
Towards Semi-automatic Generation of R2R Mappings

Valéria M. Pequeno1,2, Vânia M. P. Vidal3 and Tiago Vinuto3

1TechLab, Departamento de Ciências e Tecnologias,
Universidade Autónoma de Lisboa Luı́s de Camões, 1150-023 Lisboa, Portugal

2INESC-ID, Lisboa, Portugal
3Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil

Keywords: Mapping Patterns, RDF-to-RDF Mapping, R2R Mapping, Mapping Assertion, RDF Model, Ontologies.

Abstract: Translating data from linked data sources to the vocabulary that is expected by a linked data application
requires a large number of mappings and can require a lot of structural transformations as well as complex
property value transformations. The R2R mapping language is a language based on SPARQL for publishing
expressive mappings on the web. However, the specification of R2R mappings is not an easy task. This paper
therefore proposes the use of mapping patterns to semi-automatically generate R2R mappings between RDF
vocabularies. In this paper, we first specify a mapping language with a high level of abstraction to transform
data from a source ontology to a target ontology vocabulary. Second, we introduce the proposed mapping
patterns. Finally, we present a method to semi-automatically generate R2R mappings using the mapping
patterns.

1 INTRODUCTION

Nowadays, there is a large number of datasets (of the
different domain) published on the Web. These da-
tasets are linked and published in RDF formats and
usually are available in the Linked Open Data (LOD),
creating a global data space known as Web of Data.
The principles of the Web of Data emphasize the defi-
nition of the conceptual structure of the data through
the re-use of known ontologies. Thus, the need for
alignment between conceptual schemas is minimized.
However, Linked Data sources normally use different
vocabularies to represent data about a specific type
of object. For instance, DBpedia1 and Music onto-
logy2 use their own proprietary vocabularies to repre-
sent data about musical artists. The resulting data he-
terogeneity is a major obstacle to build useful Linked
Data applications. Thus, the most of data that is avai-
lable on the web need to be integrated and exchanged
in a proper way.

Translating data from Linked Data sources (the
source ontology) to the vocabulary that is expected
by a linked data application (the target ontology) re-
quires a large number of mappings. There are some
approaches in the literature that focus on the deve-

1http://dbpedia.org/resource/
2http://musicontology.com/

lopment of formalisms to represent correspondences
between ontological entities such as classes and pro-
perties (see (Shvaiko and Euzenat, 2013) for a sur-
vey). However, for the development of a linked data
application, it is not enough to say, for example, that
one class corresponds to another. We should focus
on capturing information about which entity can be
transformed into another and how this can be done.
This type of mapping between the ontologies usually
requires lots of structural transformations as well as
complex property value transformations using, possi-
bly, various functions.

The LDIF framework (Schultz et al., 2011) pro-
poses the R2R mapping language for specifying map-
pings between RDF schemas. R2R is a very expres-
sive language with a SPARQL-based syntax. Howe-
ver, the R2R framework3 only provides general error
messages that do not help the user in the identifica-
tion of syntax errors in the mappings. This occurs be-
cause LDIF does not address the problem of how the
mappings are defined, providing only the language to
define the mappings. It calls for the development of
methods and tools to support the deployment of map-
pings using R2R.

As the main contribution of this paper, we sug-
gest a semi-automated pattern-based approach to ge-

3http://r2r.wbsg.de/

Pequeno, V., Vidal, V. and Vinuto, T.
Towards Semi-automatic Generation of R2R Mappings.
DOI: 10.5220/0006801602370244
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 237-244
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

237

nerate R2R mappings. Even though different resear-
chers were concerned with similar topics (see (Ritze
et al., 2009; Scharffe et al., 2014)), to our knowledge
none of the existing works present the constraints be-
tween different mappings to guarantee that the whole
set of mappings between the target and the source on-
tologies generates correct instances. In addition, our
work is the first to propose the semi-automatic gene-
ration of R2R mappings. Another contribution of this
paper is the definition of Mapping Assertions (MAs)
(informally addressed in (Pequeno et al., 2015)) as
a convenient way to manually specify mappings be-
tween RDF vocabularies.

The rest of the paper is organized as follows.
Section 2 briefly presents the R2R language and a
motivating example. Section 3 introduces our forma-
lism to define mappings. Section 4 briefly presents the
proposed mapping patterns. Section 5 points out how
semi-automatically to generate R2R mappings by ap-
plying mapping patterns. Section 6 discusses the rela-
ted work. Finally, Section 7 presents our conclusions
and future works.

2 MOTIVATING EXAMPLE

R2R is a declarative language based on SPARQL
for publishing mappings between different RDF vo-
cabularies. A R2R mapping refers to a class map-
ping (the r2r:classMapping) or a property mapping
(the r2r:propertyMapping) to retrieve data from the
source ontology and translate it to a target ontology
vocabulary.

