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Abstract: Over the past few years, attention has been focused on utilizing complex network analysis to gain a high-
level abstraction view of software systems. While many studies have been proposed to use interactions 
between software components at the variable, method, class, package, or combination of multiple levels, 
limited studies investigated how software change history and evolution pattern can be used as a basis to 
model software-based weighted complex network. This paper attempts to fill in the gap by proposing an 
approach to model a commit change-based weighted complex network based on historical software change 
and evolution data captured from GitHub repositories with the aim to identify potential fault prone classes. 
Experiments were carried out using three open-source software to validate the proposed approach. Using the 
well-known change burst metric as a benchmark, the proposed method achieved average precision of 0.77 
and recall of 0.8 on all the three test subjects. 

1 INTRODUCTION 

In recent years, research in software engineering in 
the aspect of representing software systems using 
complex networks has started to emerge with the 
aim to gain a high-level abstraction view of the 
analysed software systems (Ma et al. 2010, Concas 
et al., 2011). Representing software systems using 
complex networks allows software maintainers to 
gain more insights on the studied software by 
discovering unique or recurring structural patterns, 
detecting abnormalities and outliers, or even 
predicting future evolution trends (Turnu et al., 
2013). For instance, the work by Zimmermann and 
Nagappan (Zimmermann and Nagappan, 2008) has 
shown that it is possible to predict software defects 
using graph theory metrics to reveal some extra-
deterministic information of the software that are 
otherwise hidden from software maintainers, such as 
fault prone software components.  

However, the ways to represent software-based 
complex networks are generally not standardized 
across multiple studies due to the fact that different 
studies might be addressing some specific issues at 

different levels of granularity, i.e. package level 
(Hyland-Wood et al., 2006), class level (Chong and 
Lee 2015, Chong and Lee, 2017), or code level 
(Myers, 2003). While most of the existing studies 
focus on utilizing source code as the main source of 
information to form a software-based complex 
network, there is a lack of studies that attempt to 
harness the data and metadata that are available on 
source code management systems (SCMS).   

Software engineering and big data researchers 
have been drawn into using SCMS such as GitHub 
due to its integrated social features and the metadata 
that can be accessed through its API (Kalliamvakou 
et al., 2015). Much research including qualitative 
and quantitative studies have been conducted on 
GitHub. In qualitative studies, the research focus on 
analyzing software developers’ behavior, in an 
attempt to identify the traits and characteristics of 
software developers in successful software 
development (Begel et al., 2013). On the other hand, 
quantitative studies focus on using commit change 
data to understand the evolution of a software, and 
to construct software bug predictors to facilitate its 
maintenance in the GitHub environment (Gousios et 
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al., 2014). Due to the vast amount of data available 
for projects hosted on GitHub, it is easy to retrieve 
commit change related information of a particular 
software. Various studies have found the frequency 
of software change, especially pre or post-release, is 
positively correlated to its fault proneness 
(Nagappan et al., 2010). Hence, by studying the 
commit change requests in GitHub, researchers are 
able to discover and study recurring patterns of fault 
prone software components.  

However, based on our knowledge through 
literature review, there is no study that attempts to 
fully exploit the commit change data mined from 
SCMS by creating a commit change-based complex 
network to reveal the co-change behavior of 
software components from a graph theory point-of-
view. We argue that a complex network modelled 
based on the commit change data of software 
systems can aid in the identification of bug prone 
components by applying relevant graph theory 
metrics. Graph theory metrics such as degree 
centrality, closeness centrality, and clustering 
coefficient had been proven to be correlated to the 
quality of software systems (Chong and Lee, 2015). 
Hence, applying this set of well-established graph 
theory metrics on the proposed commit change-
based complex network can reveal bug or fault 
prone classes and other interdependent classes that 
are strongly related to the faulty class, i.e. when 
ClassA is changed, there is a high probability that 
ClassB will need to be changed as well.  

This research proposes a way to utilize historical 
software change and evolution data as an input to 
model a commit change-based weighted complex 
network. Through the application of well-
established graph theory metrics, potential fault 
prone classes are identified. We use the well-known 
change burst metrics proposed by (Nagappan et al., 
2010) as a benchmark to evaluate the accuracy of 
our proposed approach on three open source projects 
hosted on GitHub, namely fastjson, bitcoinj, and 
kairosdb. Experiments show that the proposed 
approach managed to achieve an average precision 
of 0.77 and a recall of 0.8 when using change burst 
metric as a benchmark.  This paper is organized as 
follows: Section 2 discusses the background and 
related works in utilizing complex network analysis 
to study the structure of software, as well as works 
on change coupling metrics to identify potential 
fault prone software components. Section 3 presents 
the proposed approach to model a commit change-
based weighted complex network. Section 4 presents 
the experimental design, along with the execution of 
the experiment. Section 5 gives an overall 

discussion based on the results obtained in the 
previous section, followed by concluding remarks 
and potential future work. 

