect equivalent mutants by checking that a 
mutation preserves local states, and Schuler et al. 
(Schuler et al., 2009) propose to detect equivalent 
mutants by testing automatically generated invariant 
assertions produced by Daikon (Ernst et al., 2001); 
both the Howden approach and the Daikon approach 
rely on local conditions to determine equivalence, 
hence they are prone to generate sufficient but 
unnecessary conditions of equivalence; a program P 
and its mutant M may well have different local states 
but still produce the same overall behavior; the only 
way to generate necessary and sufficient conditions 
of equivalence between a base program and a mutant 
is to analyze the programs in full (vs analyze them 
locally). 

1.2 Counting Equivalent Mutants 

It is fair to argue that despite several years of  
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research, the problem of automatically and 
efficiently detecting equivalent mutants remains an 
open challenge.  In this paper we are exploring a 
way to address this challenge, not by a painstaking 
analysis of individual mutants, but rather by 
estimating the number of equivalent mutants; more 
precisely, we are interested to estimate the ratio of 
equivalent mutants (abbr: REM) that a program is 
prone to generate, for a given mutant generation 
policy.  This is an attractive alternative to current 
research, for two reasons:   

• First because for most applications it is not 
necessary to identify equivalent mutants 
individually, but rather to estimate their number.  
If, for example, we generate 100 mutants of 
program P and we estimate that the ratio of 
equivalent mutants of P is 0.2 then we know 
that approximately 80 of these mutants are 
semantically distinct from P.  Then we can 
assess the thoroughness of a test data set T by 
the ratio of mutants it kills over 80, not over 
100. 

• Second, even when we need to identify 
equivalent mutants, having an estimate of their 
number enables us to identify them to an 
arbitrary level of confidence with relatively 
little effort.  If we have 100 mutants of program 
P and we estimate that 20 of them are 
equivalent to P, then we can use testing to kill 
as many of the 100 mutants as we can; with 
each killed mutant, the probability that the 
surviving mutants are equivalent to P increases. 

1.3 Mutant Generation Policy 

In order to estimate the number of equivalent 
mutants that a program P is prone to generate under 
a given mutant generation policy, we must analyze 
program P and the mutant generation policy.   

• The impact that a program P has on the number 
of equivalent mutants generated for a given 
mutant generation policy is currently under 
investigation; we have already published 
evidence to the effect that the amount of 
redundancy in a program is an important factor 
that strongly affects the ratio of equivalent 
mutants generated from this (Marsit et al., 
2017). To model the impact of a program on the 
ratio of equivalent mutants that it is prone to 
generate, we run an empirical experiment where 
we analyze relevant redundancy metrics of a 
sample set of programs, then apply a fixed 

mutant generator to each of these programs and 
observe the number of equivalent mutants that 
are generated for each.  Using analytical and 
statistics-based empirical arguments, we show 
that the ratio of equivalent mutants has a 
significant correlation with the selected metrics; 
also, using the selected metrics as independent 
variables, we derive a regression model that 
estimates the ratio of equivalent mutants.  

The regression model discussed above is valid for 
the mutation generation policy that we have used in 
the empirical experiment, but is not necessarily 
meaningful if a different mutation generation policy 
is used. Hence in order for our results to be of 
general use we need to understand and integrate the 
impact of the mutation generation policy on the ratio 
of equivalent mutants.  The brute force approach to 
this problem is to select a set of common mutation 
generation policies and build a specific regression 
model for each. For the sake of generality and 
breadth of application, we propose an alternative 
approach whereby we analyze the impact of 
individual mutation operators on the ratio of 
equivalent mutants, then we investigate how the 
ratio of equivalent mutants produced by a 
combination of operators can be derived from those 
of the individual operators.  The purpose of this 
paper is to explore what relation links the ratio of 
equivalent mutants obtained by a combination of 
operators to the ratios obtained by the individual 
operators.  For the sake of simplicity, we first 
consider this problem in the context of two then 
three operators. The investigation of combinations of 
four operators or more is under way, at the time of 
writing. 
In section 2 we discuss how to estimate the ratio of 
equivalent mutants of a base program P by 
quantifying several dimensions of redundancy of P, 
under a fixed mutant generation policy.  In section 3, 
we derive a regression model that enables us to 
estimate the REM of a program (dependent variable) 
from the redundancy metrics of the program 
(independent variables), which are derived by static 
analysis of the program’s source code; this 
regression model is derived empirically using a 
uniform mutant generation policy.  In section 4 we 
discuss how to estimate the REM of a program 
under an arbitrary mutant generation policy, and 
design an experiment which may enable us to do so 
automatically; in section 5 we present the results of 
our experiment and analyze them, and in section 6 
we summarize our findings and sketch our plans for 
future research.  
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2 A FIXED MUTANT 
GENERATION POLICY 

The agenda of this paper is not to identify and 
isolate equivalent mutants, but instead to estimate 
their number.  To estimate the number of equivalent 
mutants, we consider question RQ3 raised by Yao et 
al. in (Yao et al., 2014):  What are the causes of 
mutant equivalence?  Two main attributes may cause 
a mutant M to be equivalent to a base program P:  
the mutation operator(s) that are applied to P to 
obtain M, and P itself.  In this section, we consider a 
fixed mutation generation policy, specifically that of 
the default operators of PiTest (http://pitest.org/), 
and we reformulate the question as:  For a selected 
mutation generation policy, what attributes of a 
program P determine the REM of the program?  Or, 
equivalently, what attributes of P make it prone to 
generate equivalent mutants? 

