
Side Channel Attacks over Encrypted TCP/IP Modbus Reveal
Functionality Leaks

Nikolaos Tsalis, George Stergiopoulos, Evangelos Bitsikas,
Dimitris Gritzalis and Theodore Apostolopoulos

Information Security & Critical Infrastructure Protection (INFOSEC) Laboratory,
Dept. of Informatics, Athens University of Economics and Business, Greece

Keywords: Modbus, Protocol, Side, Channel, Attack, Decision, Tree, Sequence, Unpadded, Cryptography, Scada, TCP.

Abstract: With HMI systems becoming increasingly connected with the internet, more and more critical infrastructures
are starting to query PLC/RTU units through the Web through MODBUS ports. Commands sent from such
interfaces are inevitably exposed to potential attacks even if encryption measures are in place. During the last
decade, side channels have been widely exploited, focusing mostly on information disclosure. In this paper,
we show that despite encryption, targeted side channel attacks on encrypted packets may lead to information
disclosure of functionality over encrypted TCP/IP running MODBUS RTU protocol. Specifically, we found
that any web interface that implements unpadded encryption with specific block cipher modes (e.g. CFB,
GCM, OFB and CTR modes) or most stream ciphers (e.g. RC4) to send MODBUS functions over TCP/IP is
subject to differential packet size attacks. A major cause for this attack is the very small number of potential
MODBUS commands and differences in packet sizes, which leads to distinctions in traffic. To support the
importance of these findings, we conducted research on Shodan looking for relevant devices with open
MODBUS ports over TCP/IP that utilize encrypted web traffic. The result was that a significant amount of
web interfaces communicate with MODBUS ports and many use unpadded ciphers and SSL with AES-GCM
or RC4. We also implemented a PoC on a simulated architecture to validate our attack models.

1 INTRODUCTION

Human-machine interfaces (HMIs) control devices
over SCADA networks and allow remote
administration of systems in various critical
infrastructures. During the last decade, HMI systems
are becoming increasingly connected with the
internet. Today, these interfaces are using the Web to
provide remote administration of systems not usually
located within a predefined control area. However,
unlike traditional isolated SCADA networks,
exposing the HMI to the internet and allowing for a
browser-server component structure, inevitably
exposes information transferred over the internet to
potential attacks. To mitigate such risks, deployed
systems sometimes utilize encryption over TCP/IP
when communicating MODBUS commands to
terminal units (Modbus TCP, 2006).

A quick check in shodan.io (Matherly, 2009)
reveals many open Modbus ports currently utilized
for multiple reasons, sometimes for controlling
industrial control systems (ICS) and respective

remote units. Some of these interfaces provide web
platforms to exchange protocol commands.

During the last decade, side channels have been
widely exploited, focusing mostly on information
disclosure (Comey, 2014). A side channel attack is an
attack that aims to retrieve secret information using
attributes and factors outside normal computation and
algorithmic attacks; such as timing information,
power analysis and electromagnetic leaks or
differential size analysis (McLaughlin et al., 2016).
Concerning side channel attacks on encrypted traffic,
previous research was successful in exploiting
characteristics in various cases like SSH (Song,
2001), VoIP (Wright et al., 2008), identifying web
pages through their loading sizes (Danezis, 2009)
(Sun et al., 2002) etc. Researchers in (Chen et al.,
2010) showed how to exploit fundamental
characteristics of web applications like stateful
communication, low entropy input and traffic
distinctions to leak information concerning sensitive
personal information of users.

Tsalis, N., Stergiopoulos, G., Bitsikas, E., Gritzalis, D. and Apostolopoulos, T.
Side Channel Attacks over Encrypted TCP/IP Modbus Reveal Functionality Leaks.
DOI: 10.5220/0006832700530063
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 53-63
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

53

The Modbus protocol is a real-time industrial
communication protocol often used to connect super-
visory systems with remote terminal units and data
acquisition systems (NI, 2017) (Modbus TCP, 2006).
Its master/slave concept is simple without excessive
overhead. Since Modbus lacks of authentication and
encryption external security implementations, e.g.,
TCP/IP encryption, IPsec VPN are often used to
protect communication (Knapp and Langill, 2014).

1.1 Contribution

In this paper, we present similar findings on HMIs
that utilize TCP/IP encryption over MODBUS to con-
trol remote units in SCADA systems. In some modern
encryption algorithms, differential packet size analy-
sis attacks can reliably leak information about the
functionality of the SCADA system down to small
granularity levels, like leaking specific functionality/
task executions through detected sequences of MOD-
BUS commands. The contributions of this paper are
the following:

• Modbus command leaks and SCADA functionali-
ty extraction by exploiting packet sizes between
web HMIs and remote units. We present in detail
how analysis of requests and responses can exploit
packet sizes to leak information about the under-
lying functionality in web HMIs that implement
unpadded encryption with specific block cipher
modes (e.g. CFB, GCM, OFB and CTR modes) or
stream ciphers (e.g. RC4). We also show that HMI
like these are currently interact with MODBUS
ports over encrypted TCP/IP.

