
Universal Translation Algorithm
for Formulation of Transport Network Problems

Anton Baldin, Kläre Cassirer, Tanja Clees, Bernhard Klaassen,
Igor Nikitin, Lialia Nikitina and Inna Torgovitskaia

Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

Keywords: Complex Systems Modeling and Simulation, Non-Linear Systems, Applications in Energy Transport.

Abstract: The formulation of transport network problems is represented as a translation between two domain specific
languages: from a network description language, used by network simulation community, to a problem de-
scription language, understood by generic non-linear solvers. A universal algorithm for this translation is
developed, an estimation of its computational complexity given, and an efficient application of the algorithm
demonstrated on a number of realistic examples. Typically, for a large gas transport network with about 10K
elements the translation and solution of non-linear system together require less than 1 sec on the common hard-
ware. The translation procedure incorporates several preprocessing filters, in particular, topological cleaning
filters, which accelerate the solution procedure by factor 8.

1 INTRODUCTION

This short paper continues our previous work (Clees
et al., 2016), where we discuss a general possibil-
ity for formulation of transport network problems as
a translation between two abstract representations,
a human-readable network description and a solver-
specific code. This approach provides an open type of
modeling, where both the network description and the
physical laws defining the transport are completely in
the hands of the user and can be given as plain text
files. There is a universal translation procedure con-
verting them to a problem description suitable for a
given solver. In this approach one is not bound to any
particular program and is flexible in the choice and
experimentation with different solution kernels.

In state of the art, the solution of transport net-
work problems combines well established model-
ing approaches with the standard solvers of non-
linear systems. The network applications vary by the
types of transported media: water supply (Rogalla
and Wolters, 1994; Stevanovic et al., 2009), elec-
tric power transmission (Milano, 2015; Zimmerman
and Murillo-Sanchez, 2015), gas transport networks
(Scheibe and Weimann, 1999; Aymanns et al., 2008),
etc. For each of them different types of network prob-
lems can be formulated: stationary, dynamical, feasi-
bility, optimization, optimal control. All these prob-

lems can be represented in terms of non-linear pro-
gramming (NLP), for which powerful solution algo-
rithms are available (Bazaraa and Shetty, 1979; Bert-
sekas, 1999; Avriel, 2003; Fletcher, 2013). The algo-
rithms are implemented in various software packages:
MINOS (Murtagh and Saunders, 1978), SNOPT (Gill
et al., 2005), IPOPT (Wächter and Biegler, 2006),
KNITRO (Nocedal and Wright, 2006), COUENNE
(Belotti et al., 2013). None of the approaches, how-
ever, provides a universal algorithm for formulation
of transport network problem which would be inde-
pendent on the type of trasport media and a particular
solver.

In spite of the variety of different possibilities,
there is a common way of formulating the network
problems, based on the fact that the network descrip-
tions for all types are quite uniform. The networks
are given as graphs with the properties, assigned per
element. The physical laws, describing the propaga-
tion of properties over the graph, are given as equa-
tions and inequalities, assigned per element type. The
equations can be written in the syntax of the tar-
get solver, e.g., in a form of expression trees (Gay,
2005) or a human-readable syntax of higher level sys-
tems, such as AMPL, Modelica, Mathematica, Mat-
lab. Considering the network description as an ab-
stract text and the list of physical laws as a dictionary,
one can represent the problem formulation as a trans-

Baldin, A., Cassirer, K., Clees, T., Klaassen, B., Nikitin, I., Nikitina, L. and Torgovitskaia, I.
Universal Translation Algorithm for Formulation of Transport Network Problems.
DOI: 10.5220/0006831903150322
In Proceedings of 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2018), pages 315-322
ISBN: 978-989-758-323-0
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

315

lation procedure between two formal languages (Har-
rison, 1978).

In the present paper we will describe an imple-
mentation of this idea, give detailed estimations of
computational complexity, present several realistic
examples and the results of performance tests. We
will also discuss the aspects of multiphase solution
procedure and a coupling of multiple network sectors.
The translation procedure is straightforwardly imple-
mentable and highly parallelizable, allowing separate
processing per every element.

In Section 2 the main translation algorithm is pre-
sented, its functionality is demonstrated on a simple
example of the water supply network and its compu-
tational complexity is estimated. In Section 3 the fil-
ters are described, implementing the necessary pre-
and postprocessing steps. In Section 4 several real-
istic examples are considered and the results of the
corresponding performance tests are given.