2 RELATED WORKS 

There are several features in graph theory that can 
be used to analyze the structure and behavior of 
software systems. Recent studies of representing 
objected-oriented software systems as complex 
networks revealed that many of them share some 
global and fundamental topological properties such 
as scale free and small world (Potanin et al. 2005; 
Concas et al., 2007; Louridas et al., 2008; Pang and 
Maslov, 2013; Baxter et al., 2006). The scale free 
characteristic in software systems can be interpreted 
as the level of reuse of important classes, or the 
number of dependencies between classes, while 
software-based networks that exhibit small world 
property signify that the cohesion strength among 
software components are strong from a graph 
theory’s point of view. Thus, complex networks and 
graph theory analysis are excellent in evaluating the 
impact of a particular class with respect to the whole 
system.  

Before applying graph theory metrics onto a 
software system to be analyzed, one must construct 
its complex network in advance. An object-oriented 
software is typically composed of multiple classes. 
At the source code level, classes in object-oriented 
software may contain data structures, objects, 
methods, and variables. Two classes can be 
considered related if there are actions such as 
passing of messages. Due to multiple ways of 
representing nodes and edges, there is a need to 
perform an in-depth review on existing works that 
model software systems using complex networks. 

2.1 Modelling Software-based Complex 
Network 

The work by Myers (Myers, 2003) proposed a 
method to model software systems using complex 
network by analyzing the interdependencies of 
source code. A software collaboration graph based 
on the calling of methods by one another is used to 
analyze the structure and complexity of software 
systems. The work by Myers is later extended in the 
work by LaBelle et al. (LaBelle and Wallingford, 
2004) and Hyland et al. (Hyland-Wood et al., 2006) 
to include the usage of classes and packages.  

On the other hand, the work by Oyetoyan et al. 
(Oyetoyan et al., 2015) proposed an approach to 
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investigate the relationship between cyclic 
dependencies and software maintainability. Cyclic 
dependency graphs are used in this work, where 
classes are represented as nodes and relationships 
between classes are represented as edges. The 
authors examined the change frequency of software 
components in multiple releases, and identified if 
the classes involved in circular dependencies are 
more prone to changes. Based on their finding, the 
authors discovered that circular dependencies are 
positively correlated to change frequency, and it will 
adversely affect the maintainability of software 
systems. 

The work by Valverde and Solé (Valverde and 
Solé, 2003) discussed the usage of two graphs, 
namely Class Graph and Class-Method Graph, to 
analyze the global structure of software systems. 
Class Graph is derived based on UML class 
diagrams, where classes are represented as nodes, 
while relationships among classes, such as 
dependency and association, are depicted as edges 
between nodes. Class-Method Graph is modeled 
based on source code using the similar concept. For 
both types of graphs, the complexity of nodes and 
edges is ignored mainly because the authors 
assumed that internal complexities do not change the 
global structure of a software. 

Based on the these studies, it is obvious that 
there are various ways to represent software-based 
complex network mainly because different studies 
are addressing different issues at varying levels of 
granularity. Since the focus of this paper is to 
identify bug or fault prone software components, 
information related to the evolution of software 
components such as change history can be useful to 
model a software-based complex network. It is 
widely acknowledged that software components 
constantly undergoing changes are more likely to be 
fault prone due to their unstable structure. Hence, by 
studying the commit change in SCMSs such as 
GitHub, one can attempt to discover and learn 
recurring patterns of bug or fault prone software 
components. 

2.2 Change Metric to Identify Bug or 
Fault Prone Software Components 

Studies have found that apart from using popular 
source code metrics in software bug prediction, 
change metrics are equally good, if not better, in 
identifying bug or fault prone software components 
when compared to code metrics (Muthukumaran et 
al. 2015, Nagappan et al. 2010, Hassan 2009). 
Change coupling, which is one of the most widely 

used change metrics, was defined in (Wiese et al., 
2015) as the situation associated with recurrent co-
changes of software components found in the 
software evolution or change history. In other 
words, change coupling between any two classes is 
measured by observing their co-change or co-evolve 
patterns over a period of development history 
(Ambros et al., 2009; Ajienka and Capiluppi). 
According to the work by Zimmermann., et al 
(Zimmermann et al., 2004), the authors treat change 
coupling as association rules. The association rule 
defines that if given a situation where when class A 
is changed, class B is also changed in response to 
that action, that will result in the association rule of ܣ	 ⟹   .ܤ

Various research studies were conducted to 
analyze the relationships between all the software 
components, evolution patterns, and relevant 
information mined from SCMSs such as GitHub and 
Subversion (Kagdi et al. 2013, Yang et al. 2017) in 
order to capture the co-changing behavior. 
Experimental results had shown that by studying co-
change patterns among software components, 
developers can actually identify hidden 
dependencies that are not revealed by traditional 
static code metrics and it can be used to form the 
basis of bug prediction model (Zimmermann et al. 
2004, Xia et al. 2016, Huang et al. 2017).  