• Prediction Models for MODBUS commands and
ICS functionality. We model MODBUS functions
according to discriminatory characteristics and
develop two worst-case scenario prediction mo-
dels capable of extracting task/routine functiona-
lity in infrastructures according to sequences of
packets sent and received. Notice that presented
models assume worst-case scenarios: All probable
collisions between packet-sizes are taken for gran-
ted. In real life implementations, detection is even
better than the one presented in our generalized
models since industrial implementations use dif-
ferent number of registers/coils in functions.

• Analysis and attack mitigation solutions. We pre-
sent and analysis of potential solutions and imple-
mentations to avoid the presented attacks.

Section II of this paper presents related work on
the subject and compares it with our research and ex-
periments. Section III describes how we model
MODBUS functions used in SCADA systems into

mathematical formulas for discriminating them based
on classification of packet request and response sizes.
Section IV describes the prediction models (general
and specific) constructed by the aforementioned for-
mulas; the main contribution of our paper upon which
we based our implementation and tests. Section V
briefly presents an implementation executed to test
the prediction models while Section VI concludes and
proposes mitigation techniques.

2 RELATED WORK

Side Channels attacks can be broadly defined as at-
tacks on systems using information gathered from un-
intended output channels (Zhou and Feng, 2005).
Kocher’s paper back in 1996 was one of the first
publications to present that that non-constant
execution of encryption algorithms can leak
information about the keys (Comey, 2014).

2.1 Side Channel Attacks on Encrypted
Traffic

Packet timing and sizes are significant factors con-
tributing to the execution of a side-channel attack in
encrypted communications. It has been shown that a
network eavesdroppers may be able to break crypto-
graphic schemes or infer keystrokes in SSH (Song,
2001). Concerning side channel attacks on encrypted
traffic, other research was very successful in exploiting
characteristics in various cases like VoIP (Wright et al.,
2008), identifying web pages through their loading
sizes (Danezis, 2009) (Sun et al., 2002). Brumley-
Boneh (Beresford, 2011) illustrate a timing attack
against OpenSSL to extract the secret RSA keys.

Encrypted web communications share similar is-
sues. Research from Microsoft and Indiana's Univer-
sity (Chen et al., 2010) shows that attackers
fingerprinting web pages to collect sensitive
properties can be later used as prior knowledge for
side channel attacks on packet sizes not only to
identify visited web pages, but also to determine user
input data. Moreover, anonymity in encrypted
implementations, such as TOR, is questioned when
side-channel attacks are carried out, as presented in
(Acromag, 2005) and Danezis (Danezis, 2009) in
respective research papers.

Our work is motivated by these researches, but it
differs sufficiently. Even though, we share a common
techniques with the aforementioned papers, the appli-
cation of our attacks and the methods of fingerprint-
ing used are based on industrial systems and proto-
cols; specifically on MODBUS. In addition, our focus

SECRYPT 2018 - International Conference on Security and Cryptography

54

on the cryptographic schemes is slightly different,
which, once more, depends on the MODBUS proto-
col and its properties.

2.2 Side Channel Attacks on ICS

ICS systems are affected by similar threat vectors as
with normal IT systems. Software errors, bugs, mal-
ware and relevant cyber-attacks affect ICS systems
(Kaspersky, 2014). The Stuxnet (Langner, 2011)
event, Flame (Munro, 2012) and Idaho’s demonstra-
tion of a cyber-attack gaining control of physical
components of the electric grid, are such examples
(Meserve, 2007).

As stated in (McLaughlin et al., 2016), ICSs have
specific types of vulnerabilities, such as the use of
micro-based controllers, the adoption of communica-
tion standards and protocols and the complex
distributed network architecture. Moreover, types of
attacks on ICS are wide and they can be broken down
into specific layers, namely the process layer, the
network, the software, the firmware and the hardware
layer (McLaughlin et al., 2016).

Concerning network layer attacks in ICS, which is
the scope of this paper, vulnerabilities can manifest in
multiple ways; most of which are similar threat
vectors with traditional IT systems. A PLC protocol,
ISO -TSAP was found vulnerable to replay attacks
due to lack of proper session handling (Beresford,
2011). MODBUS implementation rarely use any
form of encryption. Instead, they deliver commands
through unencrypted channels. Some attempts to en-
crypt MODBUS traffic involve Modbus TCP/IP (also
Modbus-TCP), which is simply the Modbus RTU
protocol with a TCP interface that runs on Ethernet
(Acromag, 2005). These implementation involves en-
crypted TCP/IP traffic that transfers MODBUS com-
mands to SCADA systems. DCS and SCADA server
software is, also, often out of date or misconfigured
and hence can be exploited (Nan et al., 2012).

