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Abstract: This paper presents a parallel control concept for automated constrained manufacturing tasks, i.e. for 
simultaneous position- and force-control of industrial robotic manipulators. The manipulator’s interaction 
with its environment results in a constrained non-linear switched system. In combination with internal and 
external uncertainties and in the presence of friction, the stable system performance is impaired. The aim is 
to mimic a human worker’s behaviour encoded as lists of successive desired positions and forces obtained 
from the records of a human performing the considered task operating the lightweight robot arm in gravity 
compensation mode. The suggested parallel control concept combines a model-free position- and a model-
free torque-controller. These separate controllers combine conventional PID- and PI-control with adaptive 
neuro-inspired algorithms. The latter use concepts of a reward-like incentive, a learning system and an 
actuator-inhibitor-interplay. The elements Conventional controller, Incentive, Learning system and Actuator-
Preventer interaction form the CILAP-concept. The main contribution of this work is a biologically inspired 
parallel control architecture for simultaneous position- and force-control of continuous in contrast to discrete 
manufacturing tasks without having recourse to visual inputs. The proposed control-method is validated on a 
surface finishing process-simulation. It is shown that it outperforms a conventional combination of PID- and 
PI-controllers. 

1 INTRODUCTION 

Automation of contact-based manufacturing 
processes is of significant interest to the industrial as 
well as to the scientific community. Humans being 
highly proficient at manufacturing tasks requiring 
compliance and force control, high number of 
research works in the field aim to mimic the human 
workers’ behaviour and to translate its capabilities 
into robot skills. 

(Rozo et al., 2013) used Programming by 
Demonstration, PbD which teaches a robot by 
showing the desired behaviour rather than by writing 
commands in a programming language. Based on 
Gaussian mixture theory, a single model encompasses 
both, desired positions and forces. (Abu-Dakka et al., 
2015) presented a concept for learning and adaptation 
of contact-based manipulation tasks. The authors 
suggested a scheme for online modifications to match 
desired reference position- and force-profiles. The 
latter were obtained from programming by 
demonstration and encoded with dynamic movement 

primitives. (Oba et al., 2016) discussed the 
acquisition and replication of polishing skills of a 
human worker represented as tool trajectory, tool 
posture and polishing force. These variables which 
were to be controlled independently and 
simultaneously formed the input to the controller. 

As far as the considered processes are concerned, 
most manufacturing tasks require the robotic 
manipulator to interact with its environment which 
results in contact situations and constrained 
movements, i.e. the robot arm cannot move freely in 
all directions. Constraints include natural constraints 
due to the specificities of the environment as well as 
artificial constraints due to and characteristic of the 
desired task. Varying or switching constraints are due 
to successive discrete or continuous phases in a task. 
By their nature, the control of constrained tasks 
requires the simultaneous control of pose and force. 
Pure position control cannot cope with these complex 
tasks because already slight deviations from the 
desired trajectory can lead to errors in the desired 
forces and torques (Abu-Dakka et al., 2015). Pure 
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force control on the other hand can lead to contact 
instabilities at an increased speed (Newman et al., 
1999). A promising approach for simultaneous 
position- and force-control is parallel control, i.e. two 
controllers acting in parallel. Both independent 
controllers yield control torque commands which are 
summed up. In contrast to other state-of-the-art 
hybrid control methods, parallel control allows for the 
simultaneous and independent control of position- 
and force-signals. Parallel control has been the 
subject of repeated research efforts over the past 
decades. Based on the interactions of controller, robot 
arm and environment, (Chiaverini and Sciavicco, 
1993) developed a dynamic parallel force-/position-
control for constrained motions with an elastic 
environment. (Ferguene et al., 2009) extended a 
conventional parallel force-/position-controller with a 
3-layer feed-forward neural network to compensate 
for uncertain or varying robot dynamics and 
environments. The intended application areas ranged 
from elastic environments over curved surfaces to 
unknown environmental stiffness. (Karayiannidis and 
Doulgeri, 2010) suggested adaptive concepts for 
position-/force-control in compliant and frictional 
contacts in the presence of uncertainties in models, 
end effector-orientation and environment. (Yin et al., 
2012) based his tracking controller on a human 
analogy, i.e. on the human’s approach to finger 
tracking in the absence of visual feedback. For the 
tracking of an unknown surface, the authors relied on 
the concepts of moving frames and vector-variations. 
(Lange et al., 2013) presented a parallel position-
based force-/torque-control scheme taking into 
account couplings between forces and torques, 
constrained configurations, compliances in robot, 
sensor and environment as well as the effects due to 
impact forces. An experimental validation completed 
the work. The cited contributions present some 
drawbacks for the here considered automated 
manufacturing task. The majority of the state-of-the-
art controllers are model-based and based only on 
conventional concepts, not taking advantage of gains 
in robustness and adaptability offered by intelligent 
control-extensions.  

