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Abstract: Nowadays graphs have become very popular in domains like social media analytics, healthcare, natural 

sciences, BI, networking, graph-based bibliographic IR, etc. Graph databases (GDB) allow simple and rapid 

retrieval of complex graph structures that are difficult to model in traditional IS based on a relational 

DBMS. GDB are designed to exploit relationships in data, which means they can uncover patterns difficult 

to detect using traditional methods. We introduce a new method for indexing graph patterns within a GDB 

modelled as a labelled property graph. The index is organized in a tree structure and stored in the same 

database where the database graph. The method is analysed and implemented for Neo4j GDB engine. It 

enables to create, use and update indexes that are used to speed-up the process of matching graph patterns. 

The paper provides a comparison between queries with and without using indexes.  

1 INTRODUCTION 

A graph database (GDB) is a database that uses the 

graph structure to store and retrieve data. A GDB 

embraces relationships as a core aspect of its data 

model. The model is built on the idea that even 

though there is value in discrete information about 

entities, there is even more value in the relationships 

between them. Relaxing usual DBMS features, a 

native GDB can be any storage solution where 

connected elements are linked together without 

using an index (a property called index-free 

adjacency). 

Similarly to traditional databases, we will use the 

notion of a graph database management system 

(GDBMS). GDBMSs proved to be very effective 

and suitable for many data handling use cases. For 

example, specifying a graph pattern and a set of 

starting points, it is possible to reach an excellent 

performance for local reads by traversing the graph 

starting from one or several root nodes, and 

collecting and aggregating information from nodes 

and edges. On the other hand, GDBMSs have their 

limitations (Pokorný, 2015).  For example, they are 

usually not consistent, since have very restricted 

tools to ensure a consistency. This property is typical 

for NoSQL databases (Tivari, 2015), where GDBMs 

are often included.  

A GDB can contain one (large) graph G or a 

collection of small to medium size graphs. The 

former includes, e.g., graphs of social networks, 

Semantic Web, geographical databases, the latter is 

especially used in scientific domains such as 

bioinformatics and chemistry or datasets like DBLP. 

Thus, the goal of query processing is, e.g., to find all 

subgraphs of G that are the same or similar to the 

given query graph. We can consider shortest path 

queries, reachability queries, e.g., to find whether a 

concept subsumes another one in an ontological 

database, etc. The query processing over a graph 

collection involves, e.g., finding all graphs in the 

collection that are similar to or contain subgraphs 

similar to a query graph. We focus on the first 

category of GDBs in this paper.  

Graph search occurs in application scenarios, 

like recommender systems, analyzing the hyperlinks 

in WWW, complex object identification, software 

plagiarism detection, or traffic route planning. 

Gartner believes that over 70% of leading companies 

will be piloting a graph database by 2018 

(https://www.gartner.com/doc/3100219/making-big-

data-normal-graph, 2018). 

One of the most fundamental problems in graph 

processing is pattern matching. Specifically, a 

pattern match query searches over a G to look for 

the existence of a pattern graph in G. This problem 

can be expressed in the different graph data models 

as Resource Description Framework, property 
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graphs as well as in the relational model. A property 

subclass of property graphs can even be modelled 

using XML documents. We will focus on general 

property graphs in this paper. Both above mentioned 

GDB types, however, reduce exact query matching 

to the subgraph isomorphism problem, which is NP-

complete (Ullmann, 1976), meaning that this 

querying is intractable for large graphs in the worst-

case. In context of Big Data we talk about Big 

Graphs (Pokorný and Snášel, 2016). Their storage 

and processing require special technics.   

An effective implementation of each DBMS 

highly depends on the existence and usage of 

indexes. Nowadays, some effective indexes for 

nodes and edges already exist in GDB 

implementations (see, e.g., the evaluation (Mpinda, 

et al, 2015) mentioned in Section 2.1), while 

structure-based indexes, which may be very useful 

for subgraph queries and for relationship-based 

integrity constraints checking, are yet rather the 

subject of research as it is described in Section 2. 

Particularly, there already exist indexing methods 

for (various kinds of) graph pattern matching, see, 

e.g., works (Aggarwal and Wang, 2010), (Troup, 

2015) and (Yan, et al. 2004). 