2.3 Non-padded Cryptographic
Schemes

Symmetric encryption utilizes padding for block
ciphers, since blocks need to be multiples of specific
block sizes. Examples range from older triple-DES up
to AES-CBC and relevant encryption schemes. There
are, however, modes that do not require padding due
to effectively using block ciphers as stream ciphers.
For instance, CFB, GCM, OFB and CTR modes, used
by AES, do not require any special measures to hand-
le messages whose lengths are not multiples of the
block size. These modes work by XOR-ing the

plaintext with the output of the block cipher. The last
partial block of plaintext is XOR-ed with the first few
bytes of the last keystream block, producing a final
ciphertext block that is the same size as the final
partial plaintext block. In addition, RC4 (which is still
widely used despite being reported as potentially
vulnerable under various attacks shares the same
qualities with the modes above, which means that the
size of the input is equal to the size of the output.
These characteristics make the above mentioned
schemes suitable (i) for applications that require
identical sizes in plaintext and encrypted data, and (ii)
for applications that transmit data in streaming form
where it is inconvenient to add padding bytes
(Stallings, 2016).

However, these attributes also jeopardize the se-
curity and the privacy of the encrypted communica-
tion. For example, RC4, an algorithm used extensive-
ly in web-based applications (Chen et al., 2010), can
cause a leakage based on the length of the encrypted
packets, considering it vulnerable to side-channel at-
tacks (Imperva, 2015).

2.4 Existing Web HMIs with
Encrypted TCP MODBUS Ports

To support our arguments regarding the significance
of leaking industrial functionality over encrypted
TCP/ IP MODBUS executions, we opted to search for
MODBUS protocol systems (Zhou and Feng, 2005)
that may utilize unpadded encryption between a web
interface (HMI) and relevant MODBUS ports.

Shodan is a search engine that lets users search
and identify devices and systems connected to the
internet (Matherly, 2009). Shodan collects data
mostly on web servers (HTTP/HTTPS-port 80, 8080,
443, 8443), as well as FTP (port 21), SSH (port 22),
Telnet (port 23), SNMP (port 161), SIP (port 5060),
RTSP (port 554). Using Shodan, we mapped ICS
devices that actually listen to the Modbus port 502 for
MODBUS commands. In addition, we were able to
identify and classify the type of encryption-schemes
used by these devices for protection of data sent to
them over the internet.

Extensive research showed some interesting
results: Out of hundreds detected, approximately 50%
of machines listening for MODBUS commands used
web interfaces requiring usernames and passwords
without encryption; listening on HTTP ports. 27%
used SSH with a mixed cipher suite including block
and stream ciphers, 16% used SSL/TLS encryption
and 7% used other encryption schemes such as VPN.
Moreover, most of the SSH's ciphers were AES-CBC,
RC4, AES-GCM, 3DES-CBC which are all unpadded

Side Channel Attacks over Encrypted TCP/IP Modbus Reveal Functionality Leaks

55

versions (Brown, 2007). Also, SSL/TLS utilized
AES-GCM instead of AES-CBC in most cases also
unpadded. This information was gathered by
examining the connection properties and the required
certificates between provided interfaces, web ports
80/8080, and relevant MODBUS ports.

3 MODELING MODBUS

In this section we present an analysis of MODBUS
packet sizes in requests and their responses. A general
mathematical formula is calculated for use with
prediction models in the following Sections.

Worst Case Scenario. Notice that presented models
assume worst-case scenarios: All probable collisions
between packet-sizes are taken for granted. In real life
implementations, detection is even better than the
one presented in our generalized models since
industrial implementations use different number of
registers/coils in functions.

3.1 Modbus Functions

The Modbus protocol utilizes eight different kind of
functions. Functions are direct instructions to the
PLCs. Each function is a different set of instructions;
in deployed ICS, their execution frequencies and
payload properties depend on industrial production
policies (Modbus, 2017) (Modbus, F.A.Q., About the
Protocol, 2017).

Table 1: Modbus functions and codes.

FCODE FUNCTION

01 Read coil status

02 Read input status

03 Read holding registers

04 Read input registers

05 Write single coil

06 Write single register

15 Write multiple coils

16 Write multiple registers

3.2 Discriminating Functions by Sizes

Modbus uses the master/slave scheme. Each request
is accompanied by a response for each function.

The presented attacks need to capture both to analyse
the traffic properly.

The discrimination process starts by defining the
payload to analyse in requests and responses.
The payload must be the same for both types. So, we
begin by decapsulating the headers, the CRC and
the slave address, leaving only important information
for the main payload-PDU (Modbus, 2017).
This part consists of the function code and the data
field. The data field comprises the addresses of
the registers/inputs/coils, the actual data and other
instrumental fields. By default, MODBUS functions
form payload in a very specific way. Since payload
sizes differ, differential analysis on sequences
captured allows pattern detection due to low entropy.

