
Towards a Security-Aware Benchmarking Framework for
Function-as-a-Service

Roland Pellegrini, Igor Ivkic and Markus Tauber
University of Applied Sciences Burgenland, Eisenstadt, Austria

Keywords: Cloud Computing, Benchmarking, Cloud Security, Framework, Function-as-a-Service.

Abstract: In a world, where complexity increases on a daily basis the Function-as-a-Service (FaaS) cloud model
seams to take countermeasures. In comparison to other cloud models, the fast evolving FaaS increasingly
abstracts the underlying infrastructure and refocuses on the application logic. This trend brings huge
benefits in application and performance but comes with difficulties for benchmarking cloud applications. In
this position paper, we present an initial investigation of benchmarking FaaS in close to reality production
systems. Furthermore, we outline the architectural design including the necessary benchmarking metrics.
We also discuss the possibility of using the proposed framework for identifying security vulnerabilities.

1 INTRODUCTION

Cloud computing, as defined by Mell and Grance
(2011), is a model for enabling on-demand network
access to a shared pool of configurable resources.
Cloud vendors provide these resources in the service
models Infrastructure as a Service (IaaS), Platform-
as-a-Service (PaaS) and Software-as-a-Service
(SaaS). Through virtualization, the IaaS service
model provides computing resources (e.g.: servers,
storage, network) to consumers so they can deploy
and run software. In other words, the consumers do
not control the infrastructure, but are able to manage
the running operating systems and applications.
Quite contrary to IaaS, PaaS offers an integrated
runtime and development environment where
consumers only control their deployed and
developed applications. Finally, SaaS provides
software and applications, which can be used and
accessed by consumers via the web or application
programming interfaces (API).

These three service models are currently being
extended by a very new and rapidly evolving
technology called Function-as-a-Service (FaaS).
FaaS provides a runtime environment to develop,
deploy, run, and manage application functionality
without any knowledge about the underlying
application. All instances of these environments are
managed by the provider, who is responsible for the
code execution, resource provisioning and automatic
scaling for virtually any type of application. Figure 1

gives an overview of a generic FaaS architecture and
illustrates the technical workflow between the
components:

Figure 1: FaaS architecture, based on Pientka (2017).

However, Cloud Service Providers (CSP) often
limit the amount of execution time or resource
allocation a request may consume. Additionally,
FaaS code may suffer more from start-up latency
than code that is continuously running on a
dedicated server. The reason for that is that each
time a function is called the underlying environment
has to be provisioned. Depending on the providers
configuration, the function may wait an amount of
time before it is deprovisioned. If another request is
sent to the function while it is waiting it executes the
request again. But, in case the function has already
been deprovisioned and is reinvoked by an event, the
runtime environment has to start up again, which
leads to delays and latency.

As explained in Section II in more detail, the
existing publications either compare CSPs and/or

666
Pellegrini, R., Ivkic, I. and Tauber, M.
Towards a Security-Aware Benchmarking Framework for Function-as-a-Service.
DOI: 10.5220/0006817606660669
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 666-669
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

technologies, or use approaches, which are
applicable for specific use cases. In order to make
FaaS benchmarking possible in close to reality
production systems and independent of a specific
use case a more general approach is required.

In this position paper we propose a framework
for benchmarking FaaS in production systems,
which is independent of a specific use case. In this
regard we present the architectual design, discuss
two different methods of measuring FaaS
performance, propose a set of benchmarking metrics
and explain, which components of the benchmarking
framework need to be implemented.

The rest of the position paper is structured as
follows: Section II provides a summary of the
related work, followed by the benchmark framework
archictechture in Section III. Finally, we present our
conclusions and future work including security
considerations in Section IV.

2 RELATED WORK

In the field of cloud performance evaluation most of
the existing research publications can be grouped in
the following three categories: (a) IaaS, PaaS, and
SaaS benchmarking at different abstraction levels,
(b) comparison of existing Cloud Benchmark
Frameworks, and (c) performance comparison of
cloud services among CSPs.

Since FaaS is a relatively new technology, more
detailed research is needed for benchmarking cloud
functions. An initial introduction and guideline has
been done by Bermbach et al. (2017) where they
compare the cloud service models, define terms
related to benchmarking, derive the quality
requirements of the users, and explain the
motivation for benchmarking these qualities.
Additionally, they cover the entire lifecycle of cloud
service benchmarking, from its motivations, over
benchmarking design and execution, to the use of
benchmarking results.

Sitaram and Manjunath (2011) provide another
introduction in cloud computing and examine some
popular cloud benchmarking tools. Whereas,
Mueller et al. (2014), Coarfa et al. (2006), and Juric
et al. (2006) evaluated security performance for
different use cases in experimental studies.

Malawski et al. (2017) focus on performance
evaluation of cloud functions by taking
heterogeneity aspects into account. For this purpose,
they developed a framework with two types of CPU-
intensive benchmarks for performance evaluation of
cloud functions. Then they applied it to all the major

Cloud Function Providers (CFP) such as Amazon,
Microsoft, Google, and IBM. Their results show the
heterogeneity of CFPs, the relation between function
size and performance and how CFPs interpret the
resource allocation policies differently.