Meanwhile, Nagappan et al (Nagappan et al., 
2010) proposed a new code change metric, called 
the change burst metric, which is capable of 
accurately predicting fault prone software 
components in software projects with high 
frequency of changes. The authors define change 
burst as a sequence of consecutive changes in a 
fixed interval of time, i.e. pre-release or post-release 
of a major software version. If the amount of change 
burst is relatively high on a piece of code, it could 
indicate that the code is not tested or designed 
properly, causing developers to issue emergency 
post-release patch to fix the issue. With precision 
and recall exceeding 90% when tested on Windows 
Vista, the authors have shown that code change 
metrics can outperform conventional source code 
metrics for predicting defects in large-scale 
commercial software. 

Based on the these studies, it is clear that 
utilizing data mined from software repositories can 
be a promising way to study the inherent complexity 
and co-change behavior of software systems. In this 
paper, an approach to model a commit change-based 
weighted complex network is proposed. The 
proposed commit change-based network is capable 
of revealing extra-deterministic information about 
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the fault proneness of software components with the 
aid of graph theory metrics such as degree centrality 
and betweeness centrality. After applying relevant 
graph metrics, one can identify the important nodes 
in the network, or in this context, classes that change 
frequently (due to the fact that the network is 
modelled based on commit change data of software 
components) throughout a fixed period of software 
development lifecycle. The information derived 
from graph theory analysis can be used to 
supplement the raw commit change data mined from 
SCMS to aid in identifying bug-prone software 
components. The contribution of this paper can be 
summarized as follows: 

1. A novel way to model a commit change-
based weighted complex network 

2. A way to identify classes that change 
frequently (direct and indirect neighbouring 
classes included) in order to reveal potential 
bug prone classes, based on the modelled 
commit change-based weighted complex 
network. 

3. Evaluation of the proposed approach using 
three open-source projects archived in 
GitHub repositories.   

3 PROPOSED APPROACH 

A complex network,	ܩ ൌ ሺܸ,  ሻ, is made up of a setܧ
of nodes V, and a set of edges ܧ ⊆ ܸ ൈ ܸ that 
connect pairs of nodes. In general, a complex 
network can either directed or undirected. In both 
directed and undirected networks, edges may be 
associated with weights to denote the similarity of a 
pair of nodes connected by an edge or the cost of 
traveling through that particular edge. In a directed 
network ܩ ൌ ሺܸ, ,ሻ, ሺ݅ܧ ݆ሻ ∈  signifies that there is ܧ
an edge in ܧ that is linking node ݅ to node ݆ where ݅ 
is the origin and ݆	is the terminus. On the other hand, 
in an undirected network	ܩ௨ ൌ ሺܸ, ,ሻ, if ሺ݅ܧ ݆ሻ ∈  ,ܧ
then edge ሺ݆, ݅ሻ ∈  as well because the origin and ܧ
terminus are not specified in an undirected network.  

Both directed and undirected networks can be 
represented by their own adjacency matrix A. The 
matrix A is a |ܸ| ൈ |ܸ| matrix where the rows and 
columns represent the nodes of the network. In an 
undirected network, the entry	ܣ௜௝ ൌ 1, if	ሺ݅, ݆ሻ ,݅	∀	;ܧ∋ ݆	 ∈ 1,⋯ , |ܸ|. Value 0 indicates that there is 
no relationship in between nodes	݅ and ݆. Meanwhile 
for a directed network, the value ܣ௜௝ represents the 
weight associated with edge	ሺ݅, ݆ሻ. The value of 
adjacency matrix A is symmetric for an undirected 

network such that	ܣ௜௝ ൌ  ,௝௜. In a directed networkܣ	
however, the relation ܣ௜௝ is asymmetrical.  

In OO software systems, objects and classes are 
normally related through different kinds of binary 
relationships, such as inheritance, composition and 
dependency. Thus, the notion of associating graph 
theory to represent large OO software systems and 
to analyze their properties, be it structural 
complexity or maintainability, is feasible.  

In this paper, an approach to model a commit 
change-based weighted complex network is 
proposed. Table 1 illustrates an example where there 
exist four commit changes over a period of time. For 
each commit, all the affected classes (including add 
a new line of codes, modify existing code, or 
removal of code) are listed in the table. For example, 
in Commit #1120, three classes, namely A.java, 
B.java, and G.java were affected. Based on the 
information provided in Table 1, a way to model the 
associated weighted complex network is proposed. 
Figure 1 illustrates an example of the proposed 
approach to create a commit change-based weighted 
complex network. 

Table 1: Example of four commit changes and classes 
affected by each commit change. 

 Commit  
#1120 

Commit 
#1121 

Commit 
#1122 

Commit 
#1123 

Affected 
Classes 

A.java 
B.java 
G.java 

A.java 
G.java 
F.java 

A.java 
F.java 
H.java 

C.java 
F.java 

 

Figure 1: Example of commit change-based weighted 
complex network. 