Notice that Modbus TCP/IP does not use FCS like
Modbus RTU. TCP has the responsibility of
delivering the packets to the target unspoiled. This
means that checksum is generated at lower layers, not
the application layer (Modbus, 2006).

For each function we provide an analysis of its
payload. Each presented type will be used later on in
decision trees for traffic discrimination. We should
note here that variable x used to model function be-
low, represents the registers and, indirectly, the coils.
Input is always positive integer.

3.2.1 FC5 Write Single Coil and FC6 Write
Single Register

The payload of these functions has always the same
number of bytes. Every FC5 request has 5 bytes and
gets 5 bytes response. So, if we capture ρ = 5 bytes first
and then capture another γ = 5 bytes packet, there is
significant possibility that the function is either FC5 or
FC6. Modelling it into a mathematical function:

γ = ρ = 5 (1)

where S is the number of bytes of the request payload
and the response payload (since request – response
bytes = 0). In this case, γ = 5. The size of data and of
register do not affect the overall size of the payload.
Generally, the fields are always constant values with
no added fields.

3.2.2 FC3 Read Holding Registers

The request payload always has a size of 5 bytes.
However, the response payload varies. The following
possibilities exist:

 request < response, for χ≥2
 request > response, for χ=1

where x is the number of registers.

SECRYPT 2018 - International Conference on Security and Cryptography

56

The size of data and number of registers affect the
size of the response. Modeling the response payload:

γ = 2 * χ + 2 (2)

χ = number of registers. Every request is 5 bytes with
y bytes response. +2 value represents the number of
bytes to follow; always 2 bytes.

3.2.3 FC2 Read Discrete Inputs

The request payload always has a size of 5 bytes.
However, the size of the response payload varies. The
following possible cases occur:

 request > response for 1-16 Inputs or for χ=1 and
χ=2

 request = response for 17-24 Inputs or for χ=3
 request < response for 25+ Inputs or for χ≥4

The mathematical representation of the response
payload is:

γ = (inputs / 8 bits) + 2 = χ + 2 (3)

where χ is the number of registers. We notice that this
function uses inputs instead of registers. Thus, this
mathematical model must be converted to use the sa-
me variables. Assuming that one register has 8 inputs,
the form of the mathematical function is γ = χ + 2.
Table 2 shows correlations between registers and in-
puts.

Table 2: Input - register correlations.

FCODE FUNCTION

1-8 inputs 1 register

9-16 inputs 2 registers

17-24 inputs 3 registers

25-32 inputs 4 registers

… …

Coils and inputs use roundup policies, so we have
to adhere to these rules. These roundup policies
cannot disrupt or stop the attacking process in any
way, due to the above extensive analysis (examples
will prove this statement later.) Notice also that every
request 5 bytes yields y bytes in response.

3.2.4 FC4 Read Input Registers

Once more, the request size is 5 bytes and the res-
ponse payload varies. So:

 request < response for χ≥2
 request > response for χ=1

The model is defined the same way like before, χ
is the number of registers. Every 5 bytes request
yields y bytes response as follows:

γ = 2 * χ + 2 (4)

3.2.5 FC1 Read Coil Status

The size of the request payload is 5 bytes. However,
the response payload has the following variations:

 request > response for 1-16 Coils or for χ=1 and
χ=2

 request = response for 17-24 Coils or for χ=3
 request < response for 25+ Coils or for χ≥4

We have to convert the mathematical formula,
since this function uses coils. Therefore:

γ = (num of coils / 8 bits) + 2 = χ + 2 (5)

χ is the number of registers. Considering that one
register has 8 coils, the conversion is exactly the same
as before. Roundup policies apply to this function too.
Table 2 shows correlations in registers and coils:

Table 3: Coil - register correlations.

FCODE FUNCTION

1-8 coils 1 register

9-16 coils 2 registers

17-24 coils 3 registers

25-32 coils 4 registers

… …

3.2.6 FC15 Force Multiple Coils

In this case, unlike the others, the size of the response
payload is always 5 bytes and the size of the request
payload varies. The mathematical representation of
the payload is:

γ = (num of coils / 8 bits) + 6 = χ + 6 (6)

where χ is the number of registers. +6 represents the
fixed fields in the request packet. This mathematical
formula follows the conversion process, as it uses
coils instead of registers. In addition, it conforms to a
specific limitation:

min | FC15 | = min | coils / 8bits + 6 | = min |coils / 8
bits| + 6 = 1 + 6 = 7 bytes

The minimum value of the response size is 7
bytes. This has some interesting characteristics: The

Side Channel Attacks over Encrypted TCP/IP Modbus Reveal Functionality Leaks

57

size of request is always bigger than the size of the
response. Thus, this function can be easily
distinguished from the functions that we have
described so far.