To answer this question, consider that the 
attribute that makes a program prone to generate 
equivalent mutants is the exact same attribute that 
makes a program fault tolerant:  indeed, a fault 
tolerant program is a program that continues to 
deliver correct behavior (by, e.g. maintaining 
equivalent behavior) despite the presence and 
sensitization of faults (introduced by, e.g. 
application of mutation operators). We know what 
feature causes a program to be fault tolerant:  
redundancy.  Hence if only we could find a way to 
quantify the redundancy of a program, we could 
conceivably relate it to the ratio of equivalent 
mutants generated from that program.  Because 
mutants that are found to be distinct from the base 
program are usually said to be killed, we may refer 
to the ratio of equivalent mutants as the survival rate 
of the program’s mutants, or simply as the 
program’s survival rate.   

Because our measures of redundancy use 
Shannon’s entropy function (Shannon, 1948), we 
briefly introduce some definitions and notations 
related to this function, referring the interested 
reader to more detailed sources (Csiszar and 
Koerner, 2011).  Given a random variable X that 
takes its values in a finite set which, for convenience 
we also designate by X, the entropy of X is the 
function denoted by H(X) and defined by: 

(ܺ)ܪ = −෍ (௜ݔ)݌ log൫݌(ݔ௜)൯ ,௫೔∈௑  

where ݌(ݔ௜)   is the probability of the event ܺ =   .௜ݔ
Intuitively, this function measures (in bits) the 

uncertainty pertaining to the outcome of ܺ, and takes 
its maximum value ܪ(ܺ) = (ܰ)݃݋݈  when the 
probability distribution is uniform, where ܰ  is the 
cardinality of ܺ.   

We let X and Y be the two random variables; the 
conditional entropy of X given Y is denoted by ܪ(ܺ|ܻ) and defined by: ܪ(ܺ|ܻ) = ,ܺ)ܪ ܻ) −  ,(ܻ)ܪ
where ܪ(ܺ, ܻ) is the joint entropy of the aggregate 
random variable (ܺ, ܻ).  The conditional entropy of 
X given Y reflects the uncertainty we have about the 
outcome of X if we know the outcome of Y.  All 
entropies (absolute and conditional) take non-
negative values.  Also, regardless of whether Y 
depends on X or not, the conditional entropy of X 
given Y is less than or equal to the entropy of X (the 
uncertainty on X can only decrease if we know Y).  
Hence for all X and Y, we have the inequality: 

0 ൑ (ܺ)ܪ(ܻ|ܺ)ܪ ൑ 1.0. 
3 A REGRESSION MODEL 

The purpose of this section is to build a regression 
model that enables us to estimate the REM of a 
program using its redundancy metrics.  To this effect, 
we review a number of redundancy metrics of a 
program, and for each metric, we discuss, in turn: 

• How we define this metric. 

• Why we feel that this metric has an impact on the 
REM. 

• How we compute this metric in practice (by hand 
for now). 

Because our ultimate goal is to derive a formula for 
the REM of the program as a function of its 
redundancy metrics, and because the REM is a 
fraction that ranges between 0 and 1, we resolve to 
let all our redundancy metrics be defined in such a 
way that they range between 0 and 1.  

3.1 State Redundancy 

What is State Redundancy? State redundancy is the 
gap between the declared state of the program and 
its actual state. Indeed, it is very common for 
programmers to declare much more space to store 
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their data than they actually need, not by any fault of 
theirs, but due to the limited vocabulary of 
programming languages.  State redundancy arises 
whenever we declare a variable that has a broader 
range than the set of values we want to represent, 
and whenever we declare several variables that 
maintain functional dependencies between them. 

Definition: State Redundancy.  Let P be a 
program, let S be the random variable that takes 
values in its declared state  space and σ be the 
random variable that takes values in its actual 
state space.  The state redundancy of Program P 
is defined as: ܪ(ܵ) − (ܵ)ܪ()ܪ  

Typically, the declared state space of a program 
remains unchanged through the execution of the 
program, but the actual state space grows smaller 
and smaller as execution proceeds, because the 
program creates more and more dependencies 
between its variables with each assignment.  Hence 
we define two versions of state redundancy:  one 
pertaining to the initial state, and one pertaining to 
the final state.  