In the paper, we focus on Neo4j GDBMS 

(https://neo4j.com/) and its possibilities to express 

an index of graph patterns. Neo4j is an open-source 

native GDBMS for storing and managing of 

property graphs, that offers functionality similar to 

traditional RDBMSs such as a declarative query 

language Cypher (  http://neo4j.com/developer/ 

cypher-query-language/, 2018), full transaction 

support, availability, and scalability through its 

distributed version (Robinson, et al. 2013). Cypher 

commands use partially SQL syntax and are targeted 

at ad hoc queries over the graph data. They enable 

also to create graph nodes and relationships. Our 

goal is to extend the Cypher with new functionality 

supporting more efficient processing graph pattern 

queries. 

The rest of the paper is organized as follows. In 

Section 2 we summarize some related works divided 

into two categories of graph indexing methods: 

value-based indexing and structure-based indexing. 

Section 3 introduces a graph database model based 

on (labelled) property graphs. We continue with 

graph pattern indexing and the details of the new 

method based on so called graph pattern trees of 

variations. Implementation and related experiments 

are described and discussed in Section 4. Section 5 

gives the conclusion. 

2 BACKGROUND AND RELATED 

WORKS 

In general, graph systems use various graph 

analytics algorithms supporting with finding graph 

patterns, e.g., connected components, single-source 

shortest paths, community detection, triangle 

counting, etc. Triangle counting is used heavily in 

social network analysis. It provides a measure of 

clustering in the graph data which is useful for 

finding communities and measuring the 

cohesiveness of local communities in social network 

websites like LinkedIn or Facebook. In Twitter, 

three accounts who follow each other are regarded 

as a triangle.  

One theme in graph querying is graph data 

mining finding frequent patterns. Frequent graph 

patterns are subgraphs that are found from a 

collection of graphs or a single massive graph with a 

frequency no less than a user-specified support 

threshold. Subgraph   matching   operations   are   

heavily   used   in   social network data mining 

operations. 

Indexing is used in graph databases in many 

different contexts. Due to the existence of properties 

values in a GDB, graph indexes are of two kinds, in 

principle: structure-aware and property-aware. 

They occur in GDBMS in various forms from a 

fulltext querying support over indexing nodes, 

edges, and property types/values to indexes based on 

indexing non-trivial subgraphs. 

2.1 Value-based Indexing 

Authors of (Mpinda, et al. 2015) compare indexing 

used in two favourite GDBMSs – Neo4j and 

OrientDB (http://orientdb.com/orientdb/, 2018). The 

Cypher language of Neo4j enables to create indexes 

on one or more properties for all nodes that have a 

given label. OrientDB supports five classes of 

indexing algorithms: SB-Tree, HashIndex, Auto 

Sharding Index, and indexing based on the Lucene 

Engine (for fulltext and spatial data). SB-tree 

(O’Neil, 1992) is based on B-Tree with several 

optimizations related to data insertion and range 

queries. In Auto Sharding Index (key, value) pairs 

are stored in a distributed hash table. 

Another native GDBMS Sparksee (http://www. 

sparsity-technologies.com/, 2018)   uses B+-trees 

and compressed bitmap indexes to store nodes and 

edges with their properties. Titan (http://titan. 

thinkaurelius.com/, 2018) supports two different 

kinds of indexing to speed up query processing: 

graph indexes and node-centric indexes. Graph 
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indexes allow efficient retrieval of nodes or edges by 

their properties for sufficiently selective conditions. 

Node-centric indexes are local index structures built 

individually per node. In large graphs, nodes can 

have thousands of incident edges. 

2.2 Structure-based Indexing 

The design principle behind a structural index is to 

extract and index structural properties of database 

graphs, typically at insertion time, and use them to 

filter the search space rapidly in response to a query. 

Previous works have mainly focused on mining 

“good” substructure features for indexing. A good 

feature set improves the filtering power by reducing 

the number of candidate graphs, which leads to a 

reduction in the number of subgraph isomorphism 

tests in the verification step. Subtree features are 

also mined for indexing, and they are less time-

consuming to be mined in comparison with more 

general subgraph features. Many methods take a 

path as the basic indexing unit. For example, the 

SPath algorithm (Zhao and Han, 2010) is centred on 

a local path-based indexing technique for graph 

nodes and transforms a query graph into a set of the 

shortest paths in order to process a query.  The work 

(Srinivasa, 2015) distinguishes three types of 

structure-based indexes: path-based index, subgraph-

based index, and spectral methods. 