The proposed approach takes into consideration 
any kind of changes, including adding one or many 
lines of code, modifying one or many lines of code, 
and removing one or many lines of code. Based on 
the commit change information shown in Table 1, a 
weighted complex network that resembles the 
interaction of commit changes among all classes is 
created. Classes that are affected by the same 
commit change are linked together with edges, while 
the frequency of co-changes is used as a basis to 
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calculate the weights of edges. For example, 
Commit #1120 affects three classes, namely A.java, 
B.java, and G.java. Hence, edges are created to 
connect all these three classes affected by the same 
commit change #1120. As for the frequency of co-
changes, Class A.java and G.java were both affected 
in Commit #1120 and Commit #1121. Hence, a 
value of 2 is assigned to the edge connecting node A 
and G.  

Once the target software is modelled into its 
respective weighted complex network, we can then 
analyze it using graph theory metrics that are 
correlated to fault proneness of software systems. 
Before choosing the appropriate metrics, we need to 
define the characteristics of complex network that 
are capable of revealing fault proneness of software 
components. 

3.1 Community Structure of Commit 
Change-based Network 

The work by Malliaros and Vazirgiannis (2013) 
discussed that real-world networks (networks not 
modelled from random data) have special structural 
patterns and properties that distinguish themselves 
from random networks. One of the most distinctive 
features in a real-world network is the community 
structure, such that the topology of the network is 
organized in several modular groups, commonly 
known as communities or clusters. However, in 
large-scale real-world networks (such as social 
network, power grid network, and World Wide 
Web), the community structure is usually hidden 
from users, largely due to their inherit complexity. 
Thus, discovering the underlying community 
structure of a real-world network, or commonly 
referred as community detection, is crucial toward 
the understanding of the analyzed network.  

In this paper, community structure of commit 
change-based network can be used to represent and 
identify classes that tend to co-change together from 
a graph theory point-of-view. As mentioned earlier, 
the work by Ambros, et.al., (Ambros et al. 2009) 
found that change coupling for a collection of 
classes, or in other words, the tendency for those 
classes to co-change together, is positively 
correlated to fault proneness. In this paper, several 
community detection techniques that are commonly 
used in the field of brain network research will be 
adopted to discover the community structure of 
commit change-based weighted complex network. 
The findings will be used to identify classes that 
exhibit high change coupling behavior.  
 

3.1.1 Identifying Network Hubs 

Figure 2 shows a snippet of commit change-based 
weighted complex network constructed using the 
proposed method on an open-source software 
written in Java, called the Gson. The commit change 
data were extracted from 1st January 2014 until 1st 
January 2015. The complex network is modelled 
using an open-source network visualization tool, 
called Cytoscape. 

 

Figure 2: Snippet of Gson project represented in weighted 
complex network using the proposed method. 

Gson is a relatively small project and there were 
only 109 commit changes during the examined one-
year period. Therefore, we can easily identify the 
community structure of the network through visual 
inspection. For example, the node marked with the 
dotted circle possesses high degree centrality 
(Gson.java) because a lot of other nodes are 
converging toward this particular node. In the field 
of graph theory, the presence of node with high 
degree centrality is usually referred as a hub. The 
work by Ravasz and Barabasi (2003) showed that a 
hub plays a very important role in complex network 
because it is responsible for bridging multiple small 
groups of clusters into a single, unified network. 

From the software change and evolution point-
of-view, hubs with high degree centrality are classes 
that often co-change with other classes. This 
behavior can be caused by the hub class providing 
methods to be used by other classes, or in scenarios 
where the hub classes are passing parameters to be 
used by other classes. Hence, making changes to the 
hub class will have cascading effect on other related 
classes as well. The work by Turnu et al. (2012) also 
demonstrated that there is a very high correlation 
between the degree distribution of software-based 
complex network and the system’s bug proneness. 
Hence, we argue that identifying community 
structure, or in other words, formation of hubs, is 
important to reveal bug or fault prone software 
components of the analyzed software. However, 
since the complex network modelled in this paper is 
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based on commit change data, identifying hub 
classes alone will not be sufficient enough to 
analyze the co-change pattern of all the classes exist 
in a software.     

3.1.2 Identifying Classes That Form Clique 
with Hubs 

Clustering coefficient of a node is the average 
tendency of pairs of neighbors of a node that are 
also neighbors of each other. If all the inspected 
nodes are adjacent to each other, where there exists 
an edge that connects each pair of the neighbors, it is 
considered a complete clique (Watts and Strogatz 
1998). Nodes inside a complete clique are 
considered to be tightly coupled to each other, and 
in the context of this paper, high change coupling.  

Therefore, by combining the concept of hubs 
and clustering coefficient, one can identify the 
neighboring classes that are closely related to the 
hubs. Neighboring classes that form a complete 
clique with a hub can be interpreted as classes that 
frequently co-change together with the hub classes 
(Malliaros and Vazirgiannis 2013).  

One way to identify hubs is by observing the 
nodes which possess high degree at the tail of the 
degree distribution in log-log scale (Ravasz and 
Barabasi 2003). Figure 3 shows an example of the in-
degree distribution of a project in log-log scale. Based 
on the figure, most of the nodes possess in-degree of 
1, and the extreme values are roughly 60 times higher 
than the average in-degree. The tail of the degree 
distribution, as depicted by the red circle in Figure 3, 
shows that there are several nodes with exceptionally 
high in-degree. These nodes are usually considered as 
the hubs, as discussed by Ravasz et al.  