ܴܵூ = (ܵ)ܪ	 − (ܵ)ܪ(ூ)ܪ , 
ܴܵி = (ܵ)ܪ − (ܵ)ܪ(ி)ܪ , 

where ூ  and ி   are (respectively) the initial state 
and the final state of the program, and S is its 
declared state. 

Why is state redundancy correlated to the REM?  
State redundancy measures the volume of data bits 
that are accessible to the program (and its mutants) 
but are not part of the actual state space.  Any 
assignment to/ modification of these extra bits of 
information does not alter the state of the program.    

How do we compute state redundancy?  We must 
compute the entropies of the declared state space 
 ((ூ)ܪ) the entropy of the actual initial state ,((ܵ)ܪ)
and the entropy of the actual final state (ܪ(ி)).  
For the entropy of the declared state, we simply add 
the entropies of the individual variable declarations, 
according to the following table (for Java): 

Table 1: Entropies of Basic Variable Declarations. 

Data Type Entropy (bits) 
Boolean 1 
Byte 8 
Char, short 16 
Int, float 32 
Long, double 64 

For the entropy of the initial state, we consider the 
state of the program variables once all the relevant 
data has been received (through read statements, or 
through parameter passing, etc.) and we look for any 
information we may have on the incoming data 
(range of some variables, relations between 
variables, assert statements specifying the 
precondition, etc.); the default option being the 
absence of any condition.  For the entropy of the 
final state, we take into account all the dependencies 
that the program may create through its execution.  
As an illustration, we consider the following simple 
example: 
 
public void example(int x, int y) 
   {assert (1<=x && x<=128 && y>=0); 
    long z = reader.nextInt(); 
    //  initial state 
    Z = x+y;} //  final state 

We find: 

(ܵ)ܪ • = 32 + 32 + 64 =  .ݏݐܾ݅	128
Entropies of x, y, z, respectively. 

(ூ)ܪ • = 10 + 31 + 64 =  ݏݐܾ݅	105

Entropy of x is 10, because of its range; entropy 
of y is 31 bits because half the range of int is 
excluded. 

(ி)ܪ • = 10 + 31 =  .ݏݐܾ݅	41
Entropy of z is excluded because z is now 
determined by x and y. 

Hence ܴܵூ = 128 − 105128 = 0.18, 
ܴܵி = 128 − 41128 = 0.68. 

3.2 Non Injectivity 

What is Non Injectivity. A major source of 
redundancy is the non-injectivity of functions.  An 
injective function is a function whose value changes 
whenever its argument does; and a function is all the 
more non-injective that it maps several distinct 
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arguments into the same image. A sorting routine 
applied to an array of size N, for example, maps N! 
different input arrays (corresponding to N! 
permutations of N distinct elements) onto a single 
output array (the sorted permutation of the 
elements). A natural way to define non-injectivity is 
to let it be the conditional entropy of the initial state 
given the final state:  if we know the final state, how 
much uncertainty do we have about the initial state?  
Since we want all our metrics to be fractions 
between 0 and 1, we normalize this conditional 
entropy to the entropy of the initial state.  Hence we 
write: ܰܫ = (ூ)ܪ(ூ|ி)ܪ . 
Since the final state is a function of the initial state, 
the numerator can be simplified as ܪ(ூ) −   .(ி)ܪ
Hence: 

Definition: Non Injectivity. Let P be a program, 
and let ூ  and ி  be the random variables that 
represent, respectively its initial state and final 
state.  Then the non-injectivity of program P is 
denoted by NI and defined by: ܰܫ = (ூ)ܪ − (ூ)ܪ(ி)ܪ 	. 

Why is non-injectivity correlated to the REM? Of 
course, non-injectivity is a great contributor to 
generating equivalent mutants, since it increases the 
odds that the state produced by the mutation be 
mapped to the same final state as the state produced 
by the base program. 

How do we compute non-injectivity? We have 
already discussed how to compute the entropies of 
the initial state and final state of the program; these 
can be used readily to compute non-injectivity.    

3.3 Functional Redundancy 

What is Functional Redundancy? A program can 
be modeled as a function from initial states to final 
states, as we have done in sections 0 and 3.2 above, 
but can also be modeled as a function from an input 
space to an output space.  To this effect we let X be 
the random variable that represents the aggregate of 
input data that the program receives, and Y the 
aggregate of output data that the program returns.   

Definition: Functional Redundancy. Let P be a 
program, and let ܺ  be the random variable that 
ranges over the aggregate of input data received 
by P and ܻ the random variable that ranges over 
the aggregate of output data delivered by P.  Then 
the functional redundancy of program P is 
denoted by FR and defined by: ܴܨ =  .	(ܺ)ܪ(ܻ)ܪ

Why is Functional Redundancy Related to the 
REM? Functional redundancy is actually an 
extension of non-injectivity, in the sense that it 
reflects not only how initial states are mapped to 
final states, but also how initial states are affected by 
input data and how final states are projected onto 
output data. 