3.2.7 FC16 Preset Multiple Registers

Like FC15, the response size is 5 bytes and the re-
quest size varies. The mathematical model of the re-
quest payload is:

γ = 2 * χ + 6 (7)

where χ is again the number of registers. +6 repre-
sents the fixed fields in the request packet. This fun-
ction also conforms to a limitation:

min |FC16| = min |2 * χ + 6| = min| 2 * χ | + 6 = 2 + 6
= 8 bytes

The minimum value of the response size is 8 by-
tes, meaning, that:

1. size of request > size of response

2. This function can be easily distinguished from
functions FC1, FC2, FC3, FC4, FC5 and FC6.

This function can be distinguished from function
FC15 if only the request size is 7 bytes.

3.3 ICS Tasks as Functional Sequences

All eight functions can be distinguished and grouped
based on their utility. FC5 (write single coil) and FC6
(write single register) are grouped since they perform
a write procedure on a single element. FC3 (read
holding registers), FC2 (read discrete inputs), FC1
(read coil status) and FC4 (read input registers)
perform a read procedure. FC15 (force multiple coils)
and FC16 (preset multiple registers) perform a write
procedure one or more elements. A functionality or
even routine or task in ICS may consist of multiple
serial executions of sequences of Function Codes
(Modbus, 2017) (National Instruments, 2017).

To model functionality flows as sequences of
executed MODBUS functions, we introduce the term
Functional Sequences. A functional sequence is a
sequence of dependent FC functions for the purpose
of executing specific tasks or routines. It is a chain of
combined processes. An example is:

F.S.1 = FC3 read holding registers → FC6 write
single register

The functional sequence F.S.1 carries out a
procedure that reads a number of registers and then

writes one of them with a specific value. This
procedure may represent a routine designed for the
PLCs/RTUs. Notice that t is has to complete two steps
before it terminates successfully. A functional
sequence may have different functions and different
number of steps depending on the policies of the
industry. Therefore, the functional sequence takes the
following form:

Functional Sequence = Function 1 → … →
Function N

(8)

N is the number of steps. Notice that a functional
sequence may have one step; one function. This
complies, because this certain function cannot be
combined with any other function in any way.

If an attacker has knowledge of the
business/function flow of the logic ladder and
business logic, he can define a number of functional
sequences that are executed (Erickson, 2016).
Knowing that, we show that he is capable of
performing classification in each step and
continuously reduce the uncertainty of identifying
functions. This procedure is illustrated further in the
second example of this paper.

4 PREDICTION MODELS

We now use the aforementioned mathematical
representations to construct two prediction models.
Each model consists of a decision tree that utilizes
previous formulas and detected restrictions.

Worst-case Scenario. Notice that presented decision
trees assume the worst-case implementation scenario:
All probable collisions between packet-sizes are
taken for granted but, in present industrial
implementations, detection is leaking executed
functions may be significantly easier.

Implementations often use different number of
registers and coils in functions, leading to different
packet sizes in responses (e.g. (Acromag, 2005)
(Siemens, 2009). For example, generally FC1 and
FC2 read functions can have colliding response
packet sizes, since both sizes are calculated using
equation γ = (χ/8 bits) + 2.
It is important to state here that variable χ may diver-
sify in real-world (as shown in our PoC below). Mod-
bus implementations often utilize different number of
coils or registers (different χ), leading to different si-
zes and ultimately no collision.

SECRYPT 2018 - International Conference on Security and Cryptography

58

Figure 1: Decision Tree (no prior knowledge).

4.1 Decision Tree

The general decision tree uses every limitation and
condition presented in the previous section. Each path
is a different condition that leads to a subset of
functions. When the attacker sniffs both the encrypted
request packet and the response packet, he determines
the request and response by relying on the sequence
numbers in the headers. Then, he uses the tree to
determine the function or the subset of possible
functions. The general decision tree is built based on
worst-case scenarios: All FC functions whose packet
sizes may collide in real-world, are thought to collide.

At this point, attack scenarios have no prior
knowledge of ICS functionality. Each function (leaf) in
each subset (tree branch) has the same possibility of
occurrence. For example, the attacker starts the packet
sniffing, captures the first two packets and
decapsulates them. He determines that the size of the
encrypted request payload is 5 bytes and response is 8
bytes. He knows that the 5 bytes packet belongs to
request and the 8 bytes packet belongs to response,
because he can validate it using the sequence numbers
inside the packet header (for example, TCP header,
ESP header, etc.).

For example, if we capture two encrypted TCP
payloads with Modbus request and response
commands and determine that “request < response“ in
packet sizes, then FC1, FC2, FC3 and FC4 each have
25% possibility to be the ones executed (fig. 1). For

any potential execution in typical Modbus, the worst
case in this example is to have 4 out of 15 possible
instructions executed. Generally, in the best case we
achieve 100% successful execution leak (e.g. for FC15
and FC16). Still, these predictions can be improved.

In addition, the attacker can use the mathematical
formulas/representations from the chapter 2.2 in order
to determine the possible functions precisely:

 If it is FC1 then: y = x + 2 => 8 = x + 2 => x = 6
registers. But FC1 uses coils, so the conversion is
6*8 = 48 coils. Therefore, the instruction is: FC1
Read Coil Status with coils from 41 to 48.