Over the past decades, some research has also 
been done separately on control-algorithms. Since 
their introduction in 1940, model-free PID-
controllers have been predominant in industrial 
settings (Adar and Kozan, 2016). This is due to their 
key-advantages:  robustness and simple design. Their 
constant fixed parameters as well as their linearity 
however, make it hard to cope with either nonlinear, 
time-varying systems or disturbances. The lack of 
flexible adaptability and the impossibility to increase 

gains arbitrarily due to actuator limitations as well as 
the occurrence of instabilities and noise sensitivity 
(Kuc and Han, 2000) (Siciliano and Khatib, 2008) 
limit the application areas. Conventional controllers 
are therefore not suited for controlling manufacturing 
processes automated with highly nonlinear, coupled 
robotic systems (Adar and Kozan, 2016) (Kuc and 
Han, 2000) (Siciliano and Khatib, 2008). 

With the aim to take advantage of the 
conventional controller’s trumps while overcoming 
its drawbacks, biomimetic extensions imitating the 
learning behaviour of the human brain are presented. 
Due to the complex nature of this biological system 
only a concise selection of its key-aspects has been 
retained for the development of control concepts. 
(Lucas et al., 2004) presented BELBIC (Brain 
Emotional Learning-Based Intelligent Control) on the 
base of the work by (Balkenius and Morén, 2001) on 
a computational model of the abstracted human 
amygdalo-orbitofrontal cortex system. The suggested 
controller mimics the natural interplay of actuating 
amygdala and inhibiting orbitofrontal cortex. The 
implementation of an emotional signal can be 
interpreted as a reward or incentive to guide the 
system’s learning behaviour. (Yi, 2015) combined 
robust sliding mode control with an intelligent control 
element comprising an actuator and a preventer 
inspired on the mammalian limbic system. (Frank et 
al., 2014)’s work focussed on reinforcement learning 
allowing an agent to learn a policy with the goal to 
maximize a reward-signal. The authors combined a 
low-level, reactive controller with a high-level 
curious agent. Artificial curiosity contributes to the 
learning process by guiding exploration to areas 
where the agent can efficiently learn. The work was 
validated by a real-time motion planning task on a 
humanoid robot. (Merrick, 2012) implemented a 
goal-lifecycle and introspection for reinforcement 
learning. The aim was to make the system aware of 
when to learn what as well as of which acquired skills 
to keep either active, ignored or erased.  

The aim of this work is to combine freeform 
trajectory tracking with force control, i.e. to develop 
a model-free control strategy enabling an industrial 
robot-arm to follow a desired freeform-path and 
simultaneously apply specified adequate joint-
torques at the appropriate moment and position. The 
desired position- and force-signals are to be learned 
from kinesthetic teaching and introduced as 
independent lists of successive joint-angles and -
torques. This work combines elements of PbD, 
parallel control and neuro-inspired control-
extensions. Compared with related work cited above, 
the main differences in this paper are: 1) no visual  
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Figure 1: Inspiration for the CILAP-architecture. 

information, i.e. no camera is used and 2) the 
considered tasks are continuous movements instead 
of discrete contact state formations. The input for the 
controller is a list of desired successive joint-specific 
positions and torques which are obtained from the 
records of a human performing the considered task 
operating the lightweight robot arm in gravity 
compensation mode. 3) Further, a parallel control 
concept composed of a model-free position-controller 
and a model-free force-controller is designed. These 
separate controllers combine conventional PID- or 
PI-control with adaptive neuro-inspired algorithms. 
The latter make use of an incentive and a learning 
system as well as of the interaction of an actuator and 
a preventer to improve the controller performance. 
The elements Conventional controller, Incentive, 
Learning system and Actuator-Preventer interplay 
form the CILAP-concept. The suggested method is 
validated on a manufacturing process simulation. For 
the control objectives, the main focus is put on 
precision. As the considered tasks are not time 
critical, minimal mean errors of position- and force-
signals are the objective. 