How do we compute Functional Redundancy? To 
compute the entropy of X, we analyze all the sources 
of input data into the program, including data that is 
passed in through parameter passing, global 
variables, read statements, etc.  Unlike the 
calculation of the entropy of the initial state, the 
calculation of the entropy of X does not include 
internal variables, and does not capture 
initializations. To compute the entropy of Y, we 
analyze all the channels by which the program 
delivers output data, including data that is returned 
through parameters, written to output channels, or 
delivered through return statements.    

3.4 Non Determinacy 

What is Non Determinacy? In all the mutation 
research that we have surveyed, mutation 
equivalence is equated with equivalent behavior 
between a base program and a mutant; but we have 
not found a precise definition of what is meant by 
behavior, nor what is meant  by equivalent behavior.  
We argue that the concept of equivalent behavior is 
not precisely defined:  we consider the following 
three programs, 

    P1: {int x,y,z; z=x; x=y; y=z;} 
    P2: {int x,y,z; z=y; y=x; x=z;} 
    P3: {int x,y,z; x=x+y;y=x-y;x=x-y;} 

We ask the question:  are these programs equivalent?  
The answer to this question depends on how we 
interpret the role of variables x, y, and z in these 
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programs.  If we interpret these as programs on the 
space defined by all three variables, then we find that 
they are distinct, since they assign different values to 
variable z (x for P1, y for P2, and z for P3).  But if 
we consider that these are actually programs on the 
space defined by variables x and y, and that z is a 
mere auxiliary variable, then the three programs may 
be considered equivalent, since they all perform the 
same function (swap x and y) on their common space 
(formed by x, y).   

Rather than making this a discussion about the 
space of the programs, we wish to turn it into a 
discussion about the test oracle that we are using to 
check equivalence between the programs (or in our 
case, between a base program and its mutants).  In 
the example above, if we let xP, yP, zP be the final 
values of x, y, z by the base program and xM, yM, 
zM the final values of x, y, z by the mutant, then 
oracles we can check include: 

   O1:{return xP==xM && yP==yM && 
zP==zM;} 
   O2:{return xP==xM && yP==yM;} 

Oracle O1 will find that P1, P2 and P3 are not 
equivalent, whereas oracle O2 will find them 
equivalent. The difference between O1 and O2 is 
their degree of non-determinacy; this is the attribute 
we wish to quantify. To this effect, we let ௉ be the 
final state produced by the base program for a given 
input, and we let  ெ be the final state produced by a 
mutant for the same input.  We view the oracle that 
tests for equivalence between the base program and 
the mutant as a binary relation between ௉ and ெ.  
We can quantify the non-determinacy of this relation 
by the conditional entropy ܪ(ெ|௉):  Intuitively, 
this represents the amount of uncertainty (or:  the 
amount of latitude) we have about (or: we allow for) 
ெ if we know ௉. Since we want our metric to be a 
fraction between 0 and 1, we divide it by the entropy 
of ெ. Hence the following definition. 

Definition: Non Determinacy. Let O be the 
oracle that we use to test the equivalence between 
a base program P and a mutant M, and let ௉  and 
ெ	 be, respectively, the random variables that 
represent the final states generated by P and M for 
a given initial state. The non-determinacy of 
oracle O is denoted by ND and defined by: ܰܦ = (	ெ)ܪ		(ெ|௉)ܪ 	. 

Why is Non Determinacy correlated with the 
REM? Of course, the weaker the oracle of 
equivalence, the more mutants pass the equivalence 
test, the higher the survival rate. 

How do we compute non determinacy? All 
equivalence oracles define equivalence relations on 
the space of the program, and  ܪ(ெ|௉) represents 
the entropy of the resulting equivalence classes.  As 
for ܪ(ெ	), it represents the entropy of the whole 
space of the program.    

3.5 Empirical Study: Experimental 
Conditions 

In order to validate our conjecture, to the effect that 
the REM of a program P depends on the redundancy 
metrics of the program and the non-determinacy of 
the oracle that is used to determine equivalence, we 
consider a number of sample programs, compute 
their redundancy metrics then record the REM that 
they produce under controlled experimental 
conditions.  Our hope is to reveal significant 
statistical relationships between the metrics (as 
independent variables) and the ratio of equivalent 
mutants (as a dependent variable).  

We consider functions taken from the Apache 
Common Mathematics Library (http://apache.org/); 
each function comes with a test data file. The test 
data file includes not only the test data proper, but 
also a test oracle in the form of assert statements, 
one for each input datum. Our sample includes 19 
programs. We use PITEST (http://pitest.org/), in 
conjunction with maven (http://maven.apache.org/) 
to generate mutants of each program and test them 
for possible equivalence with the base program.  The 
mutation operators that we have chosen include the 
following: 

• Increments_mutator. 