 

Figure 3: Identify hubs by observing the degree 
distribution of in-degree. 

However, it is possible that the identified nodes 
(classes) with high in-degree might actually be god 
classes or utility classes.  Therefore, it is important 
to differentiate between hubs and god classes. 
Several studies have discovered that nodes that 
behave like god classes share several characteristics, 

especially when observed from the graph theory’s 
point of view (Turnu et al. 2013, Turnu et al. 2012, 
Concas et al. 2007). For instance, according to 
Turnu et al. (2013), god classes tend to possess high 
in-degree and out-degree. Therefore, in this study, 
when a node is found to possess exceptionally high 
in-degree and out-degree when compared to other 
classes, it is flagged as god classes instead of hubs. 

However, do note that the proposed approach to 
model nodes and edges is based on the classes that 
are affected by one or many commit changes. If 
there are 5 classes affected in a commit change, 
edges will be established between all 5 nodes that 
correspond to the associated classes (i.e. every node 
is connected to all the other nodes). In that case, for 
every commit change that involved more than 2 
nodes, a clique will be created. 

In order to prevent false positive results when 
identifying classes that form clique with hub classes, 
the following technique is adopted. Given a 
collection of classes ܥଵ, ,ଶܥ  ௡, if these classesܥ…
only co-change together once (or very rarely), then 
we can assume that the co-change behavior is only a 
one-off operation in a certain period of software 
development lifecycle. Hence, using the proposed 
approach to model the commit change-based 
weighted complex network, the weight of the edges ܧଵ, ,ଶܧ  ௡ିଵ that connect between all theܧ…
associated classes (nodes) ଵܸ, ଶܸ, … ௡ܸ representing 
these classes will be very low to reflect this sporadic 
behavior. Therefore, in this paper, we only take into 
consideration classes that co-change together more 
than 3 times in order to capture significant co-
change behavior. As a result, the modelled commit 
change-based weighted complex network will only 
consist of edges with weightage value of 3 or above. 
There is a strong reason why a value of 3 is chosen.  

As mentioned earlier, using a value of 1 
(consider classes that co-change for a minimum one 
time) will end up with creating a network with 
complete clique, i.e. all classes (nodes) are linked to 
each other. Figure 4a shows an example of network 
formed when the value is set at 1 using kairosdb, an 
open-source project available on GitHub. The 
constructed network in Figure 4a is too densely 
connected where almost all classes formed complete 
clique with each other because the threshold for 
minimum co-change was set at 1.  

Using a value of 2, on the other hand, still do not 
eliminate false positive results by a huge margin 
(Figure 4b). In our preliminary experiment, plenty of 
complete clique among all classes still exist with a 
value of 2 (consider classes that co-change for a 
minimum 2 times). It is only when the value is 
change is 3 (consider classes that co-change for a 
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minimum 3 times), a lot of false positive results are 
eliminated.  

Any value larger than 3 is not suitable because 
there is only a handful of classes that co-change 
more than 3 times. 

Besides that, we are using graph theory metrics 
that consider weights of edges to help mitigate the 
issue. For instance, maximum weighted clique is 
used to identify classes that form a clique with hub 
classes with the largest weight. This will ensure that 
only significant co-change patterns are captured and 
analyzed.  

4 EXPERIMENT SETUP 

In order to facilitate reproducibility and follow up 
research, the tool that we used to extract relevant 
commit change information from GitHub repository 
is made available to the public (Chong 2017). The 
shell script provides users a way to extract co-
change behaviour from any GitHub repository and 
return the query in a csv format which contains three 
columns, which are “weight”, “source”, and “target” 
respectively. Users can specify the target repository 
by changing the "repository name" variable. The 
code also provides a way to specify the range of 
dates for inspection by modifying the "SINCE" and 
"UNTIL" variable. The output can be easily 
exported to Cytoscape for further analysis.  

Four open-source software systems written in  
 

Java are chosen in this study. The sizes of the 
software systems vary from 394 to 2422 classes to 
reflect some representative distribution on the 
population of open-source OO software systems. 
Table 2 shows additional information about the 
chosen projects. 

Table 2: Summary of chosen projects. 

Name 
# 

classes 
Inspection 

Period 

Number 
of 

Commit 
Changes 

Nodes/
Edges 

fastjson 2422 
1st Jan 2016 – 
1st Jan 2017 

1510 129/488 

dubbo 1212 
1st Jan 2013 – 
1st Jan 2016 

50 0/0 

bitcoinj 415 
1st Jan 2016 – 
1st Jan 2017 

269 94/568 

kairosdb 394 
1st Jan 2016 – 
1st Jan 2017 

181 52/279 

The inspection period in the third column refers to 
the duration where we captured the commit change 
data from the selected project. For fastjson, bitcoinj, 
and kairosdb, the inspection period was set to be 1 
year, from 1st January 2016 to 1st January 2017. A 
total of 1510, 269, and 181 commit changes were 
identified during the 1-year period for fastjson, 
bitcoinj, and kairosdb respectively. On the other hand, 
due to the fact that the dubbo is a relatively stable 
project with less active developers, the inspection 
period was stretched to 3 years instead, from 1st 
January 2013 to 1st January 2016. For the said 3-year 
period, a total of 50 commits were identified. 