2 THE ALGORITHM

The network (NET) is described by a set of elements,
each of them is a set of properties, each specified by
a map from the property name to the property value,
of the form prop=val. The names and values can be
generally represented as character strings.

Translation matrix (TM) is a set of rules defining
variables and equations, applied when the elements
match a specified pattern. The pattern is given also
as a set of properties of the form prop=val. If this
set is a subset of properties in the element, the rule is
applied to the element.

The rules defining the variables have a form
var=prop. When the rule is applied, a new variable
vi is introduced and the property prop=vi is inserted
in the given element.

The rules defining the equations have a form
eq=expr, where expr contains a mathematical for-
mula for the equation in the target syntax. The for-
mula has constant, non-modifiable parts and variable
parts. The variable parts are marked up by square
brackets, containing the property names, in the form
[prop]. When the rule is applied, the property is
found in the given element, replaced by the corre-
sponding val and the brackets are removed. As a re-
sult, the corresponding variables and constants from
the given element become substituted into the equa-
tion. Algorithmically, this can be done as follows.

Algorithm (universal translator):
variables:
foreach element in NET
for all matching var prototypes in TM

Figure 1: Examples of networks. From left to right: simple
water network with three pipes, coupling between the edge
in gas network and the node in power network, coupling
between two edges.

define variables (v0,v1,...)
put them to element (prop=v0,...)

equations:
foreach element in NET
for all matching eq prototypes in TM
find [props] in element description
substitute their vals into the equation
stream the equation

Let us show the work of the algorithm on the fol-
lowing example. The test network is displayed on
Fig. 1 left. It is intentionally simple, for illustration
purposes.

Example 1.1: water network (NET)

nodes
class=n,name=n1,type=pset,pset=7
class=n,name=n2,type=pset,pset=5
class=n,name=n3,type=demand
class=n,name=n4,type=qset,qset=30
edges
class=e,name=p1,type=p,node1=n1,node2=n3,R=0.3
class=e,name=p2,type=p,node1=n2,node2=n3,R=0.05
class=e,name=p3,type=p,node1=n3,node2=n4,R=0.1

The network description contains topological rep-
resentation of the graph in the form of connections
(node1,2). It also specifies water supply pressures
(psets), output flow (qset) and hydraulic resistances
of the pipes (R).

Example 1.2: translation matrix for water networks
with laminar flow (TM)

variables with start values
class=n, var=P, var0=1
class=e, type=p, var=Q, var0=0

Kirchhoff law
class=n, type=demand, eq="[sumadj][Q]"
class=n, type=qset, eq="[sumadj][Q]-[qset]"
class=n, type=pset, eq="[P]-[pset]"

equations of elements (linear resistors)
class=e, type=p,

eq="[P@node1]-[P@node2]-[R]*[Q]"

SIMULTECH 2018 - 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

316

The translation matrix introduces for every node
(class=n) the pressure variable P with the starting
value 1, for every pipe (class=e, type=p) the flow vari-
able Q with the starting value 0. The equations in-
corporate Kirchhoff law written for every node. It
is represented by an operator [sumadj], implement-
ing a sum of flows in edges adjacent to a given node,
with the signs specified by the incidence matrix of the
graph:

[sumadj][Q]n = ∑
e

IneQe. (1)

The incidence matrix I is internally evaluated using
given connectivity data. The other equations describe
linear pressure drops according to the given resis-
tances. A reference operator is used to define pressure
in end nodes: [P@node1,2].

The application of translation algorithm gives the
following output.

Example 1.3: water network problem (PRO)

7 7 #nvars,neqs
v0-7 #eq0
v1-5 #...
v4+v5-v6
v6-30
v0-v2-0.3*v4
v1-v2-0.05*v5 #...
v2-v3-0.1*v6 #eq6

This is the list of the equations (represented by
their left hand sides). It is ready for solution by such
solvers as Mathematica and Matlab, accepting the ex-
pressions in human readable form. The equations can
be also retranslated in the other formats, suitable for a
particular solver. Here are the same equations in NLP
format (explained further in Sec. 3.3).