• Void_method_call_mutator, 

• Return_vals_mutator, 

• Math_mutator, 

• Negate_conditionals_mutator, 

• Invert_negs_mutator, 

• Conditionals_boundary_mutator. 

When we run a mutant M on a test data set T and we 
find that its behavior is identical to that of the base 
program P, we may not conclude that M is 
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equivalent to P unless we have some assurance that 
T is sufficiently thorough.  In practice, it is 
impossible to ascertain the thoroughness of T short 
of letting T be all the input space of the program, 
which is clearly impractical.  As an alternative, we 
mandate that in all our experiments, line coverage of 
P and M through their execution on test data T 
equals or exceeds 90%.  In order to analyze the 
impact of the non-determinacy of the equivalence 
oracle on the ratio of equivalent mutants, we revisit 
the source code of PITEST to control the oracle that 
it uses.  As we discuss above, the test file that comes 
in the Apache Common Mathematics Library 
includes an oracle that takes the form of assert 
statements in Java (one for each test datum).  These 
statements have the form: 

Assert.assertEqual(yP,M(x)) 

where x is the current test datum, yP is the output 
delivered by the base program P for input x, and 
M(x) is the output delivered by mutant M for input 
x.  For this oracle, we record the non-determinacy 
(ND) as being zero. To test the mutant for other 
oracles, we replace the clause assertEqual(yP,M(x)) 
with assertEquivalent(yP,M(x))for various instances 
of equivalence relations.  

3.6 Statistical Analysis: Regression 

Since the dependent variable, the REM, is a 
proportion (number of equivalent mutants over the 
total number of generated mutants), we use a logistic 
linear model for the survival rate so that the response 
will be constrained to be between 0 and 1. More 
specifically, the logarithm of the odds of 

equivalence (
ோாெଵିோாெ ) is a linear function of the 

predictors: log	( ோாெଵିோாெ)=ߙ +  .ߚܺ

For any model M consisting of a set of the 
covariates X, we can obtain a residual deviance 
D(M) that provides an indication of the degree to 
which the response is unexplained by the model 
covariates. Hence, each model can be compared with 
the null model of no covariates to see if they are 
statistically different. Furthermore, any pair of 
nested models can be compared (using a chi-squared 
test). We fit the full model with all five covariates, 
which was found to be statistically significant, and 
then successively dropped a covariate, each time 
testing the smaller model (one covariate less) with 
the previous model. We continued until the smaller 

model was significantly different, i.e. worse than the 
previous model.  

Using the procedure described above, we find that 
the final model contains the metrics FR, NI and ND, 
with coefficient estimates and standard errors given 
in the table below: 

Table 2: Results of the Statistical Analysis. 

Metric Estimate Standard Error p value 

Intercept -2.765 0.246 << 0.001 

FR 0.459 0.268 0.086 

NI 2.035 0.350 << 0.001 

ND 0.346 0.152 0.023 

Hence, the model is log	( ோாெଵିோாெ)=2.765 + ܴܨ0.459 + ܫ2.035ܰ  .ܦ0.235ܰ+

The plot below shows the relative errors of the 
model estimates with respect to the actuals; virtually 
all the relative errors are within less than 0.1 of the 
actuals. 

 

Figure 1: Residuals of the Regression Estimates. 

With the exception of one outlier, most estimates fall 
within a very small margin of the actuals. 

4 ARBITRARY MUTATION 
POLICY 

4.1 Analyzing the Impact of Individual 
Operators 

For all its interest, the regression model we present 
above applies only to the mutant generation policy 
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that we used to build the model. This raises the 
question: how can we estimate the REM of a base 
program P under a different mutant generation 
policy? Because there are dozens of mutation 
operators in use by different researchers and 
practitioners, it is impossible to consider building a 
different model for each combination of operators. 
We could select a few sets of operators, that may 
have been the subject of focused research (Andrews 
et al., 2005; Just et al., 2014; Namin and Kakarla, 
2011; Laurent et al., 2018) and select a specific 
model for each. While this may be interesting from a 
practical standpoint, it presents limited interest as a 
research matter, as it does not advance our 
understanding of how mutation operators interact 
with each other. What we are interested to 
understand is: if we know the REM’s of a program P 
under individual mutation operators ݌݋ଵ, ,ଶ݌݋ … ,  ௡, can we estimate the REM of P if݌݋
all of these operators are applied jointly?  

Answering this question will enable us to 
produce a generic solution to the automated 
estimation of the REM of a program under an 
arbitrary mutant generation policy: 

• We select a list of mutation operators of interest 
(e.g. the list suggested by Laurent et al (Laurent 
et al., 2018) or by Just et al. (Just et al., 2014), 
or their union). 

• Develop a regression model (similar to the 
model we derived in section 3) based on each 
individual operator. 