 If it is FC2 then: y = x + 2 => 8 = x + 2 => x = 6
registers. But FC2 uses inputs, so the conversion
is 6*8 = 48 inputs. Thus, the instruction is: FC2
Read Discrete Inputs with inputs from 41 to 48.

 If it is FC3 then: y = 2*x + 2 => 8 = 2*x + 2 =>x
= 3 registers. Therefore, the instruction is: FC3
Read Holding Registers with 3 registers.

 If it is FC4 then: y = 2*x + 2 => 8 = 2*x + 2 => x
= 3 registers. Therefore, the instruction is: FC4
Read Input Registers with 3 registers.

4.2 Experimental Attack Scenarios

4.2.1 Packet Density

As in (Chen et al., 2010), we can utilize the term
Packet Density to show that it is possible to

Side Channel Attacks over Encrypted TCP/IP Modbus Reveal Functionality Leaks

59

discriminate possibilities of detected encrypted
traffic. In our case, packets represent a single Modbus
function. The bytes used, are either the size of the
request payload or the size of the response payload
depending on the varying part of the function.

Packet Density = Nun of distinct packets/(max(bytes)
– min(bytes))

where NϵZ and Ν>0. In Modbus protocol however as
mentioned, there are collisions between some packet
sizes. So, we have to adhere to the following rules:

 Distinct packets must be ≥ 2
 Omit duplicate packets (preserve only 1 of them)

According in (Chen et al., 2010), we define
“density(℘) = |℘| / [max(℘)-min(℘)], as the average
number of packets for every possible packet size. If
the value of the packet density is below 1, then the
traffic can be easily distinguished” (Chen et al.,
2010). In our case, there are only 8 different functions
and sizes vary (Comey, 2014; Zhou and Feng, 2005)
with only one collision (FC05 and FC06), i.e., Packet
Density = 7 / (20 bytes – 4 bytes) = 0,43 < 1. Since
packet density is below 1 and this means that the
functions of the sample are distinguishable.

4.2.2 PoC Implementations

A PoC simulation was conducted to support these
scenarios. We built a client-server system in C++ that
simulated an HMI sending MODBUS RTU
commands over TCP/IP encrypted with RC4.
Simulations utilized the entire MODBUS protocol,
simulating DWORDS, coils and registers.

When unpadded encryption is used, results
support the predicted attack models and detection
rates. Detection rates are even better in industrial
appliances where FC1, FC2 and FC4 all have
different packet sizes. This can lead to full execution
leaks for sequences longer than three different FC
functions. Even in worse scenarios, collisions
detected between FC5 and FC6 and FC1 with FC3 (4
bytes) did not seem to directly affect information
leakage when multiple instructions were executed
sequentially.

4.2.3 Example Attack on Industrial
Implementation

In this scenario, we simulate an example attack on an
implementation using Function Codes. Notice that
this is just an example of how Function Codes can be
implemented in a way that avoids packet size
collisions. We will show that eavesdropping
encrypted TCP MODBUS commands can lead to full

execution leaks, even in the presence of collisions
(through statistical analysis).

All real-world ICS utilize at least 6 different se-
quences of instruction executions to support their
functionality and these mostly include two or three
different instructions executed per sequence). For this
worst-case scenario, we make some realistic assump-
tions:

 Similarly with Microsoft (Chen et al., 2010), we
allow the attacker to have some prior knowledge
about executions that are utilized in ICS
functionality (see Table 4), still without knowing
the full functionality implemented scenarios (i.e.
entire business logic and series of multiple
functional sequence executions that comprise a
full ICS functionality execution). Prior knowledge
of the business/ function flow or fingerprinted ICS
command executions for a time period can allow
the attacker to recreate the general decision tree
each time he observes a new payload size, thus
eliminating potential execution sequences until he
is certain of the sequence of executed MODBUS
functions.

 The attacker does not know how the functional se-
quences are lined up or their frequency of execu-
tion (knowledge of ICS functionality execution
for limited scenarios).

 The functional sequences execute a routine or a
task. This is a simple example, which illustrates
that our prediction models work even in cases with
little functionality and collisions present.

 The more the number of functional sequences, the
more diversity appears in the sample. This means
that the chances of a successful prediction are hig-
her.

 Knowing potential sequences of instruction exe-
cutions allow us to develop an extended decision
tree which further reduces chances of collisions
(see Fig. 2).

Table 4: Example Function Sequences from MODBUS
routines.

Functional
sequence

Step 1 Step 2 Step 3

F. Sequence 1 Read FC1 Write FC5 -

F. Sequence 2 Read FC1 Write FC15 -

F. Sequence 3 Read FC3 Write FC6 -

F. Sequence 4 Read FC3 Write FC16 -

F. Sequence 5 Read FC4 Read FC3 Write FC16

F. Sequence 6 Read FC2 - -

SECRYPT 2018 - International Conference on Security and Cryptography

60

Figure 2: Decision Tree (with observed prior knowledge of ICS).