Every R2R mapping has both clauses:
r2r:sourcePattern and r2r:targetPattern (like
in a SPARQL CONSTRUCT clause). The source
pattern is matched against Web Data and binds values
to a set of variables. It may include almost all expres-
sions that are possible in a SPARQL WHERE clause.
Slightly talking, R2R source patterns correspond to
the source pattern of our Mapping Rule (MR). The
target pattern is used to produce triples in the target
vocabulary. It corresponds to the target pattern of our
MR. An R2R mapping may consist of multiple target
patterns but has a single source pattern. It is easier to
understand these concepts using an example.

Let us consider a linked data application about
music that describe properties and concepts using
the MyMusic ontology (the target ontology) and
integrate data from both sources DBpedia4 and
MySpace5. The fragment of the DBpedia (shown in

4http://dbpedia.org/ontology/ and http://dbpedia.org/
property/.

5http://purl.org/ontology/myspace/

Fig. 1) depicts information about artists and related
aspects. MySpace provides part of a RDF represen-
tation of MySpace users. A fragment of MySpace
is shown in Fig. 2. MyMusic ontology provides in-
formation about musical artists and reuses terms from
well-known vocabularies, such as: FOAF (Friend of
a friend)6 and MO (Music ontology). We use the
prefix “ex” for new terms defined in the MyMusic
ontology. For example, ex:labelName keeps the name
of the record label. A fragment of MyMusic is shown
in Fig. 3.

Figure 1: A simplified fragment of the Dbpedia ontology.

Figure 2: A simplified fragment of the MySpace ontology.

Figure 3: A simplified fragment of the MyMusic ontology.

In order to populate MyMusic ontology, we need
specify mappings between MyMusic ontology and
both Dbpedia and MySpace ontologies. These map-
pings should indicate how we can transform triples of
the source ontologies in triples of the target ontology.
For example, Fig. 4 shows an example of mapping
between mo:Genre and myspo:Genre using the R2R
mapping language. This is a very simple mapping in
which all instances of myspo:Genre (i.e. triples of the
form (s rdf:type myspo:Genre)) will be transfor-
med in triples of the form (s rdf:type mo:Genre)
(Lines 04 and 05 in Fig. 4). The clause r2r:pre-
fixDefinitions is used to abbreviate URIs inside the
r2r:sourcePattern or r2r:targetPattern. The in-
stance variable ?SUBJ is used in every source pattern
and is reserved for representing the instances that are
the focus of the mapping.

R2R mappings also can have a clause
r2r:transformation that defines how the values
in r2r:targetPattern are transformed and a clause

6http://xmlns.com/foaf/0.1/

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

238

01. mp:mySpace Genre to myMusic Genre

02. a r2r:ClassMapping;

03. r2r:prefixDefinitions "mo:< · · ·>.myspo:< · · ·>";

04. r2r:sourcePattern "?SUBJ a myspo:Genre;

05. r2r:targetPattern "?SUBJ a mo:Genre".

Figure 4: R2R mapping between mo:Genre and
myspo:Genre.

r2r:mappingRef that refers to a r2r:classMapping
defined before. For example, Fig. 5 shows the
mapping between mo:Label and myspo:recordLabel,
a more complex mapping than that showed in Fig. 4
because a class in an ontology corresponds to a
property in another. When mapping mo:Label with
myspo:recordLabel, a new URI must be generated
based on both the URI and the property value of
myspo:recordLabel. Thus, the subject triple of the
mo:Label is the new URI generated in Line 06. For
simplicity, here the new URI u is obtained by using
the functions concat() and xpath:encode-for-uri().

01. mp:Label to recordLabel

02. a r2r:ClassMapping;

03. r2r:prefixDefinitions "mo:< · · ·>.myspo:< · · ·>";

04. r2r:sourcePattern "?SUBJ a myspo:MusicArtist;

myspo:recordLabel ?r;
05. r2r:targetPattern "?u a mo:Label";

06. r2r:transformation "?u= concat(?SUBJ,
xpath-encode-for-uri(?r))" .

Figure 5: R2R mapping between mo:Label and
myspo:recordLabel.

Fig. 6 shows the mapping between ex:labelName
and myspo:recordLabel, a mapping between da-
tatype properties. The r2r:mappingRef (Line
04) makes references to the class mapping
mp:Label to recordLabel shown in Fig. 5. It is
used mainly to reduce redundancy: the source pattern
of mp:Label to recordLabel is joined with the source
pattern of mp:labelName to recordLabel. Lines 05
and 06 specify how myspo:recordLabel resources
of myspo:MusicArtist are transformed to the format
of the target triple (i.e., the triple of ex:labelName).
Also, in this mapping, we need to generate a URI
(Line 07), which must be the same generated in the
mapping shown in Fig. 5.