The rest of the paper is structured as follows: It 
follows the description of the challenge, i.e. section 2 
‘Problem Statement’. Section 3 describes the used 
concepts. In Section 4, the suggested parallel control 
concept CILAP (conventional-incentive-learning-
actuator-preventer) is developed and in section 5 the 
results of the simulation are presented and discussed. 
The paper ends with a conclusion. 

2 PROBLEM STATEMENT 

The robot-arm considered in this work has n links and 
its dynamics in the presence of uncertainties, 
disturbances and switching constraints are expressed: ()ࡹሷ + ,) ሶ ሶ( + ()ࡳ = ࢊ + ࢌ + ࡽ +  (1)  ࢛

with , ሶ , ሷ 	 ∈ 	ܴ  link position, velocity and 
acceleration with index ݀ for the desired reference 
values. ()ࡹ ∈ ܴ௫ is the inertia matrix, ), ሶ ) ∈ܴ௫ the centripetal/Coriolis terms, ()ࡳ ∈ ܴ the 
gravitational torque-vector. External disturbances are 
represented by the bounded term ࢊ ∈ ܴ while 
internal uncertainties are implemented as variations 
in ) ,()ࡹ, ሶ ) and ࢌ .()ࡳ ∈ ܴ stands for the 
friction between end-effector and environment or 
surface. The friction is a function of the applied 
torque and the robot link velocity: ࢌ ሶௗ்࣎ߛ= ௦௨ௗ with ߛ a constant factor. ࡽ ∈ ܴ is 
the global constraint force, ࡽ = ்ࡰ()்ࡶ  ࣅ(ࣖ)
where ()ࡶ ∈ ܴ௫ is the manipulator’s Jacobian, ࣅ ∈ܴ is the vector of Lagrange multipliers and ࡰ(ࣖ) =ఋࣘ(ࣖ)ఋࣖ  is the gradient of the task space constraints with  ∅(ࣖ) ∈ ܴ the ݅th kinematic constraint. ࣖ ∈ ܴ 
stands for the Cartesian pose and ݅ = 1,2, …݉ 
denotes the index of constraints for the case of 
multiple switching constraints with ݉ the total 
number of constraints. 

The considered application is a contact-based 
manufacturing task, i.e. freeform trajectory tracking 
with the application of specified forces at specific 
positions. Manual work is current state-of-the-art for 
these tasks. Not only the fact that these processes 
were designed by and for humans but also humans’ 
capabilities make them the most appropriate 
performers for these complex tasks. The challenge in 
this work is to mimic the human’s approach to 
perform the considered task by translating his 
capabilities into robot skills and by including the 
worker’s expertise in the control algorithm. The input 
for the controller is a .csv-file with desired successive 
positions and torques which are obtained from the 
records of a human operating a lightweight robot arm 
in gravity compensation mode. ࢛ ∈ ܴ is the applied 
input torque. It is the sum of the outputs of the pose-
controller and the force-controller, i.e.  ࢛ +  ఛ. The࢛
control action consists in adapting both robot joint 
positions and the applied forces to match the desired 
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poses and forces. The goal is to keep the error 
between desired and measured signals minimal at all 
times, i.e. the mean error signal over the whole 
process-period should be minimized. 

3 USED CONCEPTS 

The concepts used in this work are biologically 
inspired, similar to the related work cited in section 1. 
Despite the control concepts being inspired on the 
functioning of the human brain, they do not attempt 
to accurately model its structure. Rather than 
presenting a true-to-life computational model of the 
mammalian learning behaviour, the aim is to improve 
conventional model-free PID-control through the 
implementation of neuro-inspired concepts.  