• Given a program P and a mutant generation 
policy defined by a set of operators, say ݌݋ଵ, …,ଶ݌݋ , ௡݌݋ , we apply the regression 
models of the individual operators to compute 
the corresponding ratios of equivalent mutants, 
say ܴܯܧଵ, …,ଶܯܧܴ ,  .௡ܯܧܴ

• Combine the REM’s generated for the 
individual operators to generate the REM that 
stems from their simultaneous application. 

4.2 Combining Operators 

For the sake of simplicity, we first consider the 
problem above in the context of two operators, say ݌݋ଵ, ,ଵܯܧܴ ଶ.  Let݌݋  ଶ be the REM’s obtainedܯܧܴ
for program P under operators ݌݋ଵ,  ଶ.  We ponder݌݋
the question:  can we estimate the REM obtained for 
P when the two operators are applied jointly?  To 
answer this question, we interpret the REM as the 
probability that a random mutant generated from P is 
equivalent to P.  At first sight, it may be tempting to 

think of REM as the product of ܴܯܧଵ an݀	ܴܯܧଶ on 
the grounds that in order for mutant ܯଵଶ (obtained 
from P by applying operators ݌݋ଵ, ଶ݌݋ ) to be 
equivalent with P, it suffices for ܯଵ to be equivalent 
to P (probability: ܴܯܧଵ ), and for ܯଵଶ  to be 
equivalent to ܯଵ  (probability: ܴܯܧଶ ).  This 
hypothesis yields the following formula of REM: ܴܯܧ =  .ଶܯܧଵܴܯܧܴ
But we have strong doubts about this formula, for 
the following reasons: 

• This formula assumes that the equivalence of P 
to ܯଵ  and the equivalence of ܯଵ  to ܯଵଶ  are 
independent events; but of course they are not.  
In fact we have shown in section 3 that the 
probability of equivalence is influenced to a 
considerable extent by the amount of 
redundancy in P. 

• This formula ignores the possibility that 
mutation operators may interfere with each 
other; in particular, the effect of one operator 
may cancel (all of or some of) the effect of 
another. 

• This formula assumes that the ratio of 
equivalent mutants of a program P decreases 
with the number of mutation operators; for 
example, if we have five operators that yield a 
REM of 0.1 each, then this formula yields a 
joint REM of 10ିହ. 

For all these reasons, we expect ܴܯܧଵܴܯܧଶ to 
be a loose (remote) lower bound for ܴܯܧ.   

Elaborating on the third item cited above, we 
argue that in fact, whenever we deploy a new 
mutation operator, we are likely to make the mutant 
more distinct from the original program, hence it is 
the probability of being distinct that we ought to 
compose, not the probability of being equivalent.   
This is captured in the following formula: (1 − (ܯܧܴ = (1 − ଵ)(1ܯܧܴ −  ,(ଶܯܧܴ
which yields: ܴܯܧ = ଵܯܧܴ + ଶܯܧܴ −  .ଶܯܧଵܴܯܧܴ
In the following section we run an experiment to test 
which formula of REM is borne out in practice. 
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4.3 Empirical Analysis 

In order to evaluate the validity of our proposed 
models, we run the following experiment: 

• We consider the sample of seventeen Java 
programs that we used to derive our model of 
section3. 

• We consider the sample of seven mutation 
operators that are listed in section 3.5. 

• For each operator Op, for each program P, we 
run the mutant generator Op on program P, and 
test all the mutants for equivalence to P.  By 
dividing the number of equivalent mutants by 
the total number of generated mutants, we 
obtain the REM of program P for mutation 
operator Op. 

• For each mutation operator Op, we obtain a 
table that records the programs of our sample, 
and for each program we record the number of 
mutants and the number of equivalent mutants, 
whence the corresponding REM.  

• For each pair of operators, say (Op1, Op2), we 
perform the same experiment as above, only 
activating two mutation operators rather than 
one.  This yields a table where we record the 
programs, the number of mutants generated for 
each, and the number of equivalent mutants 
among these, from which we compute the 
corresponding REM. Since there are seven 
operators, we have twenty one pairs of 
operators, hence twenty one such tables. 

• For each pair of operators, we build a table that 
shows, for each program P, the REM of  P 
under each operator, the REM of P under the 
joint combination of the two operators, and the 
residuals that we get for the two tentative 
formulas: 

F1:  ܴܯܧ =  ,ଶܯܧଵܴܯܧܴ
F2:  ܴܯܧ = ଵܯܧܴ + ଶܯܧܴ −  .ଶܯܧଵܴܯܧܴ
At the bottom of each such table, we compute 
the average and standard deviation of the 
residuals for formulas F1 and F2.  

• We summarize all our results into a single table, 
which shows the average of residuals and the 
standard deviation of residuals for formulas F1 
and F2 for each (of 21) combination of two 
operators. The following section presents the 

results of our experiments, and the preliminary 
conclusions that we may draw from them. 