 
Figure 4: Formation of network by varying the minimum co-change threshold on kairosdb project. a) 1 time, b) 2 times, c) 3 
times. 
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The last column refers to the total number of 
nodes and edges formed in the commit change-based 
weighted complex network using the proposed 
approach. It was observed that for the dubbo project, 
all the 50-commit changes (under inspection) were 
unique, i.e. there were no classes that co-change 
together more than once. There was however one 
exception, where classes JavaBeanSerializeUtilTest. 
java and JavaBeanSerializeUtil.java did co-change 
twice during the 3-year inspection period.  

Based on the dubbo project release notes, it was 
further revealed that the project did not release any 
major updated version from 2013 to 2016. There 
were only small incremental updates to fix minor 
compatibility issues. As a result, the commit change-
based weighted complex network to represent the 
dubbo project only contains edges with weighted 
value of 1, which is similar to an unweighted 
network. Ultimately, it prevents us from identifying 
significant community structure through analyzing 
the weighted degree centrality of each node in the 
network. Hence, we decided to discard the dubbo 
project from the experiment. This unexpected 
behavior had eventually revealed one of the 
limitations of the proposed approach, such that it is 
less suitable to be applied on structural stable 
software, or software that undergoes a small amount 
of changes or updates over a period of development 
history.  

4.1 Identification of Faulty Prone 
Software Components 

Next, based on the commit change-based weighted 
complex network, graph theory metrics discussed in 
Section 3.1.1 and 3.1.2 were applied to analyze the 
chosen software, using several Cytoscape plugins 
including Nemo (Orrú et al., 2015) (calculate 
clustering coefficient and identify formation of 
hubs), CytoNCA (Tang et al., 2015) (calculate 
weighted degree centrality), and MClique (calculate 
maximum weighted clique). Tables 3 shows the list 
of hubs identified using CytoNCA plugin. 

The second column of Table 3 records the 
weighted degree centrality values of all the 
identified hubs. It can be observed that although 
fastjson is relatively larger (from the perspective of 
number of classes) when compared to bitcoinj, the 
weighted degree centrality values of the identified 
hubs are almost comparable.  Further investigation 
revealed that 24 new releases were published for 
fastjson during the 1-year inspection period, while 
only 6 new releases were published for bitcoinj. This 
observation is mainly attributed by the fact that on  
 

Table 3: Summary of identified hubs. 

Identified Hubs 
Weighted Degree 

Centrality 

fastjson 

ASMSerializerFactory.java 219 

JavaBeanSerializer.java 191 

JavaBeanDeserializer.java 185 

ParserConfig.java 168 

JSONSerializer.java 153 

FieldSerializer.java 147 

ASMDeserializerFactory.java 145 

bitcoinj 

WalletTest.java 191 

TransactionBroadcastTest.java 133 

PaymentChannelClientState.java 122 

WalletProtobufSerializerTest.java 114 

BitcoinUIModel.java 114 

Wallet.java 110 

PeerGroup.java 108 

kairosdb 

CassandraDatastore.java 49 

AggregatorName.java 49 

CassandraDatastoreTest.java 49 

DatastoreTestHelper.java 43 

average, more classes were affected by each commit 
change request in the bitcoinj project. 23 out of the 
24 identified releases published by fastjson during 
the inspection period were either bug fixes, 
compatibility updates, or optimization updates. Only 
one of the releases introduced new functionalities. 

On the other hand, the bitcoinj project is still on 
its beta version. Hence, each commit change in the 
bitcoinj project affected a relatively larger number of 
classes because new functionalities are introduced to 
the system in an incremental manner.  

Next, we use the MClique plugin to identify the 
maximum weighted clique in all the three studied 
networks. Table 4 shows the results of the analysis. 
Based on Table 4, it can be observed that some of 
the hubs identified in Table 3 are also part of the 
largest weighted clique. For instance, in fastjson 
project, classes FieldDeserializer.java, ASMSeriali 
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zerFactory.java, ParserConfig.java, and JavaBean 
Deserializer.java which were identified as hubs, also 
formed clique among themselves. There are two 
factors that contributed toward this observation.  

Firstly, the studies discussed in Section 2 had 
established a positive correlation between the 
frequency of change and fault proneness of software 
components. Due to that fact the proposed commit 
change-based weighted complex network is 
modelled based on commit change frequency, 
classes (nodes) that possess high degree centrality 
are deemed to be classes that change frequently 
throughout a certain period of software development 
cycle. Hence, it is likely that these identified hubs 
are potentially poorly designed such that developers 
are forced to perform periodical software patches to 
fix the issues. Evidently, as pointed out earlier, 23 
out of 24 releases of the fastjson project during the 
inspection period were related to bug fixes.  