Example 1.4: water network problem (NLP)

7 7 #nvars,neqs
o1 v0 7 #eq0
o1 v1 5 #...
o54 3 v4 v5 o16 v6
o1 v6 30
o1 o1 v0 v2 o2 0.3 v4
o1 o1 v1 v2 o2 0.05 v5 #...
o1 o1 v2 v3 o2 0.1 v6 #eq6

The solver returns the answer, which can be
mapped again to the NET form.

Example 1.5: water network problem solution

name=n1,P=7
name=n2,P=5
name=n3,P=4
name=n4,P=1
name=p1,Q=10
name=p2,Q=20
name=p3,Q=30

Complexity estimation for the algorithm is
O(Nelem Nprop Neq), where Nelem – number of el-
ements, Nprop – number of properties per element,
Neq – number of equations per element. It is identi-
cal with the complexity of matrix multiplication

NET * TM = PRO (2)

where NET(Nelem,Nprop), TM(Nprop,Neq),
PRO(Nelem,Neq) are matrices of given dimensions.
If the problem had only one type of elements and
were linear, it were really specified by a matrix
multiplication with the operations count given above.
For non-linear problems the same estimation with
average values holds, Nprop – average number of
properties per equation, Neq – average number of
equations per element.

It is important to note that a particular represen-
tation of NET and TM structures as a simple list of
properties, e.g., NetList (Clees et al., 2016) or in other
format plays no role for the algorithm. These formats
are different implementations for the same abstract
structure (sets of maps) used to represent the network.
On the implementation level, the readers of NET and
TM have to be separated from the algorithms work-
ing on abstract structures, which can be conveniently
represented by set and map containers of C++ Stan-
dard Template Library (STL). This allows to use ef-
ficient search and set-theoretical algorithms available
in STL. On the other hand, the syntax of TM is flex-
ible and is completely in user hands. One can define
the other names for the properties in NET and adopt
TM accordingly. One can also change the syntax of
the equations in TM according to the solver language.
In this way the format independence of the main al-
gorithm is achieved.

The translation algorithm is highly parallelizable.
The processing loops can be per-element separated
and proportionally accelerated by the usage of mul-
tiprocessor architectures.

3 THE FILTERS

The network description often requires an additional
preprocessing. Also an adaptation to a particular
solver can be necessary. This can be done by spe-
cialized modules for filtering the data.

3.1 Topological Filters

Topological cleaning filters are required for the net-
works containing subgraphs disconnected from any
source. For instance, in gas and water networks, such
sources are pressure and temperature supplies (Pset,

Universal Translation Algorithm for Formulation of Transport Network Problems

317

Tset). Also the elements with vanishing or small re-
sistance bear a problem. The loops formed from such
elements have unstable flow balance. In both cases
the corresponding network problems are ill-defined
and can lead to a solver failure. Topological clean-
ing filters can recognize such parts and remove them
at an early stage.

Topological reduction filters provide a deeper net-
work optimization. When the edge elements are de-
scribed by physical profiles, entering into the element
equations, their serial and parallel connections also
possess a computable common physical profile. Tree-
like connections with given flows (Qsets) in the leaves
can be contracted to the root with a single Qset. These
operations are encountered in theory of generalized
series-parallel graphs (SPG/GSPG), (Eppstein, 1992;
Korneyenko, 1994) and their practical application al-
lows to reduce the networks significantly, by a factor
upto 100 (Clees et al., 2018b).

3.2 Classification Filters

The particular applications should decide which ele-
ments belong to nodes, edges (class=n,e) as necessary
for the work of topological filters, Kirchhoff sum op-
erator, etc. Additional classification could be neces-
sary. For instance, in gas transport networks the deci-
sion, whether a node is Pset, is taken on the basis of a
complicated logic, involving the presence of gas com-
position (gasmix). This evaluation can be spared for
the main translation module and transferred to a spe-
cialized filter. Other examples of classification will be
given below in Section 4.