An incentive system transforms sensory 
information into an incentive, i.e. a reward-based 
extrinsic motivational stimulus. Depending on the 
environment, the stimulus to the agent, i.e. how to 
maximize the reward for the system is changed. This 
adaptive incentive then forms the input to a learning 
system which feeds both an actuator and a preventer. 
The interplay of the latter is inspired on the interplay 
of the amygdala and the orbitofrontal cortex in the 
mammalian brain during emotional learning. While 
the actuator establishes stimulus-action associations, 
the preventer erases associations which are no longer 
needed. The removal of no longer relevant stimulus-
action association is essential for a successful 
learning and to reduce the amount of data in the 
system. The latter is similar to the phenomenon of 
synaptic plasticity in the human brain. The described 
structure is schematically represented in Figure 1. 

4 THE PARALLEL  
CILAP-ARCHITECTURE 

A parallel control concept is developed to 
simultaneously control joint angular positions and 
torques. The complex constrained control task is 
broken down into two independent subsystems. The 
suggested concept is composed of a model-free 
position-controller and a model-free force-controller. 
Both independent controllers consist of a 
conventional model-free controller and a model-free 
controller extension. The former C combines with the 
Incentive-Learning-Actuator-Preventer to form the 
CILAP-architecture. The suggested method attempts 
to combine robustness, simplicity and intuitiveness 
and is depicted in Figure 2. 

The input to the controller is a .csv-file, i.e. a list 
containing a succession of desired joint positions ௗ 
and joint torques ࣎ௗ. 

4.1 Position-Control 

The conventional PID-controller-output ࢛ as in 
Equation (2) ࢛ = ܭ + ሶௗܭ  + ܭ    (2) ݐ݀	

with the error-signal, i.e. the difference between 
measured and desired signal as in Equation (3)  =  −  ௗ                          (3)

where  ܭ,  . are constant gain factorsܭ ௗ andܭ
For the controller extension, the appreciation, i.e. 

the value of the current state is defined as the error-
signal (Equation (4)). As the only way to collect 
information about the environment is to interact with 
it, a feedback-loop is implemented in this controller-
part. ࢋ࢚ࢇ࢚࢙௩ =  − ௗ =                  (4)

The reward, i.e. incentive 	 ∈  is defined in ܴ	
Equation (5).  = ᇱ(௩ࢋ࢚ࢇ࢚࢙)݊݃݅ݏ) ∙ ሶࢋ࢚ࢇ࢚࢙ ௩)(ࢋ࢚ࢇ࢚࢙௩ −  (5)    (

where ′ indicates the vector-transpose. 	 ∈ 	ܴ 
represents the interplay of actuator and preventer.  
is defined as the difference between their respective 
outputs (Equations (8) and (9)) which guarantees only 
relevant connections are kept. Mimicking synaptic 
plasticity, this law allows to limit the number of 
active learned connections.  

The incentive is the input to the learning system. 
Its outputs are the learning rates for both the actuator 
(Equation (6)) and the preventer (Equation (7)). ݓ = ሶࢋ࢚ࢇ࢚࢙ߙ ௩ ∙ max(, ݓ (6)                 ( = ሶࢋ࢚ࢇ࢚࢙ߙ ௩ ∙ ) −    (7)                     (

with ߙ > 0 a constant factor. 
The main part of this half of the control algorithm 

consists in the interaction between an actuator and an 
inhibitor. The actuator-output ࢇ	 ∈ 	ܴ and the 
preventer-output 	 ∈ 	ܴ are defined in Equations 
(8) and (9).

CILAP-Architecture for Simultaneous Position- and Force-Control in Constrained Manufacturing Tasks

247



 

Figure 2: CILAP-architecture. ࢇ =                          (8)ݓ	௩ࢋ࢚ࢇ࢚࢙ߙ =                       (9)ݓ	௩ࢋ࢚ࢇ࢚࢙ߙ

The controller-extension-output is defined in 
Equation (10), the integration over time mimicking 
experience. ࢛ = ௩ࢋ࢚ࢇ࢚࢙ߚ −  (10)               

with ߚ > 0 being a constant gain-factor. 
The final position-controller output combines the 

outputs of the conventional controller and of the 
extension. ࢛ = ࢛ −                      (11)࢛

4.2 Force-Control 

Parallel to the position-controller, a force-controller 
is implemented to make sure the desired force-torques 
from the reference .csv-file are applied. 