Suppose one has observed executions of sequences in
Table 4 for a given short period of time. Frequencies
below show the number of times that each functional
sequence was executed during the observed period;
i.e. what commands were sent to a PLC to complete a
specific routine or task.

 F. sequence 1 executed 10 times
 F. sequence 2 executed 12 times
 F. sequence 3 executed 5 times
 F. sequence 4 executed 3 times
 F. sequence 5 executed 6 times
 F. sequence 6 executed 2 times

With this knowledge, an attacker can later either
fully disclose what is being executed, or use probabi-
listic models to enhance predictions in worst-case
scenarios where collisions occur.

Example Scenario. An attacker sniffs the first couple
of packets and decapsulates. Request payload is 5
bytes so is response.

Using the special decision tree and following the
path request = response and then the read node, he
deduces that possible functions are FC1, since in the
s7300 implementation FC1 and FC2 have different
payload sizes. Specifically, it is FC1 then: y = x + 2
=> 5 = x + 2 => x = 3 registers. Since FC1 uses coils,

FC1 has coils from 17 to 24.
Next couple of payloads that are sniffed have a

request payload of 7 bytes and a response payload of
5 bytes. Using the Decision Tree, he deduces that the
function that he is looking for is FC15 (request >
response and response = 7 bytes). For FC15: y = x +
6 => 7 = x + 6 => x = 1 register.

Since FC15 uses coils, so the conversion is 1*8 =
8 coils. Thus, the instruction is: FC15 Write Multiple
Coils with coils from 1 to 8. Notice that the 2nd step
consists of both read and write functions. So, the
special decision tree cannot be used in this case,
because it is unclear which direction to take.

Worst case Scenario. Collisions exist between F.
Sequence 1 and 3, where both executed sequences of
commands can have the same payload sizes. In other
cases, an attacker is mostly able to leak executed
functionality (sequences of instructions) since
payload sizes differ. In reality, extended sequences of
executed functions almost always leak executed
functionality. Still, even in the presented worst case,
leaks can be achieved statistically.

 The attacker starts the packet sniffing, captures the
first couple of packets and decapsulates them. He
determines the following payloads: Request
payload is 5 bytes and response is 6 bytes. The

Side Channel Attacks over Encrypted TCP/IP Modbus Reveal Functionality Leaks

61

decision tree path is the node:”request <
response”. Possible functions: FC1, FC2, FC3 and
FC4.

 At this stage, the likelihood of each instruction is
calculated as P(FC1)=57%, P(FC2)=5%, P(FC3)=
21% and P(FC4)=15,7%.

 Next, the attacker sniffs payloads: 5 bytes request
payload and 5 bytes response payload. Based on
the first step and the general decision tree,
possible instructions are either FC5 or FC6.

 In this case, the attacker prunes potential
functionality and deduces that either sequence
FC01-FC15 or FC3-FC6 has been executed.

Still, fingerprinting executions has turned up that
Sequence 1 is used for monitoring values and is
executed significantly more often than the second
one. If we calculate probabilities according to
fingerprinted executions of the systems logic:

 F. Sequence 1: P(FC1 | FC5) = 0.66 = 66%
 F. Sequence 3: P(FC3 | FC6) = 0.33 = 33%

Therefore, there is a statistical deviation of 33%
in favor of F. Sequence 1 being executed. In any other
scenario, full execution leakage is achieved. Tests
have shown that as sequences become longer, they
become more unique and collisions are minimized.

5 CONCLUSIONS

With appropriate measures the success of this type of
attacks can be reduced dramatically. The most
effective technique is the padding applied inside the
data field. There are two types of padding: (i) roundup
padding and/or (ii) random padding. Padding alters
the original size giving a uniformity in the packets of
the network, making any analysis of network traffic
relatively weak (Stallings, 2016).

i. In roundup padding, block ciphers (such as
AES) require blocks to have the size as the key
used before the process of encryption. This
means that blocks smaller than the length of
the key will follow the procedure of roundup
(Stallings, 2016).

ii. Random padding acts as a supplement to each
packet, filling it with random bytes until it
reaches a default size. The size may even be
the maximum size which can be sent in
Modbus protocol. In IPsec VPN and SSH,
random padding can be used. It is mainly
designed to hide possible leaks that may occur
from side channel attacks.

These two cases of padding may be used at the
same time as for example in the IPsec VPN, where
the roundup padding is always used by AES and the
random padding is an optional field (Kent, 2005).