It is remarkable, that different graph index 

structures have been used for different kinds of 

substructure features, but no index structure is 

enabled to support all kinds of substructure features. 

Authors of (Yuan and Mitra, 2013) propose a 

Lindex, a graph index, which indexes subgraphs 

contained in database graphs. Nodes in Lindex 

represent key-value pairs where the key is a 

subgraph in a GDB and the value is a list of database 

graphs containing the key. Frequent subgraphs are 

used for indexing in gIndex (Yan, et al 2004). An 

introduction to graph substructure search, 

approximate substructure search and their related 

graph indexing techniques, particularly feature-

based graph indexing can be found in (Yan, et al. 

2010). In (Zhu, et al. 2011), the authors introduce a 

structure-aware and attribute-aware index to process 

approximate graph matching in a property graph. 

A detailed discussion of different types of graph 

queries and a different mechanism for indexing and 

querying graph databases can be found in (Sakr and 

Al-Naymat, 2010). 

3 MODELLING OF GRAPH 

DATABASES 

Although GDBMS can be based on various graph 

types, we will use a (labelled) property graph model 

whose basic constructs include: 

 entities (nodes), 

 properties (attributes),  

 labels (types), 

 relationships (edges) having a direction, start 

node, and end node, 

 identifiers. 
 

Entities and relationships can have any number of 

properties, nodes and edges can be tagged with 

labels. Both nodes and edges are defined by a unique 

identifier (Id). Properties are of form key:domain, 

i.e. only single-valued attributes are considered. In 

graph-theoretic notions we also talk about labelled 

and directed attributed multigraphs in this case. It 

means the edges of different types can exist between 

two nodes. These graphs are used both for a GDB 

and its database schema (if any). In practice, this 

definition is not strictly enforced. There are 

GDBMSs supporting more complex property values, 

e.g. the already mentioned Neo4j. 

When retrieving data from a GDB, one may want 

to query not only single nodes or relationships, but 

also more complex units consisting of these basic 

elements. Such units, graph patterns, can contain 

valuable information for many use cases. The fact 

that the graph can easily express such information is 

one of the main benefits of using such data model. 

Thus graph pattern matching is one of the key 

functionalities GDBs usually provide. In Section 3.1 

we discuss shortly graph patters definable in the 

Cypher language and two basic methods for their 

indexing. Section 3.2 focuses on so called graph 

pattern trees of variations appropriate for organizing 

variations of a single graph pattern. Updating the 

index after performing DML operations is described 

in Section 3.3. 

3.1 Graph Patterns 

A wide variety of graph patterns can be found across 

different GDBs. Graph patterns have different 

information value that is based on type of data stored 

within a database and use cases that involve these 

graph patterns. 

One of widely used graph patterns, defined as 

GP = (Vp; Ep), where V = {v1; v2; v3} and E = {(v1; 

v2); (v2; v3); (v3; v1)}, is called a triangle. In Cypher,
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Figure 1: Example of a triangle. 

a triangle can be expressed in a few different ways, 

but preferably, e.g., as 
 

 (n1) - [r1] - (n2) - [r2] - (n3) - [r3] - (n1) 
 

i.e., triangle patterns look for three nodes adjacent to 

each other regardless of edge orientation. That is, a 

direction can be ignored at query time in Cypher, 

i.e., the database graph behind can be handled as 

bidirectional. Figure 1 shows a triangle coming from 

a social graph. To retrieve such pattern using Cypher 

is easy for Neo4j. The problem arises when we focus 

only on structural features of the graph and want, 

e.g., all such triangles of people with their 

friendship. Then a structure-based index can be 

helpful.  

A graph pattern index is basically a data structure 

that stores pointers that reference graph pattern units 

within the database. Indexes can be either stored in 

the same database as the actual data or in any 

external data store. We use here the former variant. 

The latter was used, e.g., in (Ramba, 2016), where 

the embedded database MapDB (http://www. 

mapdb.org/, 2018) was used for this purpose. 

3.2 Graph Pattern Tree of Variations 

An important feature of our approach is that a new 

index must be created for each different graph 

pattern, i.e., index that was created based on a 

specific graph pattern cannot be used when querying 

a different graph pattern. 

Due to labelling nodes and edges of GDB, 

patterns of the same structure can occur in different 

variations (see, Figure 2). All variations of a single 

graph pattern can be organized into a tree-like 

structure, called graph pattern tree of variations. 