3.3 Retranslation Filters

Particular solvers can require a special coding, differ-
ent from human readable form suitable for TM. For
instance, such solvers as IPOPT, SNOPT, MINOS use
special NLP input (Gay, 2005), based on Polish prefix
notation (PPN) of all formulae and a unified encod-
ing of all variables, numerical constants and opera-
tors. Using a quadratic pipe law as an example (Clees
et al., 2016):

pow(P@node1,2)-pow(P@node2,2)-R*Q*abs(Q)=0

written in PPN form:

- - pow P@node1 2 pow P@node2 2 * * R Q abs Q

using encoding rules:

P@node1 P@node2 Q R 2
v1 v2 v3 n0.1 n2

pow abs * -
o5 o15 o2 o1

one obtains an equivalent expression:

o1 o1 o5 v1 n2 o5 v2 n2 o2 o2 n0.1 v3 o15 v3

In the same way all equations in the system have to
be encoded. An important observation is that such
encoding becomes much more efficient when applied
to TM rather than to PRO, see Figure 2. It is simi-
lar to retranslating a short dictionary to another lan-
guage and its usage for the translation of a long doc-
ument. The complexity of direct retranslation of the
problem increases linearly with the size of network,
as O(NET), while the performance of retranslation
of TM depends only on its size, as O(T M), which is
much faster in practical applications.

In our implementation, the retranslation is done by
a specialized filter preNLP. When applied to TM, the
bracketed [prop] parts are left unchanged and used
further for direct substitution by the main translation
algorithm utrans. Certain postprocessing operations
are also required, such as inserting a header, form-
ing a structural Jacobian, providing starting point,
etc. They are done by the postNLP filter, as shown
schematically in Figure 2.

4 EXAMPLES OF USAGE

4.1 Multiphase Problems

Figure 3 top shows a typical one-phase solution pro-
cedure. The necessary translation is done once, the
result is passed to the NLP solver and the answer is
again encoded to NET form with the x2net filter.

The applications can require multiple phases, e.g.,
distribution of flows in the water network can be used
to compute the temperature distribution.

Example 2.1: water network description for tempera-
ture mix

nodes
class=n,name=n1,ttype=tset,tset=280
class=n,name=n2,ttype=tset,tset=300
class=n,name=n3,ttype=demand
class=n,name=n4,ttype=demand
edges
class=e,name=p1,node1=n1,node2=n3,

Q=10,qtype=1,in=n1
class=e,name=p2,node1=n2,node2=n3,

Q=20,qtype=1,in=n2

SIMULTECH 2018 - 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

318

Figure 2: Retranslation of the problem to NLP form. The translation path, shown by solid lines, is much faster than the one
shown by dashed lines.

class=e,name=p3,node1=n3,node2=n4,
Q=30,qtype=1,in=n3

Example 2.2: translation matrix for temperature mix
in water networks

variables
class=n, var=T
class=e, var=T
equations
class=n, ttype=tset, eq="[T]-[Tset]"
class=n, ttype=demand, eq="[summix][Q][T]-[T]"
class=e, qtype=1, eq="[T]-[T@in]"
class=e, qtype=0,

eq="[T]-([T@node1]+[T@node2])/2"

In the corresponding workflow, displayed on Fig-
ure 3 bottom, the classification filter wtmix is used
to set in NET ttype fields at nodes, qtype and in
fields at edges. In TM the temperature variables are
assigned to nodes and edges. The field ttype is used
to distinguish between the temperature sources and
intermediate nodes. In the intermediate nodes an op-
erator [summix] implements a mixture of the temper-
ature from the adjacent edges with the weights de-
pending on the flows:

[summix][Q][T]n = ∑
e

wneTe, (3)

wne = une/∑
e

une, une = max(IneQe,0).

It is similar to [sumadj] operator, but effectively in-
volves only incoming flows with IneQe > 0 and uses
them for weighting. The physical meaning of the mix
equation is that the weighted sum of incoming tem-
peratures in edges equals to the temperature in the
node.

In the edge the temperature is generally (qtype=1)
defined as the temperature in the upstream node T@in.
The exception is zero flow case (qtype=0), where the

half-sum of temperature at end nodes is taken. This is
done to regularize the problem in subgraphs with zero
flows. The fields qtype and in are set by the wtmix
filter using the available flow distribution.

The resulting problem in the second phase is linear
and is solved in one iteration by the solver.

Example 2.3: water temperature mix solution

name=n1,T=280
name=n2,T=300
name=n3,T=293.33
name=n4,T=293.33
name=p1,T=280
name=p2,T=300
name=p3,T=293.33

4.2 Multisectoral Problems

The concept of universal translation can be naturally
extended to process the networks with multiple sec-
tors, also with coupling between them.