Although it is true that padding can in many cases
be the main measure against these types of side
channel attacks, in practice it may create some
overhead on the network traffic. Also, depending on
implementation, integrity checks must run on all
industrial instructions, since consistency in execution
of functionality and performance is paramount.
Potential delays or malfunction will be considered as
a serious issue. It should be noted that padding may
consume even 1/3 of the network bandwidth without
fully subduing the information leaks (Chen et al.,
2010). Depending on implementation, this may or
may not be an issue in padding MODBUS
communications. In realistic scenarios, and in order
to protect the significant performance, low to
moderate level of padding aggressiveness should be
applied. However, this measure is not enough to
protect the data.

REFERENCES

Modbus, F.A.Q., About the Protocol, 2017. FAQ. Modbus
Organization inc. Viitattu.

Chen, S., Wang, R., Wang, X. and Zhang, K., 2010, May.
Side-channel leaks in web applications: A reality today,
a challenge tomorrow. In Security and Privacy (SP),
2010 IEEE Symposium on (pp. 191-206). IEEE.

Comey J., 2014. FBI: Protecting critical infrastructure and
the importance of partnerships. FBI.

McLaughlin, S., Konstantinou, C., Wang, X., Davi, L.,
Sadeghi, A.R., Maniatakos, M. and Karri, R., 2016. The
cybersecurity landscape in industrial control systems.
Proceedings of the IEEE, 104(5), pp.1039-1057.

NI, 2017. The Modbus Protocol In-Depth, 2017. National
Instruments (Online: accessed Mar 7 2017).

Knapp, E. D. and Langill, J. T., 2014. Industrial Network
Security: Securing critical infrastructure networks for
smart grid, SCADA, and other Industrial Control
Systems. Syngress.

Modbus, 2017. Simply Modbus: Modbus TCP/IP. (accessed
October 2017).

Modbus TCP, 2006. Modbus Messaging on TCP/IP
Implementation Guide v1.0b. Modbus Organization,
(accessed June 2017).

Erickson K., 2016. Controllers, Programmable Logic. An
Emphasis on design & application. Dogwood Vally
Press, LLC. Third edition.

Song, D., 2001. Timing analysis of keystrokes and SSH
timing attacks. In Proc. of 10th USENIX Security
Symposium, 2001. Usenix.

Kent S., IP, 2005. Encapsulating Security Payload (ESP).
RFC 4303. BBN Technologies.

SECRYPT 2018 - International Conference on Security and Cryptography

62

Stallings W., 2016. Cryptography and network security:
Principles and practices. Pearson.

Wright, C. V., Ballard, L., Coull, S. E., Monrose, F. and
Masson, G. M., 2008, May. Spot me if you can:
Uncovering spoken phrases in encrypted VoIP
conversations. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on (pp. 35-49). IEEE.

Imperva, 2015. Attacking SSL when using RC4: Breaking
SSL with a 13-year-old RC4 weakness. Imperva USA.

Matherly, J., 2009. Shodan search engine. Available at
[Online]: https://www. shodan. io.

Brown, M., 2007. System Administration Toolkit: Set up
remote access in UNIX through OpenSSH. IBM,
published Feb, 13.

Danezis, G., 2009. Traffic Analysis of the HTTP Protocol
over TLS.

Sun, Q., Simon, D.R., Wang, Y.M., Russell, W.,
Padmanabhan, V.N. and Qiu, L., 2002. Statistical
identification of encrypted web browsing traffic.
In Security and Privacy, 2002. Proceedings. 2002 IEEE
Symposium on (pp. 19-30). IEEE.

Zhou, Y. and Feng, D., 2005. Side-Channel Attacks: Ten
Years After Its Publication and the Impacts on
Cryptographic Module Security Testing. IACR
Cryptology ePrint Archive, 2005, p.388.

Langner, R., 2011. Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security & Privacy, 9(3), pp.49-51.

Munro, K., 2012. Deconstructing flame: the limitations of
traditional defences. Computer Fraud & Security,
2012(10), pp.8-11.

Kaspersky, 2014. Cyperthreats to ICS systems. Available at
[Online]: http://media.kaspersky.com/en/business-
security/critical-infrastructure-protection/Cyber_A4_
Leaflet_eng_web.pdf .

Meserve, J., 2007. Mouse click could plunge city into
darkness, experts say. CNN. com, 27.

Beresford, D., 2011. Exploiting siemens simatic s7 plcs.
Black Hat USA, 16(2), pp.723-733.

Nan, C., Eusgeld, I. and Kröger, W., 2012, September.
Hidden vulnerabilities due to interdependencies
between two systems. In International Workshop on
Critical Information Infrastructures Security (pp. 252-
263). Springer, Berlin, Heidelberg.

Acromag, 2005. Introduction To Modbus TCP/IP, Acromag
Inc., USA. Available at [Online]: www.acromag.
com/pdf/intro_modbus_TCP_765a.pd.

Siemens, 2009. S7-300/S7-400 Loadable Driver for Point-
to-Point CP. Siemens Manual.

Side Channel Attacks over Encrypted TCP/IP Modbus Reveal Functionality Leaks

63