Part of such tree for a triangle is shown in Figure 2. 

Nodes represent individual graph pattern variations. 

A root node of the tree is reserved for the basic 

graph pattern variation with no additional 

information about nodes and relationships. Children 

of each node represent variations that provide some 

additional information compared to its parent nodes 

(i.e. when traversing deeper in the tree, more 

information about graph pattern is specified). Leaves 

of such tree represent specific graph pattern units 

with IDs of nodes and relationships declared) within 

the database.  

Graph pattern can be represented by a set of its 

variations. When querying a graph pattern, one 

actually queries a specific variation of such graph 

pattern. Thus, it must be said explicitly which one is 

queried. 

3.3 Updating Graph Pattern Index 

A graph pattern index maps all graph pattern units 

that are matched by a graph pattern the index was 

created for. Such graph pattern units exist within the 

database and so can be manipulated via DML 

operations. Thus, they can be updated in such way 

they no longer match the graph pattern. Also, when 

adding new data to the database, new graph pattern 

units can emerge. For that reason, each graph pattern 

index must always map its graph pattern units that 

currently exist within the database. That means each 

index must be updated each time a DML operation is 

applied on the database. Otherwise, indexes would 

not provide reliable information when queried. 

The intended DML includes operations like creating 

a node, creating a relationship, deleting a node, 

deleting a relationship, updating a node, and 

updating a relationship. Except the first one, all 

these operations affect the index, i.e. the index must 

be updated. It is done so within the same transaction 

that executed a DML operation. If a transaction is 

successfully committed, indexes will be updated. If a 

transaction is rollbacked, indexes will remain in the 

same state as before the transaction was initialized. 
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Figure 2: Tree-like structure with graph pattern variations. 

4 IMPLEMENTATION AND 

EXPERIMENTS 

The method for indexing graph patterns, including 

operations to create an index, query using an index 

and update an index, is implemented for the Neo4j 

graph database engine. The major benefit of Neo4j is  

its intuitive way of modelling and querying graph-

shaped data. Internally, it stores edges as double 

linked lists. Properties are stored separately, 

referencing the nodes with corresponding properties. 

Our index implementation is done in the same GDB 

as basic graph data. We introduced an additional 

graph representing all indexes in the database. This 

graph has a root providing approach to all indexes. 

Implementation of an index consists of a two-level 

tree. The first level has one node representing the 

index and containing appropriate metadata. This top-

level index node is related to common root 

mentioned above. The second level of index 

representation consists of a set of graph pattern 

units. Each unit represents one pattern (triangle in 

our case). There are direct relationships to 

appropriate nodes in the database from each pattern 

unit. 

Figure 3 describes an implementation of triangle 

shape index. The first and the second layer is index 

implementation, the third layer represents data in 

GDB. Labels PDT denote 

PATTERN_INDEX_RELATION. 

4.1 Graph Datasets 

Experiments were done on three different graph 

datasets: Social graph with a triangle index, Music 

database with a funnel index, and Transaction 

database with a rhombus index.  

Social graph is a database that contains information 

about people and friendships between them. People, 

represented by nodes, have names and are 

distinguished to males and females by appropriate 

labels. Friendships between them are represented by 

relationships of Is_friend-of type. Such 

database of changeable size is generated by Erdős– 

Rényi model for generating random graphs (see, 

e.g., (Goldenberg, et al. 2009)). The generator is a 

part of used GraphAware framework 

(https://github.com/graphaware/neo4j-framework, 

2018). Triangle index is built for a triangle graph 

pattern expressed in Cypher in Section 3.1.  

Music database stores data about artists, detailed 

information about the tracks they recorded and 

labels that released these records. The database has a 

fixed size of 12 000 nodes and 50 000 relationships. 

It is one of the example datasets that Neo4j provides 

on its website (http://neo4j.com/developer/example-

data/, 2018). The database contains 86 funnel 

patterns. Funnel index pattern (Figure 4) we used for 

this database has the following Cypher expression:  

(n1)−[r1]−(n2)−[r2]−(n3)−[r3]−(n1)−[r4]−(n4) 

Transaction database stores data about transactions 

between bank accounts in a simplified way. Bank 

accounts, represented by nodes, are identified by 

account numbers. Transactions between bank 

accounts are represented by relationships. They have 

no properties on them since it is not crucial for the 

measurements. If used in a real database, they would 

probably hold some specific characteristics about 

them, e.g., a date of transaction execution or the 

amount of transferred money within a transaction.  