Secondly, the reason why the identified hubs 
also formed cliques among themselves is due to the 
co-change tendency of highly coupled classes, which 
in return also points toward poorly designed or low-
quality classes. The work by Chatzigeorgiou and 
Melas (Chatzigeorgiou and Melas 2012) discovered 
that in general, software components follows a 
‘preferential attachment’ where some classes tend to 
interact with the classes that belong to a similar 
community or functional groups. 

The authors claimed that important nodes (high 
weighted degree centrality) in a software-based 
complex network tend to act as attractors for new 
members that join an existing network. Evidently, 
this is shown in the bitcoinj project where the classes 
involved in forming the largest clique were all 
responsible for the payment functionality. Hence, 
this behavior had caused the identified hub classes to 
form clique among themselves.  

4.2 Experiment Results 

In order to evaluate the proposed approach, we 
decided to utilize the change burst metric proposed 

by (Nagappan et al. 2010) as a benchmark to 
compare against our findings. 

In (Nagappan et al. 2010), the authors defined 
the change burst metric as a “sequence of 
consecutive changes” to a file. They argued that if a 
file gets changed frequently over a short period of 
time, the probability of that file being faulty is 
extremely high. The change burst metric contains 
two parameters, namely gap size and burst size. Gap 
size is used to determine the minimum time gap 
between two changes (commits) to a file. If the time 
interval or gap between the change commits is lesser 
than the gap size, they belong to the same “change 
burst” sequence. Burst size on the other hand, 
determines the minimum number of changes 
(commits) in a change burst. If the number of 
commits in a change burst is less than the burst size, 
the change burst will not be considered. Nagappan et 
al. evaluated their proposed approach on Windows 
Vista where they fixed the gap size and burst size to 
the value of 3. Experiments showed that change 
burst metric is an effective way to aid in identifying 
fault prone software components. Hence, we decided 
to use the change burst metric as the benchmark and 
oracle to crosscheck our experiment findings using 
the following steps. 

1. Identify the list of hub classes that form cliques 
among themselves by referring to Table 3 and 
Table 4. 

2. Run change burst metric to identify a list of 
classes that undergoes frequent change burst. 
The list of classes with high change burst value 
are treated as the oracle in our experiment. 

3. Crosscheck the list of identified classes in Step 
1 and Step 2 and calculate the precision and 
recall of the proposed method. 

We have prepared another shell script to 
automate the process of extracting change burst 
behavior from GitHub repository, which is also 
publicly available (Chong 2017). The underlying 
working principle of the script is based on the work 
by Nagappan et.al. 

Table 4: Summary of identified cliques. 

fastjson bitcoinj kairosdb 
FieldDeserializer.java WalletTest.java CassandraDatastore.java 

ASMSerializerFactory.java BitcoinUIModel.java DatastoreTestHelper.java 
ParserConfig.java TransactionBroadcastTest.java KairosDatastore.java 

JavaBeanDeserializer.java PaymentChannelClientState.java DataPointsParser.java 
ASMDeserializerFactory.java PeerGroup.java H2Datastore.java 

TypeUtils.java  CoreModule.java 
  DataPointsParserTest.java 
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Users can specify the target repository and the 
range of inspection date by changing the provided 
variables. Users can also specify the gap size and 
burst size of the inspected project accordingly. The 
output of this script returns a csv file which lists 
down the maximum burst size and number of change 
bursts for each and every file in the project. Table 5 
shows the results of analyzing the change burst 
characteristics of all the three analyzed software.  

Table 5: Change burst metrics of the analyzed software. 

Identified Hubs 
Max 
burst 
size 

Number of 
change 
bursts 

fastjson 
TypeUtils.java 10 7 
SerializeConfig.java 12 6 
JavaBeanDeserializer.java 25 5 
ParserConfig.java 20 4 
ASMDeserializerFactory.java 14 3 
ASMSerializerFactory.java 40 3 
FastJsonHttpMessageConverter.
java 

17 3 

JSONPath.java 12 3 
JSONSerializer.java 13 3 
DefaultJSONParser.java 26 2 
bitcoinj 
WalletTest.java 8 4 
Transaction.java 5 3 
Peer.java 8 2 
Wallet.java 20 2 
AbstractBitcoinNetParams.java 3 1 
PeerGroup.java 4 1 
kairosdb 
CassandraDatastore.java 4 3 
CoreModule.java 3 1 
DataPointsParser.java 4 1 
DataPointsParserTest.java 5 1 
DatastoreTestHelper.java 4 1 
PutCommandTest.java 4 1 
PutMillisecondCommand.java 4 1 

In Table 5, the maximum burst size is the 
maximum number of consecutive changes in all 
qualified change bursts. On the other hand, number 
of change bursts is defined as the number of 
qualified change bursts for the given gap size and 
burst size (set at 3 in this case). As discussed in the 
work by Nagappan et.al., change bursts show risky 
activities which are indicative of the fault-proneness 
of software components. Hence, high amount of 
change bursts and burst size could indicate that these 
classes are particularly risky and fault prone. 