5 EMPIRICAL OBSERVATIONS 

The final result of this analysis is given in Table 1. 
The first observation we can make from this table is 
that, as we expected, the expression :1ܨ		ܯܧܴଵܴܯܧଶ is indeed a lower bound for ܴܯܧ, 
since virtually all the average residuals (for all pairs 
of operators) are positive, with the exception of the 
pair (Op1, Op2), where the average residual is 
virtually zero.  The second observation is that, as we 
expected, the expression :2ܨ		ܯܧܴଵ + ଶܯܧܴ ଶܯܧଵܴܯܧܴ−  gives a much better approximation of 
the actual REM than the F1 expression; also, 
interestingly, the F2 expression hovers around the 
actual REM, with half of the estimates (11 rows) 
below the actuals and half above (10 rows).  With 
the exception of one outlier (Op4,Op5), all residuals 
are less than 0.2 in absolute value, and two thirds 
(14 out of 21) are less than 0.1 in absolute value.  
The average (over all pairs of operators) of the 
absolute value of the average residual (over all 
programs) for formula F2 is 0.080 

6 CONCLUSION AND 
PROSPECTS 

6.1 Summary 

The presence of equivalent mutants is a constant 
source of aggravation in mutation testing, because 
equivalent mutants distort our analysis and introduce 
biases that prevent us from making assertive claims.  
This has given rise to much research aiming to 
identify equivalent mutants by analyzing their 
source code or their run-time behavior.  Analyzing 
their source code usually provides sufficient but 
unnecessary conditions of equivalence (as it deals 
with proving locally equivalent behavior); and 
analyzing run-time behavior usually provides 
necessary but insufficient conditions of equivalence 
(just because two programs have comparable run-
time behavior does not mean they are functionally 
equivalent).  Also, static analysis of mutants is 
generally time-consuming and error-prone, and 
wholly impractical for large and complex programs 
and mutants. 
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Table 3: Residuals for Candidate Formulas. 

Operator Pairs 

Residuals, F1 Residuals, F2 Abs(Residuals) 

average Std dev average Std dev F1 F2 

Op1, op2 0.1242467 0.1884347 -0.0163621 0.0459150 0.1242467 0.0163621 

Op1, op3 -0.0008928 0.0936731 0.0241071 0.0740874 0.0008928 0.0241071 

Op1, op4 0.3616666 0.4536426 0.1797486 0.5413659 0.3616666 0.1797486 

Op1, op5 0.1041666 0.2554951 0.0260416 0.3113869 0.1041666 0.0260416 

Op1, op6 0.0777777 0.2587106 0.0777777 0.2587106 0.0777777 0.0777777 

Op1, op7 0.0044642 0.0178571 -0.0625 0.25 0.0044642 0.0625 

Op2, op3 0.1194726 0.122395 0.0658514 0.1397070 0.1194726 0.0658514 

Op2, op4 0.1583097 0.1416790 -0.1246387 0.2763612 0.1583097 0.1246387 

Op2, op5 0.1630756 0.1588826 -0.0535737 0.1469494 0.1630756 0.0535737 

Op2, op6 0.2479740 0.4629131 0.0979913 0.332460 0.2479740 0.0979913 

OP2,op7 0.1390082 0.1907661 -0.0535258 0.2445812 0.1390082 0.0535258 

Op3, op4 0.1601363 0.1411115 0.1436880 0.3675601 0.1601363 0.1436880 

Op3, op5 0.0583333 0.0898558 -0.0447916 0.1019656 0.0583333 0.0447916 

Op3, op6 0.0166666 0.1409077 -0.0083333 0.0845893 0.0166666 0.0083333 

OP3,op7 0.0152173 0.0504547 -0.0642468 0.2496315 0.0152173 0.0642468 

Op4, op5 0.5216666 0.4221049 0.2786375 0.4987458 0.5216666 0.2786375 

Op4, op6 0.3166666 0.2855654 0.1347486 0.4101417 0.3166666 0.1347486 

OP4,op7 0.3472951 0.3530456 0.125903 0.3530376 0.3472951 0.125903 

Op5, op6 0.075 0.1194121 -0.003125 0.1332247 0.075 0.003125 

Op5, op7 0.078125 0.1760385 -0.0669642 0.2494466 0.078125 0.0669642 

Op6, op7 0.0349264 0.0904917 -0.0320378 0.2735720 0.0349264 0.0320378 

       

Averages 0.1487287  0.0297332  0.1488137 0.0802188 

 

In this paper, we submit the following premises: 

• First, for most practical purposes, determining 
which mutants are equivalent to a base program 
(and which are not) is not important, provided 
we can estimate their number. 

