Pattern Recognition Algorithm. Proceedings of 2016 
Fourth International Conference on Ubiquitous 
Positioning, Indoor Navigation and Location Based 
Services (IEEE Upinlbs 2016), 223-229. 
doi:10.1109/upinlbs.2016.7809976. 
Luštrek, M., Cvetkovic, B., Mirchevska, V., Kafalı, Ö., 
Romero, A., and Stathis, K. (2015). Recognising 
lifestyle activities of diabetic patients with a 
smartphone. doi:10.4108/icst.pervasivehealth. 
2015.259118. 
Mengistu, Y., Pham, M., Do, H. M., and Sheng, W. (2016). 
AutoHydrate: A Wearable Hydration Monitoring 
System. 2016 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (Iros 2016), 1857-1862. 
doi:10.1109/iros.2016.7759295. 
Neuroph. (2017). Java Neural Network Framework 
Neuroph. Retrieved from http://neuroph.sourceforge. 
net/ 
Ng, A. Y. (2004). Feature selection, L 1 vs. L 2 
regularization, and rotational invariance. Paper 
presented at the Proceedings of the twenty-first 
international conference on Machine learning. 
Ni, D., Leonard, J. D., Guin, A., and Feng, C. (2005). 
Multiple Imputation Scheme for Overcoming the 
Missing Values and Variability Issues in ITS Data. 
Journal of Transportation Engineering, 131(12), 931-
938. doi:10.1061/(asce)0733-947x(2005)131:12(931). 
Nishida, M., Kitaoka, N., and Takeda, K. (2015). Daily 
activity recognition based on acoustic signals and 
acceleration signals estimated with Gaussian process. 
Paper presented at the 2015 Asia-Pacific Signal and 
Information Processing Association Annual Summit 
and Conference (APSIPA). 
Pires, I., Garcia, N., Pombo, N., and Flórez-Revuelta, F. 
(2016). From Data Acquisition to Data Fusion: A 
Comprehensive Review and a Roadmap for the 
Identification of Activities of Daily Living Using 
Mobile Devices. Sensors, 16(2), 184.  
Pires, I. M., Garcia, N. M., and Flórez-Revuelta, F. (2015). 
Multi-sensor data fusion techniques for the 
identification of activities of daily living using mobile 
devices. Paper presented at the Proceedings of the 
ECMLPKDD 2015 Doctoral Consortium, European 
Conference on Machine Learning and Principles and 
Practice of Knowledge Discovery in Databases, Porto, 
Portugal. 
Pires, I. M., Garcia, N. M., Pombo, N., and Flórez-
Revuelta, F. (2016-a). Identification of Activities of 
Daily Living Using Sensors Available in off-the-shelf 
Mobile Devices: Research and Hypothesis. Paper 
presented at the Ambient Intelligence-Software and 
Applications–7th International Symposium on Ambient 
Intelligence (ISAmI 2016). 
Pires, I. M., Garcia, N. M., Pombo, N., and Flórez-
Revuelta, F. (2017 (In Review)-a). A Multiple Source 
Framework for the Identification of Activities of Daily 
Living Based on Mobile Device Data. 
arXiv:1711.00104. 
Pires, I. M., Garcia, N. M., Pombo, N., and Flórez-
Revuelta, F. (2017 (In Review)-b). User Environment 
Detection with Acoustic Sensors Embedded on Mobile 
Devices for the Recognition of Activities of Daily 
Living. arXiv:1711.00124. 
Pires, I. M., Garcia, N. M., Pombo, N., Flórez-Revuelta, F., 
and Rodríguez, N. D. (2016-b). Validation Techniques 
for Sensor Data in Mobile Health Applications. Journal 
of Sensors, 2016.  
Pires, I. M., Garcia, N. M., Pombo, N., Flórez-Revuelta, F., 
and Spinsante, S. (2017 (In Review)-c). Data Fusion on 
Motion and Magnetic Sensors embedded on Mobile 
Devices for the Identification of Activities of Daily 
Living. engrxiv.org/x4r5z. 
Pires, I. M., Garcia, N. M., Pombo, N., Flórez-Revuelta, F., 
and Spinsante, S. (2017 (In Review)-d). Pattern 
Recognition Techniques for the Identification of 
Activities of Daily Living using Mobile Device 
Accelerometer. arXiv:1711.00096. 
Rader, C., and Brenner, N. (1976). A new principle for fast 
Fourier transformation. IEEE Transactions on 
Acoustics, Speech, and Signal Processing, 24(3), 264-
266. doi:10.1109/tassp.1976.1162805. 
Rahman, S. A., Huang, Y., Claassen, J., Heintzman, N., and 
Kleinberg, S. (2015). Combining Fourier and lagged k-
nearest neighbor imputation for biomedical time series 
data.  J Biomed Inform, 58, 198-207. 
doi:10.1016/j.jbi.2015.10.004. 
Research, H. (2017). Encog Machine Learning Framework. 
Retrieved from http://www.heatonresearch.com/encog/ 
Scalvini, S., Baratti, D., Assoni, G., Zanardini, M., Comini, 
L., and Bernocchi, P. (2013). Information and 
communication technology in chronic diseases: a 
patient’s opportunity. Journal of Medicine and the 
Person, 12(3), 91-95. doi:10.1007/s12682-013-0154-1. 
Sert, M., Baykal, B., and Yazici, A. (2006, 0-0 0). A Robust 
and Time-Efficient Fingerprinting Model for Musical 
Audio. Paper presented at the 2006 IEEE International 
Symposium on Consumer Electronics. 
Shoaib, M., Scholten, H., and Havinga, P. J. M. (2013). 
Towards Physical Activity Recognition Using 
Smartphone Sensors. 2013 IEEE 10th International 
Conference on and 10th International Conference on 
Autonomic and Trusted Computing (Uic/Atc) 
Ubiquitous Intelligence and Computing, 80-87. 
doi:10.1109/Uic-Atc.2013.43. 
Vateekul, P., and Sarinnapakorn, K. (2009). Tree-Based 
Approach to Missing Data Imputation. Paper presented 
at the Data Mining Workshops, 2009. ICDMW '09. 
IEEE International Conference on Miami, FL. 
Zou, X., Gonzales, M., and Saeedi, S. (2016). A Context-
aware Recommendation System using smartphone 
sensors. Paper presented at the 2016 IEEE 7th Annual 
Information Technology, Electronics and Mobile 
Communication Conference (IEMCON).