The conventional PI-controller-output ࢛ఛ is 
defined in Equation (12) ࢛ఛ = ࣎ఛܭ + ఛܭ            (12)࣎

where ܭఛ and ܭఛ are constant gain-matrices and the  
error-signal 

࣎ = ࣎ −  ௗ                        (13)࣎

with ࣎ = ఛ࢛ +  .ࢌ
For the controller-extension the state-value ࢋ࢚ࢇ࢚࢙௩ is defined as the error-signal (Equation (13)). 

The incentive is defined as follows  = ᇱ(௩ࢋ࢚ࢇ࢚࢙)݊݃݅ݏ) ∙ ሶࢋ࢚ࢇ࢚࢙ ௩)	(ࢋ࢚ࢇ࢚࢙௩ −  (14)  (

For the output of the actuator-preventer-system, its 
constituents and their learning rates the formulas 
defined in Equations (6)-(9) apply. The controller-
extension-output follows Equation (15). ࢛ఛ = ௩ࢋ࢚ࢇ࢚࢙ߚ− +  (15)                 

The final force-torque-controller output combines 
the outputs of the conventional controller and of the 
extension. ࢛ఛ = ఛ࢛ −  ఛ                     (16)࢛

5 RESULTS 

5.1 Simulation 

The proposed control concept is validated on a 
surface finishing task, i.e. the robot-arm successively 
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follows desired positions and applies desired torques 
at specified positions. The controller is implemented 
on a 2D-RR planar robot in the Matlab/Simulink- 
environment. The parameters of the robotic arm with 
two rotational joints are described in set of Equation 
=ࡹ .(17) ቈ ݆ଵ + ݉ଶ݈ଵଶ ݉ଶ݈ଵ݈ܿଶ cos(ݍଶ − ଵ)݉ଶ݈ଵ݈ܿଶݍ cos(ݍଶ − (ଵݍ ݆ଶ + ݉ଶ݈ܿଶଶ  

=  0 −݉ଶ݈ଵ݈ܿଶ sin(ݍଶ − ଵ)݉ଶ݈ଵ݈ܿଶݍ sin(ݍଶ − (ଵݍ 0 ൨ 
ࡳ = ݉ଵ݈݃ܿଵ cos(ݍଵ) + ݉ଶ݈݃ଵ cos(ݍଵ)݉ଶ݈݃ܿଶ cos(ݍଶ) ൨    (17)   

with link masses ݉ଵ = ݉ଶ = 1݇݃, link lengths ݈ଵ =݈ଶ = 1݉, gravitational acceleration ݃ = 9.8 ௦మ, 
distances from the link source end to its centre of 
mass ݈ܿଵ = ݈ܿଶ and link moments of inertia ݆ଵ = ݆ଶ. 
The system-inputs are extracted from .csv-files 
containing a succession of desired reference joint 
angular positions and torques. The controller-
parameters introduced in Equations (2)-(16) are 
chosen and optimized by trial-and-error-procedure as 
follows: ߙ = 5, ߚ = 30, ߛ = 1, ܭ = −5, ௗܭ =−20, ܭ = −20, ఛܭ = 5, ఛܭ = 35	. 

The performance-results are illustrated in Figures 
3-8. While Figures 3 and 4 show the trajectory-
tracking performance of the suggested controller 
scheme, Figures 5 and 6 depict its velocity-tracking 
and Figures 7 and 8 show the force-tracking of link 1 
and 2, respectively.  

 
Figure 3: Trajectory tracking of link 1. 

 
Figure 4: Trajectory tracking of link 2. 

 
Figure 5: Velocity tracking of link 1. 

 
Figure 6: Velocity tracking of link 2. 

 
Figure 7: Force tracking of link 1. 
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Figure 8: Force tracking of link 2. 