• Second, even when it is important to single out 
mutants that are equivalent to the base program, 
knowing (or estimating) their number may be of 
great help in practice.  With every mutant that is 
killed (i.e. found to be distinct from the base), 
the probability that the remaining mutants are 
equivalent increases as their number approaches 
the estimated number of equivalent mutants. 

• Third, what makes a program prone to produce 
equivalent mutants is the same attribute that 
makes it fault tolerant, since fault tolerance is by 
definition the property of maintaining correct 
behavior (e.g. by being equivalent) in the 
presence of faults (e.g. artificial faults, such as 
mutations). The attribute that makes programs 
fault tolerant is well-known:  redundancy.  
Hence if we can quantify the redundancy of a 
program, we ought to be able to correlate it 
statistically to the ratio of equivalent mutants. 

• Fourth, what determines the ratio of equivalent 
mutants of a program includes not only the 
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program itself, of course, but also the mutation 
operators that are applied to it.  We are 
exploring the possibility that the ratio of 
equivalent mutants of a program P upon 
application of a set of mutation operators can be 
inferred from the REM of the program P under 
each operator applied individually. If we can 
produce and validate a generic formula to this 
effect, we can conceivably estimate the REM of 
a program for an arbitrary set of mutation 
operators. 

6.2 Prospects 

One of the most inhibiting obstacles to the large 
scale applicability of our approach is that the 
calculation of the redundancy metrics presented in 
section 3 is done by hand.  Hence the most urgent 
task of our research agenda is to automate the 
calculation of the redundancy metrics on a program 
of arbitrary size and complexity.  This is currently 
under way, using routine compiler generation 
technology; we are adding semantic rules to a 
skeletal Java compiler, which keeps track of variable 
declarations (to compute state space entropies), and 
assignment statements (to keep track of functional 
dependencies between program variables).  Once we 
have a tool that can automatically compute our 
redundancy metrics, we can revisit the experimental 
process that we have followed in section 3.6 to 
derive a detailed/ accurate statistical model for 
estimating the REM of a program for a specific 
mutant generation policy. 
In order to make the model adaptable to different 
mutant generation policies, we envision to continue 
exploring the relationship between the REM of a 
program for individual mutation operators and the 
REM of the same program for a combination of 
operators.  In particular, we are investigating the 
validity of the conjecture that the REM of a program 
for a set of N mutation operators can be obtained by 
solving the equation: (1 − (ܯܧܴ =ෑ (1 − ௜).ே௜ୀଵܯܧܴ  

We are currently running an experiment to check 
this formula for ܰ = 3, which yields: ܴܯܧ = ଵܯܧܴ + ଶܯܧܴ + ଷܯܧܴ − ଵܯܧଵܴܯܧܴ ଷܯܧଶܴܯܧܴ− − ଷܯܧଵܴܯܧܴ +  .ଷܯܧଶܴܯܧଵܴܯܧܴ

If the proposed formula of the REM of a program P 
for an arbitrary number of mutation operators is 
validated, then we can estimate the REM 

Let us consider ݊	 mutation operators, say 1݌݋ଵ, ௡݌݋	…,ଶ݌݋ . Let us assume that we have a 
regression model for each individual operator, which 
estimates the REM of a program P using its 
redundancy metrics as independent variables.  If the 
formula (1 − (ܯܧܴ =ෑ (1 − ௜).ே௜ୀଵܯܧܴ  

Is validated, then we can use it to compute the REM 
of a program P for any subset of the n operators for 
which we have a regression model.  In other words, 
we can compute the REM of a program for 2௡ 
different sets of mutation operators, using merely ݊ 
regression models. 

6.3 Assessment and Threats to Validity 

The task of identifying and weeding out equivalent 
mutants by painstaking analysis of individual 
mutants is inefficient, error prone, and usually yields 
unnecessary or insufficient conditions of 
equivalence. We feel confident that our approach to 
this problem, which relies on estimating the number 
of equivalent mutants rather than singling them out 
individually, is a cost-effective alternative.  Indeed, 
most often it either obviates the need to identify 
equivalent mutants individually, or makes the task 
significantly simpler. 

We do not consider the work reported on in this 
paper as complete: 

• The regression model that we present in section 
3.6 is not an end in itself; rather it is a means to 
show that the REM of a program is statistically 
related to its redundancy metrics, and that it is 
possible to estimate the former using the latter.  
Our end goal is to automate the calculation of 
redundancy metrics, then use these to derive a 
large scale regression model that is based on a 
large sample of large and complex software 
artifacts. 

• The empirical investigation of section 4.3 is not 
an end in itself; rather it is a means to prove that 
it may be possible to estimate the REM of a 
program for a composite mutation generation 
strategy from the REM’s obtained for its 
member mutation operators.  We have some 
tentative results to this effect, and we are 
pursuing tantalizing venues. 

Hence we view this paper as putting forth research 
questions rather than providing definitive answers; 
our research agenda is to investigate these questions. 
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