Such database of changeable size was generated 

by a Cypher script that was created especially for 

this purpose. Such simple script creates bank 

accounts at first and then generates a transaction 
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Figure 3: Implementation of triangle shape index. 

relationship for each pair of these accounts with a 

given probability. The database we generated has 10 

000 of nodes and 100 000 of relationships, it 

contains 70 rhombus patterns which were indexed. 

Rhombus index (Figure 5) is used for this database. 

It is formulated by the following Cypher expression 

 

(n1)−[r1]−(n2)−[r2]−(n3)−[r3]−(n1)−[r4]−(n4)−[r5]−(n2) 

 

All results are achieved by measuring within a 

test environment provided by GraphAware 

framework. The following configuration is used 

when performing measurements: 2.5GHz dual-core 

Intel Core i5, 8GB 1600MHz memory DDR3, Intel 

Iris 1024 MB, 256 GB SSD, OS X 10.9.4. 

To achieve the most accurate results, 

measurements are always performed multiple times 

and their results are averaged. Measuring is done for  

all cache types provided by Neo4j, i.e., no-cache 

(Neo4j instance with no caching), low-level cache, 

and high-level cache.  

4.2 Measurement on Social Graph 
Database with Triangle Index 

The size of the database scales from 50 nodes and 

100 relationships to 100 000 nodes and 500 000 

relationships. A matching triangle graph pattern 

using a simple query (i.e. without a graph structure 

index) is nearly impossible for larger databases of 

this type. 

There are two metrics used: time and the number 

of database hits (DBHits), i.e., total number of 

single operations within Neo4j storage engine that 

do some work such as retrieving or updating data. 

DBHits metrics for varying size of databases are 

shown on Figure 6. We can see that from the 

database of size 10 000 nodes/50 000 relationships 

index pattern is much more effective than “simple 

query” (i.e. the query without index usage). The 

amount of DBHits for index grows linearly with 

growing the database while it grows exponentially 

for simple query.  

Time metrics are shown on Figure 7. Again, we 

can see an exponential rowth  of  time  for  a   simple 

 

Figure 4: A graph pattern used for Music DB. 

query and a linear growth for index. For the largest  

database of 100 000 nodes and 500 000 

relationships, a query using an index is 

approximately 170 times faster and performs 

approximately 180 times less database operations 

than a simple query. 
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4.3 DML Operations and Queries 
Measurement  

The index must be updated together with DML 

operations on the base data. In our implementation 

update of the index is done in the same transaction 

as DML statement. We did measurements on all 

three databases mentioned in Section 4.1 for the 

following DML operations:  

 creating an index,  

 creating a relationship,  

 deleting a relationship,  

 deleting a node, and 

 deleting a label of a node.  

All these DML operations may affect existing 

indexes.   

All measurements were done again for all cache 

types provided by Neo4j, i.e:  

 without caching,  

 low level cache (i.e. file buffer cache), and 

 high level cache (object cache).  

 

Figure 5: A graph pattern used for Transaction DB. 

The last mode is the most suitable for our purpose 

and, not surprisingly, it provides the best 

performance. See (Troup, 2015) for measurement 

results using another cache modes. 

In the Tables 1-3 we present also a time of given 

operation without index usage to show additional 

costs for index maintenance. In Table 1 we present 

measured values done on a social graph with triangle 

index on the database having 10000 nodes and 

50 000 relationships. Let us note, that there were 183 

graph patterns on 179 nodes.  

Table 1: Social graph, triangle index. 

Operation Simple query [μs] Index [μs] 

create index --- 5 242 762 

query index 6 881 440 403 375 

create relationship 25 973 29 987 

delete relationship 146 820 157 726 

delete node with its 

relationships 

228 399 277 835 

delete node label 17 475 19 380 

Table 2 presents measurements for funnel pattern 

index on the Music database. The database consists 

of 12 000 nodes, 50 000 relationships and contains 

86 funnel patterns 

Table 2: Music database, funnel index. 

Operation Simple query [μs] Index [μs] 

create index --- 5 242 762 

query index 6 881 440 403 375 

create relationship 25 973 29 987 

delete relationship 146 820 157 726 

delete node with its 

relationships 

228 399 277 835 

delete node label 17 475 19 380 

Table 3 presents measurements for rhombus 

pattern index on the Bank database. Database 

consists of 10 000 of nodes, 100 000 of relationships  

and contains 70 rhombus patterns. 