Based on the results retrieved from Table 4 and 
Table 5, the precision and recall is calculated. Table 
6 depicts the precision and recall of the proposed 

approach when compared against the change burst 
metric, where the metric is used as the oracle in our 
experiment.  

Table 6: Precision and recall of the proposed approach. 

Project Precision Recall 
fastjson 0.6 0.677 
bitcoinj 0.5 0.5 
kairosdb 0.714 0.714 

It is shown that the average precision of the 
proposed approach, when applied on the three test 
subjects is 0.61, while the average recall is 0.63. One 
important factor contributed toward this observation 
- we have set a high threshold value for the gap size 
and burst size, i.e. 3. The reference threshold of 3 
was proposed by (Nagappan et al. 2010) when 
experimenting with the Windows Vista operating 
system in order to identify potential fault prone 
software components. It is reasonable to assume that 
the amount of commit change for a very large-scale 
commercial software like the Windows Vista is 
going to be much more frequent and larger in 
volume when compared to open-source software. 
Hence, when we applied the gap size and burst size 
of 3 to the three test subjects, only a small number of 
classes were identified. We attempt to rerun the 
experiment by varying the burst size from 1 to 3, 
while fixing the gap size to 3 in order to provide 
some leniency toward the time interval between 
multiple commits since the chosen test subjects are 
not particularly large scale projects. Table 7 shows 
the experiment results. 

Table 7: Precision and recall for varying the gap size and 
change burst values. 

Gap Size = 3, Burst Size = 1 
Project Precision Recall 
fastjson 0.8 0.6 
bitcoinj 0.84 0.5 
kairosdb 0.8 0.7 
AVERAGE 0.813 0.6 
Gap Size = 3, Burst Size = 2 
Project Precision Recall
fastjson 0.76 0.8 
bitcoinj 0.7 0.76 
kairosdb 0.86 0.84 
AVERAGE 0.77 0.8 
Gap Size = 3, Burst Size = 3 
Project Precision Recall
fastjson 0.6 0.677 
bitcoinj 0.5 0.5 
kairosdb 0.714 0.714 
AVERAGE 0.605 0.63 

 

ICSOFT 2018 - 13th International Conference on Software Technologies

446



 

When the burst size is fixed at 1, the average 
precision improve significantly. However, this 
decision is at the trade-off of relaxing the constraint 
of change burst metric. Using a threshold value of 1 
for burst size is only suitable for inactive project 
which have very little amount of commit changes 
throughout the project lifecycle. Besides that, the 
average recall is low when the gap size and burst 
size is fixed at 1. This is mainly because when the 
threshold for burst size is low, a large amount of 
independent commit changes are treated as a series 
change burst activities when in fact they are just 
regular and routine updates to the projects, i.e. two 
commit changes which are 3 days apart (gap size = 
3) are considered as two change burst activities 
(burst size = 1). 

On the other hand, when the burst size is 2, the 
results yield average precision and recall of 0.77 and 
0.8 respectively for all the 3 chosen projects. We 
argued that the threshold value of 2 is relatively 
more well-suited for our experiment setting since the 
chosen projects are considered small to medium-
sized projects, with moderately active developers. 

5 CONCLUSION AND FUTURE 
WORK 

While a lot of research were conducted in both 
software-based network analysis and software 
change coupling metrics, we found that there is a 
lack of studies that attempted to combine both 
approaches to identify potential fault prone software 
components. In this paper, we have proposed a novel 
way to model commit change-based weighted 
complex network based on historical data mined 
from GitHub. Three open-source were chosen to 
evaluate our proposed approach. In order to identify 
potential fault prone classes, we decided to use three 
well-established graph theory metrics that have been 
proven to correlate with the structural stability of 
software components such as the weighted degree 
centrality and the clustering coefficient. To validate 
the accuracy of our proposed approach, we used the 
change burst metric as the benchmark. When the 
threshold of the gap size and burst size of the change 
burst metrics were set at 3, the proposed approach 
achieved mediocre precision and recall. It is when 
the burst size threshold were relaxed, the precision 
and recall of the proposed approach improved 
significantly. During the experiment, we had 
unintentionally discovered one of the limitations of 
the proposed approach, where it is not suitable to be 

applied on structural stable software, or software 
that rarely undergo changes. We argued that this 
limitation is negligible, since it is counter-intuitive 
to use the proposed approach on high quality and 
well-designed software to identify potential fault 
prone classes.  

As part of the future work, we plan to expand the 
proposed approach by utilizing more graph theory 
metrics such as the eigenvector centrality, 
betweenness centrality, and closeness centrality in 
order to improve the richness of the graph theory 
analysis results. With the aid of more graph metrics, 
we can then experiment the proposed approach on 
larger-scale open-source or commercial software 
systems.  
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