creation and to obtain an image as similar as possible 
to what would obtain a real system. In this sense, the 
simulator tries to generalize its use to different 
disciplines. 
Currently the user is allowed to define day, month, 
year, time, latitude, longitude, streets, structures and 
vegetation for the random creation of a scenario that, 
with probabilities or specific quantities of objects, can 
be exported in the respective spectral and spatial 
resolutions of interest. 
Moreover, the present tool allows the user to 
define the desired spectral band and spatial 
resolution. This flexibility is fundamental to the make 
SImS a universal tool. For this reason, as an example, 
images corresponding to the OLI (Landsat 8) sensor 
spectral resolutions were presented in this paper. 
Our future work will consist of integrating other 
elements of the territory, such as elevation models 
and different atmospheric models with different 
meteorological parameters. In this way it will be 
possible to parameterize sensors and platforms for the 
effective integration in the generation of synthetic 
images, considered by the countries strategic factor. 
ACKNOWLEDGEMENTS 
The authors acknowledge the Regional Government 
of Andalusia (Spain) for the financial support since 
1997 for their research group (Ingeniería 
Cartográfica) with code PAIDE-TEP-164 and the 
Department of Science and Technology of the 
Brazilian Army. 
REFERENCES 
Alarcon, V. J. and Sassenrath, G. F. 2004. Cotton crop 
spectral imaging analysis: a web-based hyperspectral 
synthetic imagery simulation system. In: Remote 
Sensing and Modeling of Ecosystems for Sustainability, 
(Gao, W. and Shaw, D.R., Eds.). Proceedings of SPIE, 
Vol. 5544, 178-185. 
Baldridge, A. M., S. J. Hook, C. I. Grove and G. Rivera, 
2009..  The ASTER Spectral Library Version 2.0. 
Remote Sensing of Environment, vol 113, pp. 711-715. 
Boggione, G. A.; Pires, E.G; Santos, P. A; Fonseca, L. M. 
G.  Simulation of Panchromatic band by spectral 
combination of multispectral ETM+ bands. 
International Symposium on Remote Sensing of 
Environment (ISRSE), Hawai, Nov. 2003. 
Chen, F.; Niu, Z.; Sun, G.; Wang, C.; Tang, J. Using low-
spectral-resolution images to acquire simulated 
hyperspectral images. International Journal of Remote 
Sensing, v. 29, p. 2963-2980, 2008. 
Esposito, E. S. C. Simulação das bandas espectrais das 
câmaras CCD e WFI do satélite CBERS, a partir de 
dados do sensor hiperespectral AVIRIS. versão: 1970-
01-01. Dissertação (Mestrado em Sensoriamento 
Remoto) - Instituto Nacional de Pesquisas Espaciais, 
São José dos Campos, 1998. 
Francis, I; Maver, L.; Schott, J.R. Comparison of physically 
and computer generated imagery. Proceedings SPIE, v. 
1904, p. 20-23, 1993. 
Ientilucci, E.J.;Brown, S.D. Advances in Wide Area 
Hyperspectral Image Simulation. Proceedings of SPIE 
Vol. 5075 (2003). 
Justice, C. O.; Markhan, B. L.; Townshend, J. R. G.; 
Kennard, R. L. Spatial degradation of satellite data. 
International Journal of Remote Sensing, v. 10, n. 9, p. 
1539-1561, 1989. 
Latorre, M.; Abílio, O.; Júnior R, D. C.; Paula, A.; 
Carvalho, F. D.; Shimabukuro, Y. E. Correção 
Atmosférica: Conceitos e Fundamentos. Espaço & 
Geografia, v.5, n. 1, p. 153-178, 2002. 
Maeda, E. E.; Arcoverde, G. F. B.; Formaggio, A. R.; 
Shimabukuro,Y. E. Evaluation of the potentiality of 
WFI/CBERS-3 Sensor data for land use and land cover 
classification. Revista Brasileira de Cartografia, v. 1, 
n. 60, p. 79-87, 2008. 
Marcal, A. R. S.; Rodrigues, A.; Cunha, M. "Evaluation of 
satellite image segmentation using synthetic images," 
2010 IEEE International Geoscience and Remote 
Sensing Symposium, Honolulu, HI, 2010, pp. 2210-2213. 
Nelson, M. D.; McRoberts, R. E.; Holden, G. R; Bauer, 
M.E. Effects of satellite image spatial aggregation and 
resolution on estimates of forest land area. 
International Journal of Remote Sensing, v. 30, n. 8, p. 
1913-1940, 2009. 
Maver, L.; Scarff, L. Multispectral image simulation. 
Proceedings SPIE, v.1904, p. 144-160, 1993. 
Sassenrath, G. F., Alarcon-Calderon, V. J., Pringle, H. C. 
2003. “Synthetic imagery of cotton crops: Scaling from 
leaf to full canopy.” Digital Imaging and Spectral 
Techniques: Applications to Precision Agriculture and 
Crop Physiology. T. van Taoi, ed.. pp. 111-133. 
Agronomy Society of America Special Publication 
Number 66, Madison, WI. 
Schott, J. R. Remote sensing the image chain approach. 
New York, NY: Oxford University, 1997 394305169. 
Schott, J.R.; Raqueno, R.V.; Raqueno, N.G.; Brown, S. D. 
A Synthetic Sensor/Image Simulation Tool to Support 
the Landsat Data Continuity Mission (LDCM). In 
Proceedings of ASPRS 2010 Annual Conference, San 
Diego, CA, USA, 26–30 April 2010. 
Schott, J.; Gerace, A.; Brown, S.; Gartley, M.; Montanaro, 
M.; Reuter, D.C. Simulation of Image Performance 
Characteristics of the Landsat Data Continuity Mission 
(LDCM) Thermal Infrared Sensor (TIRS). Remote 
Sens.2012, 4, 2477-2491. 
Yang, G.; Liu, Q.; Liu, Q.; Huang, W.; Wang, J. Simulation 
of high-resolution mid-infrared (3–5 mm) images using 
an atmosphere radiative transfer analytic model. 
International Journal of Remote Sensing, vl. 30, n. 22, 
p. 6003–6022, 2009.