5.2 Analysis and Discussion 

The simulation-results present good tracking results 
for all considered signals: joint torques, angular joint 
positions and velocities. This is illustrated 
qualitatively in Figures 3-8 as well as quantitatively 
in Table 1 and Table 2. 

The added value of the controller-extension is 
illustrated in Tables 1-3. In Table 3, the improvement 
from the parallel controller without the neuro-
inspired extension to the suggested CILAP-
architecture is given in percentages. It is proven that 
the latter outperforms a parallel controller with PID-
position- and PI-force-control. The main focus in this 
work was put on the mean error signals. 

The industrial applications of the presented work 
are contact-based manufacturing in general and 
surface finishing in specific. Manual work being 
current industrial state-of-the-art, surface finishing 
processes are the bottleneck of the concerned industry 
due to their time- and cost-intensive nature. Different 
studies suggest shares of up to 30-50% of the entire 
manufacturing time and up to 40% of the total cost. 
(Dardouri et al., 2017) (Dieste et al., 2013) (Pagilla 
and Yu, 2001) (Robertsson et al., 2006) (Roswell et 
al., 2006) (Wilbert et al., 2012). From the scientific 
point of view, the automation of these contact-based 
manufacturing processes is highly complex as it 
requires tackling freeform trajectory tracking and 
force control simultaneously while mimicking the 
robust and adaptive behaviour a human provides on a 
nonlinear system. Additional challenges arising in 
industrial practice and taken into account here are the 
absence of visual information from a camera and the 
application involving continuous movements, e.g. 
path following rather than discrete contact state 
formations, e.g. gripping.  

As the shown work presents promising results for 
the automation of the considered continuous 
manufacturing processes, future work will involve the 
experimental validation on a KUKA LWR4+ robot-

arm with a variety of processes, e.g. grinding or 
polishing tasks. Comparisons with state-of-the-art 
controllers will be performed to demonstrate the 
outperformance of the suggested concept. Also, its 
real-time capabilities will be proven. 

Table 1: Maximum, minimum and mean absolute positional 
errors for both manipulator-links [rad] for the experiment 
with (a) the parallel architecture with PID- and PI-
controllers and (b) the CILAP-architecture. 

 
 

a- ݍభ  
a- ݍమ  

b- ݍభ  
b- ݍమ  

Max  3.16 0.82 1.18 0.82 

Min 9.70e-4 2.25e-5 2.07e-4 2.95e-5 

Mean 1.64 0.09 0.13 0.08 

Table 2: Maximum, minimum and mean absolute force-
errors for both manipulator-links [N/m2] for the experiment 
with (a) the parallel architecture with PID- and PI-
controllers and (b) the CILAP-architecture. 

 
 

a- ߬భ  
a- ߬మ  

b- ߬భ  
b- ߬మ  

Max  2.41 2.45 0.05 0.05 

Min 0.003 0.001 0.002 1.41e-5 

Mean 1.56 1.62 0.02 0.01 

Table 3: Average improvement-rate [%] from the parallel 
architecture with PID- and PI-controllers to the CILAP-
architecture for position- and force-tracking. 

Position-Control 35 % 

Force-Control 87 % 

6 CONCLUDING REMARKS 

In this paper, the control problem of automated 
constrained manufacturing tasks was addressed. A 
parallel control concept composed of two model-free 
controller-halves is developed. One half controls the 
position while the other half controls the applied 
torque of the robot manipulator performing a 
freeform trajectory tracking application with the 
application of manufacturing-forces at specified 
positions in the presence of uncertainties and friction. 
Both controller-halves combine conventional control 
with biomimetic adaptive control. The latter is 
inspired on the human learning behaviour making use 
of an actuator-inhibitor-system and a reward-like 
incentive. The elements Conventional controller, 
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Incentive, Learning system and Actuator-Preventer 
interplay form the CILAP-concept. The developed 
model-free control concept combines PbD, parallel 
control and neuro-inspired control-extensions. A 
surface finishing application-simulation illustrates 
the suggested scheme outperforms a combination of 
conventional PID- and PI-controllers. 
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