Hwang et al. (2016) provided a summary of
useful Cloud Performance Metrics (CPM) and
introduced an extended CPM-concept on three
levels: (a) basic performance metrics including
traditional metrics (e.g. execution time, speed and
efficiency), (b) cloud capabilities for describing
network latency, bandwidth, and data throughput,
and finally, (c) cloud productivity, which deals with
productivity metrics (e.g. Quality of Service (QoS),
Service Level Agreement (SLA) and security).

Additionally, Luo et al. (2012) proposes a
benchmark suite for evaluating cloud systems
running data processing applications. Furthermore,
they discussed and analysed, why traditional metrics
(e.g. floating-point operations and I/O operations)
are not appropriate for system cloud benchmarking.
Instead, they propose data processed per second and
data processed per Joule as two complementary
metrics for evaluating cloud computing systems.

The architecture of cloud benchmarking tools has
been subject of previous research. An overview of a
generic architecture, elements of a benchmarking
tool and performance metrics for IaaS cloud
benchmarking has been discussed by Iosup et al.
(2014). Furthermore, Sangroya and Bouchenaket
(2015) proposed a generic software architecture for
dependability and performance benchmarking for
cloud computing services. They also describe
various components and modules responsible for
injecting faults in cloud services in addition to the
components responsible for measuring the
performance and dependability.

Finally, the Yahoo! Cloud Serving Benchmark
(YCSB) is a benchmark suite that measures the
performance of a cloud storage system against
standard workloads. The architecture, as described
by Cooper et al. (2010), consists of a YCSB client,
which is a Java-based multi-threaded workload
generator and can be extended to support
benchmarking different databases.

3 PROPOSED ARCHITECTURE
FRAMEWORK

The approach taken in this position paper differs
from the existing publications as mentioned above.
The main focus is to evaluate the FaaS performance
for data processing (e.g. the maximum number of

Towards a Security-Aware Benchmarking Framework for Function-as-a-Service

667

Figure 2: Prototype architecture, based on Pientka (2017).

function calls per seconds) instead of identifying the
hardware specification of the underlying IT
infrastructure of the CFP. In order to evaluate FaaS
performance the following influencing parameters
need to be considered: (a) FaaS caller with varying
parameters such as data size, run length, batch size,
and pause interval, (b) cloud function latency and
throughput, and (c) network latency and bandwidth.

In this position paper we propose an approach for
benchmarking FaaS performance on a close to
reality system without the need of implementing a
complex testbed. To achieve this goal, the
architecture of the benchmarking framework needs
to be designed in a way, so that the production
system needs a minimum amount of adaptation. The
reason for that is that a benchmarking executed on a
production system delivers more significant results
in comparison to a test environment. In more detail,
the benchmarking framework has to be designed as a
two-tier architecture. In this way the FaaS calls will
be executed on a sender and the cloud function
processing will run on the CSP platform. We
consider two FaaS sender variants: A Faas
Performance Caller (FaaS-PC) and a FaaS Latency
Caller (FaaS-LC).

The FaaS-PC measures the potential
performance of a cloud function by sending runs of
messages, and compiling statistics. Instead of
sending a continuous stream of messages, the FaaS-
PC groups them into batches. Between two batches
the FaaS-PC pauses for a freely configurable interval
of seconds. Furthermore, the FaaS-PC supports a
single mode and an automatic mode. In the single
mode, the FaaS-PC sends a single run of messages.
This mode is useful to answer questions about cloud
function behavior under sustained load conditions.
In the automatic mode the FaaS-PC starts sending
several runs of messages and function calls,

modifying the parameters for each run. It does so,
until the ideal batch size and interval parameters that
yield maximum sustainable cloud function
throughput are found. This mode allows FaaS-PC to
tune its send rate to match the maximum receive rate
of the slowest cloud function call-back. Both, the
single mode and the automatic mode provide a
summary-report at the end of the run.

In contrast to FaaS-PC, the FaaS-LC helps to
identify latency bottlenecks in networks where the
transit time between FaaS caller and cloud function
needs to be kept to a minimum. However, clock
synchronization between FaaS-LC and cloud
function is not precise enough to accurately measure
one-way travel time. Therefore, FaaS-LC measures
round-trip time for a request-reply message pair by
using a single clock. For this scenario an additional
function needs to be developed.

The following metrics are potential candidates to
measure the performance for both types of FaaS
callers: elapsed time, number of cloud function calls,
number of messages, size of payloads, total payload
size, batch interval, batch size, messages per second,
payload per second (in bytes), maximum latency (in
milliseconds), minimum latency (in milliseconds),
number of messages or function calls with latency
exceeds a threshold.