Example 3: translation matrix for multisectoral cou-
pling

variables
class=n, sector=gas, var=P
class=e, sector=gas, var=Q
class=n, sector=water, var=P
class=e, sector=water, var=Q
class=n, sector=power, var=U
class=e, sector=power, var=I
...

equations
class=e, sector=gas, type=p,

eq=[P@node1]*abs([P@node1])
-[P@node2]*abs([P@node2])
-[R]*[Q]*abs([Q])

class=e, sector=power, type=r,

Universal Translation Algorithm for Formulation of Transport Network Problems

319

Figure 3: Solution workflows: one-phase on the top, two-phase at the bottom.

eq=[U@node1]-[U@node2]-[R]*[I]
class=e, sector=water, type=p,

eq="[P@node1]-[P@node2]-[R]*[Q]"
class=e, sector=gas, type=c, drive=E,

eq=[Q]
-efun([P@node1],[P@node2],[U@enode])

...

Here three sectors (gas, power, water) are intro-
duced. The coupling between power and gas is im-
plemented using a cross-referencing. The typical net-
work is shown on Figure 1 middle. The compressor
element in the gas network has an equation, depend-
ing on the voltage variable [U@enode] in the node
of the power network. For the reference the field
[enode] in the compressor is used. Similar construc-
tion can be used to define the coupling between edge
elements, as shown on Figure 1 right, for modeling of
heat exchangers, power transformers, etc.

4.3 Realistic Network Problems

For the validation, we have applied the developed al-
gorithms for solving a number of realistic network
problems, received from our industrial partners. The
smallest test cases are shown on Figure 4. The gas
transport network N1, shown in the top image, con-
tains about a hundred of nodes and edges, has two
Pset supplies (shown by rhombi) and three Qset ex-
its (n76, n80, n91, shown by triangles). The bottom
image shows a water cooling network NSR/KLT72
of comparable complexity. The other, medium-sized
gas network N2 contains about a thousand nodes and
edges, while the largest considered gas network N3
has about five thousand nodes and edges.

To assess the performance of the algorithm, we se-

lect as a measure the timing of translation and solution
steps for the networks of different complexity. The
results of the tests are collected in Table 1. Solution
for these gas networks is performed in two phases.
First, all compressors and regulators are set in special
mode with their goals enforced, providing linear ele-
ment equations. The result is used as a starting point
for the second phase, with compressors and regula-
tors set to their actual element equations. The solution
can be also done in one phase but the solution in two
phases appears to be empirically faster. The timing in
the table is given per one phase.

In comparison with our previous numerical exper-
iments (Clees et al., 2018a), the translation procedure
now includes topological cleaning algorithms, which
for the largest network N3 accelerate the solver pro-
cedure by a factor about 8. With this acceleration the
solver procedure now requires a CPU time compara-
ble with the translation time.

In more details, the gas compressors in these tests
were considered in frames of the so called free model.
In this model the compressors attempt to satisfy spec-
ified goals, such as fixed output pressure or through-
put flow, while the restrictions on revolution number
and power of the drive are not imposed. Considera-
tion of these restrictions is possible in frames of the
advanced model (Clees et al., 2018b). Its implemen-
tation requires an additional filter, transforming indi-
vidual characteristics of the compressor to tabulated
functions, representing the extended element equa-
tion.

Further, the tests were performed with a gas of
constant composition and temperature. Implementa-
tion of the mix procedure for gas is analogous to the

SIMULTECH 2018 - 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

320

Figure 4: Realistic test networks: gas network N1 on the top, water cooling network NSR/KLT72 at the bottom.

above described mix step for water networks, requir-
ing to upgrade the solution procedure by one more
phase. The implementation of the gas mix phase and
the advanced model of compressors is on the way.

5 CONCLUSIONS

We have presented the formulation of transport net-
work problems as a translation between two formal
languages. As input one has a network description
in a form of a graph with properties and a config-
urable set of translation rules, corresponding to physi-
cal equations of transport, given per element type. As
output one has a problem description given as a sys-
tem of non-linear equations in a form, suitable for the

chosen solver.

A universal translation algorithm has been devel-
oped, possessing computational complexity linear in
the number of elements in the graph, the number of
properties per element and the number of equations
per element type. The processing can be separated
element-wise and allows massive parallelization.