Table 3: Bank database, rhombus index. 

Operation Simple query [μs] Index [μs] 

create index --- 36 238 883 

query index 41 794 378 1 243 503 

create relationship 29 659 64 432 

delete relationship 257 094 283 067 

delete node with its 

relationships 

375 308 459 808 

delete node label 17 485 22 420 

 

Figure 6: Social graph, triangle index – DBHits metrics. 
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Figure 7: Social graph, triangle index – time metrics. 

Let us note several interesting observations coming 

from our measurements: 

 index creation time is not much higher than 

query time without an index for triangle and 

rhombus patterns, it is nearly two times 

higher for funnel index,  

 query using an index is faster than the query 

without  index for all three patterns, it is 17 

times faster for triangle index, 112 times for 

funnel index, and 33 times for rhombus 

index, 

 time to update the index in case of insert/delete 

a node or a relationship is on average 17% of 

time needed for DML operation itself. 

Let us generalize the measurement and state 

several hypotheses about the efficiency of our 

implementation of pattern indexes: 

 It was shown that starting from databases of 

size 10 000 of nodes and 50 000 of 

relationships queries using pattern indexes 

are more efficient than queries without them.  

 Efficiency of pattern index increases with 

growing the database. Time and amount of 

database  operations grow linearly for 

(triangle) pattern (see Figures 6 and 7). 

 Complexity and size of the pattern used for 

index influence characteristics and efficiency 

of an index. We tested triangle, funnel, and 

rhombus patterns – all tested indexes are 

more than 17 times faster for querying, this 

ratio will growth with the size of the 

database.  

 Time for keeping indexes actual seems to be 

under 20% of time necessary for DML 

operation.  

The complete analysis and design decisions can 

be found in the work (Troup, 2015). 

 

 

 

4.4 Index Size 

Index size linearly grows with the number of pattern 

units found in the database and it also linearly grows 

with the number of nodes that the indexed pattern 

consists of. The index size can by asymptotically 

expressed as 
 

Θ(nu  nn) 
 

where nu represents the number of pattern units 

found in the database and nn represents the number 

of nodes that the indexed pattern consists of. The 

exact number of nodes needed for the index is 
 

nnodes = 1 + nu 
 

where a single node represents the root of the index 

and nu nodes represent individual pattern units found 

in the database. The exact number of relationships 

needed for the index is 
 

nrels = nu + nu  nn 
 

where nu relationships connect the root node with all 

nu pattern unit nodes. nn relationships then connect 

individual data nodes belonging to a single pattern 

unit to its representative pattern unit node. 

Table 4: Database and index sizes. 

Database index DB size 

(Mb) 

Index size 

(Mb) 

Pattern 

units 

Social graph, 

triangle index 

19,6 0,15 183 

Music database, 

funnel index 

89,6 0,2 86 

Bank database, 

rhombus index 

17,2 0,1 70 

Table 4 presents index size using 3 different patterns 

and databases. There are 183 pattern units indexed in 

the first database which is more than double what is 

indexed in other two databases. Triangle pattern 
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consists of 3 nodes whereas funnel and rhombus 

patterns consist of 4 nodes. This results in 

approximately the same size (in Mb) of index for all 

of 3 measured databases and patterns. 

5 CONCLUSIONS 

In the paper a new method for indexing graph 

patterns was analyzed, designed and implemented 

for Neo4j GDBMS in order to speed up the process 

of matching graph patterns. The method enables to 

create, use and update multiple indexes, each created 

for a different graph pattern. Index data are 

organized in a tree structure and they are stored 

within the same database as the base data. This 

solution provides really fast approach from the index 

structure to data. On the other hand, it mixes index 

data and base data together in one common storage. 

It may negatively affect the evaluation of queries 

that do not use index patterns. We plan to address 

this issue in following research. It is the part of a 

more general topic how to store metadata and 

separate them from base data in GDBMS.  

It is proved that using indexes which are created 

by the method introduced in this paper is beneficial 

for the process of matching graph patterns. In some 

cases queries using such indexes are extremely faster 

than simple Cypher queries. The paper aims to 

introduce the topic of indexing graph patterns and 

provides one of possible ways how to speed up the 

process of matching graph patterns within a GDB. 
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