In the end, both FaaS callers generate a report,
which can easily be transferred to spreadsheet
applications or command-line programs. Another
benefit is that two- and three-dimensional plots of
functions, data and statistical reports can be
produced. In Figure 2 the prototype architecture for
FaaS benchmarking, the planned measuring-points,
and metrics candidates are shown. As shown in the
dotted line, the elapsed time has to be measured
indirectly between the gateway and the function if
the access to the API gateway is not possible.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

668

4 CONCLUSION AND FUTURE
WORK

In this position paper, we introduced a FaaS
benchmarking framework for measuring the cloud
function performance in a production environment
for a front-to-back processing. First, we compared
the functionality of FaaS to the traditional cloud
service models. Next, we explained the technical
architecture of FaaS and pointed out some related
performance issues. In this regard, we discussed
several aspects of cloud benchmarking and cloud
security. Finally, in Section III we proposed a
prototype including the architectural design and the
functional requirements. In this regard, we outlined
the necessity of the FaaS-PC and FaaS-LC from the
benchmarking perspective. In addition to that we
identified a set of metrics for measuring the
performance of these FaaS callers.

In summary, we explored the possibility of
measuring the performance of FaaS to make CSPs
more comparable. By doing so, we provided a
method for decision-makers, IT architects and cloud
service consumers to assist them in finding the best
FaaS solution for their businesses. The main
contribution of this paper is the initial investigation
on an approach for benchmarking FaaS, which can
also be used to identify FaaS security vulnerabilities.
While FaaS dramatically reduces some top-level
threats, there are still some risks regarding DoS
attacks and exploitation of the long-lived FaaS
container functionality. Even though the proposed
framework is used to measure the performance, it
could also be applied to stress indirectly the
underlying IaaS, PaaS and/or SaaS to emulate e. g.
DoS attacks. This would make the Cloud return error
codes, which could be exploited as security
vulnerabilities. In future work, we will consider
using the proposed benchmarking framework to
identify possible FaaS vulnerabilities, threats and
attacks to verify a broader application of our work.

ACKNOWLEDGEMENTS

The research has been carried out in the context of
the project MIT 4.0 (FE02), funded by IWB-EFRE
2014 - 2010.

REFERENCES

Bermbach, D., Wittern, E. and Tai, S., 2017. Cloud
Service Benchmarking: Measuring Quality of Cloud
Services from a Client Perspective. Springer.

Coarfa, C., Druschel, P. and Wallach, D.S., 2006.
Performance analysis of TLS Web servers. ACM
Transactions on Computer Systems (TOCS), 24(1), pp.
39-69.

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R.
and SEARS, R., 2010. Benchmarking cloud serving
systems with YCSB, Proceedings of the 1st ACM
symposium on Cloud computing 2010, ACM, pp. 143-
154.

Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W. and Wu, Y.,
2016. Cloud performance modeling with benchmark
evaluation of elastic scaling strategies. IEEE
Transactions on Parallel and Distributed Systems,
27(1), pp. 130-143.

Iosup, A., Prodan, R. and Epema, D., 2014. IaaS cloud
benchmarking: approaches, challenges, and
experience. Cloud Computing for Data-Intensive
Applications. Springer, pp. 83-104.

Juric, M.B., Rozman, I., Brumen, B., Colnaric, M. and
Hericko, M., 2006. Comparison of performance of
Web services, WS-Security, RMI, and RMI–SSL.
Journal of Systems and Software, 79(5), pp. 689-700.

Luo, C., Zhan, J., Jia, Z., Wang, L., Lu, G., Zhang, L., Xu,
C. and Sun, N., 2012. Cloudrank-d: benchmarking and
ranking cloud computing systems for data processing
applications. Frontiers of Computer Science, 6(4), pp.
347-362.

Müller, S., Bermbach, D., Tai, S. and Pallas, F., 2014.
Benchmarking the performance impact of transport
layer security in cloud database systems, Cloud
Engineering (IC2E), 2014 IEEE International
Conference on 2014, IEEE, pp. 27-36.

Malawski, M., Figiela, K., Gajek, A. and Zima, A., 2017.
Benchmarking Heterogeneous Cloud Functions,
European Conference on Parallel Processing 2017,
Springer, pp. 415-426.

Mell, P. and Grance, T., 2011. The NIST definition of
cloud computing.

Pientka, F., 2017, Function as a Service: Was ist
Serverless Computing? [online] Informatik Aktuell.
Available at: https://www.informatik-
aktuell.de/betrieb/server/function-as-a-service-was-ist-
serverless-computing.html [Accessed 10 Jan. 2018].

Sangroya, A. and Bouchenak, S., 2015. A Reusable
Architecture for Dependability and Performance
Benchmarking of Cloud Services, International
Conference on Service-Oriented Computing 2015,
Springer, pp. 207-218.

Sitaram, D. and Manjunath, G., 2011. Moving to the
cloud: Developing apps in the new world of cloud
computing. Elsevier.

Towards a Security-Aware Benchmarking Framework for Function-as-a-Service

669