A number of realistic examples has been used to
test operability and performance of the algorithm, in-
cluding water supply, cooling circuits, gas transport,
power networks, as well as multisectoral couplings.
Typically, for a large gas transport network with about
10K elements the translation and solution of non-
linear system together require less than 1 sec. The
translation procedure incorporates several preprocess-
ing filters, in particular, topological cleaning filters,

Universal Translation Algorithm for Formulation of Transport Network Problems

321

Table 1: Performance of translation and solution phases for various networks.

network nodes edges translation, sec solution, sec

N1 100 111 0.04 0.02

N2 931 1047 0.15 0.24

N3 4466 5362 0.39 0.42

(timing for 3 GHz Intel i7 CPU 8 GB RAM workstation)

which accelerate the solution procedure by factor 8.
Currently we are working on the extension of the

translation procedure by the advanced modeling of
gas compressors and mix phase for gas composition
and temperature. Our further plans include the accel-
eration of the solver procedure by applying topologi-
cal reduction algorithms and parallelization of trans-
lation procedure on multiprocessor architectures.

ACKNOWLEDGMENTS

This work is supported by German Federal Ministry
for Economic Affairs and Energy, project BMWI-
0324019A, MathEnergy: Mathematical Key Tech-
nologies for Evolving Energy Grids. This material is
also based upon work supported by the German Bun-
desland North Rhine-Westphalia using fundings from
the European Regional Development Fund, grant Nr.
EFRE-0800063, project ES-FLEX-INFRA.

REFERENCES

Avriel, M. (2003). Nonlinear Programming: Analysis and
Methods. Dover Publishing.

Aymanns, P. et al. (2008). Online simulation of gas dis-
tribution networks. 9th SIMONE Congress, October
15–17, 2008, Dubrownik, Croatia.

Bazaraa, M. S. and Shetty, C. M. (1979). Nonlinear pro-
gramming: theory and algorithms. John Wiley &
Sons.

Belotti, P. et al. (2013). Mixed-integer nonlinear optimiza-
tion. Acta Numerica, 22:1–131.

Bertsekas, D. P. (1999). Nonlinear Programming. Athena
Scientific.

Clees, T. et al. (2016). MYNTS: Multi-phYsics NeTwork
Simulator. In SIMULTECH 2016, July 29–31, 2016,
Lisbon, Portugal, pages 179–186. SCITEPRESS.

Clees, T. et al. (2018a). Making Network Solvers Glob-
ally Convergent. Advances in Intelligent Systems and
Computing, 676:140–153.

Clees, T. et al. (2018b). Modeling of Gas Compressors
and Hierarchical Reduction for Globally Convergent
Stationary Network Solvers. International Journal On
Advances in Intelligent Systems, IARIA (submitted).

Eppstein, D. (1992). Parallel recognition of series-parallel
graphs. Information and Computation, 98:41–55.

Fletcher, R. (2013). Practical Methods of Optimization.
John Wiley & Sons.

Gay, D. M. (2005). Writing .nl Files. Technical Report,
Sandia National Laboratories, Albuquerque.

Gill, P. E. et al. (2005). SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Review,
47(1):99–131.

Harrison, M. A. (1978). Introduction to Formal Language
Theory. Addison-Wesley.

Korneyenko, N. M. (1994). Combinatorial algorithms on
a class of graphs. Discrete Applied Mathematics,
54:215–217.

Milano, F. (2015). PSAT Software. faraday1.ucd.ie/psat
.html.

Murtagh, B. and Saunders, M. (1978). Large-scale lin-
early constrained optimization. Mathematical Pro-
gramming, 14:41–72.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimiza-
tion. Springer.

Rogalla, B.-U. and Wolters, A. (1994). Slow transients
in closed conduit flow – part I: Numerical meth-
ods. In Chaudhry, M. H. and Mays, L. W., editors,
Computer Modeling of Free-Surface and Pressurized
Flows, volume 274 of NATO ASI Series, pages 613–
642. Springer, Netherlands.

Scheibe, D. and Weimann, A. (1999). Dynamische Gas-
netzsimulation mit GANESI. GWF Gas/Erdgas,
(9):610–616.

Stevanovic, V. D. et al. (2009). Prediction of thermal tran-
sients in district heating systems. Energy Conversion
and Management, 50(9):2167–2173.

Wächter, A. and Biegler, L. T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57.

Zimmerman, R. D. and Murillo-Sanchez, C. E. (2015).
Matpower 5.1 User’s Manual. www.pserc.cornell.
edu/matpower.

SIMULTECH 2018 - 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

322