R2R is ready for use. This means that we can
generate RDF triples to a target ontology from R2R
mappings and publish these mappings on the web.
Besides, because R2R is based on SPARQL, it is easy
to the users understand the generated mapping, since
more and more developers know SPARQL. However,
complex mappings, such as those presented in Figu-
res 5 and 6, require expertise on the involved ontolo-

01. mp:labelName to recordLabel

02. a r2r:PropertyMapping;

03. r2r:prefixDefinitions "ex:< · · ·>.myspo:< · · ·>" ;

04. r2r:mappingRef mp:Label to recordLabel ;

05. r2r:sourcePattern "?SUBJ myspo:recordLabel ?r" ;

06. r2r:targetPattern "?u ex:labelName ?r" ;

07. r2r:transformation "?u= concat(?SUBJ,
xpath-encode-for-uri(?r))" .

Figure 6: R2R mapping between ex:labelName and
myspo:recordLabel.

gies, as well as on the R2R language used to define
the mappings. In addition, the manual definition of
mappings can be tedious and error-prone. A library of
mapping patterns will facilitate the generation of R2R
mappings by providing templates modelling complex
mappings such as the ones given above.

3 MAPPING RDF TO RDF

3.1 Mapping Rules

In this section, we briefly present a mapping forma-
lism, based on rules, to transform instance data from
a source ontology to the target ontology vocabulary.

Our formalism is much simpler than familiar rule-
based languages, such as SWRL7, or mapping lan-
guages, such as R2R (Bizer and Schultz, 2010), but it
suffices to capture expressive mappings. Also, the for-
malism incorporates concrete domains (Lutz, 2002)
to capture concrete functions, such as “string concate-
nation”, required for complex mappings, and concrete
predicates, such as “less than”, to specify restrictions.

A vocabulary V is a set of classes and properties.
An ontology is a pair O=(V,Σ) such that V is a vo-
cabulary and Σ is a finite set of formulae in V, the
constraints of O.

Let VT be a target vocabulary and OS=(VS,ΣS) be
a source ontology with VS and ΣS being, respectively,
the source vocabulary and the set of constraints of OS.
Let X be a set of variables. Let C be a first-order
alphabet consisting of a set F of function symbols
and a set P of predicate symbols, respectively cal-
led concrete function symbols and concrete predicate
symbols. The 0-ary function symbols are called con-
stants, which include IRIs8 and datatype values. We
assume that the symbols in C have a fixed interpre-
tation. Lastly, we assume that X and C are mutually
disjoint and that C is disjoint from VT and VS.

7https://www.w3.org/Submission/SWRL/
8Internationalized Resource Identifier.

Towards Semi-automatic Generation of R2R Mappings

239

A term is an expression recursively constructed
from function symbols, constants, and variables, as
usual. A literal is an expression of one of the forms:

• a class literal of the form C(t), where C is a class
in VT ∪ VS and t is a term;

• a property literal P(t,u), where P is a property in
VT ∪ VS and t and u are terms;

• u= T(t1, . . . , tn), where T is a n-ary function sym-
bol in F and u, t1, . . . , tn are terms;

• p(t1, . . . , tn), where p is a n-ary predicate symbol
in P and t1, . . . , tn are terms.

The literals using concrete binary function (or predi-
cate) symbols may be written in infix notation, as a
syntactical convenience. A triple pattern is a class or
property literal. We say that a triple t matches a triple
pattern p iff:

• p is a class literal of the form C(x), where x is a
variable, and t is of the form (s, rdf:type, C);

• p is a property literal of the form P(x,y), where x
and y are variables and t is of the form (s, P, o).

Note that a triple does not match a literal of the
forms u= T(t1, . . . , tn) or p(t1, . . . , tn), where T is an
n-ary function symbol in F and p is a n-ary predi-
cate symbol in P . A rule body B is a list of literals,
separated by semi-colons. When necessary, we use
“B[x1, . . . ,xk]” to indicate that the variables x1, . . . ,xk
occur in B. We say that B is over a vocabulary V iff all
classes and properties that occur in B are from V. As
a notational convenience, a rule body B may include:
1) SPARQL property paths (shortly paths), either in
prefix or in infix notation and 2) SPARQL unary, bi-
nary or ternary operators, either in prefix or in infix
notation.

A mapping rule from OS=(VS,ΣS) to VT, or sim-
ply a rule from OS=(VS,ΣS) to VT, is an expression of
one of the forms:

• C(x) ← B[x], called a class mapping, where C is
a class in VT and B[x] is a rule body over VS;

• P(x, y) ← B[x, y], called a property mapping,
where P is a property in VT and B[x, y] is a rule
body over VS.

The expression on the left (right) of the arrow is called
the target (source) pattern of the rule.

A simple mapping is a mapping rule of one of the
forms:

• CT(x)← CS(x), where CT is a class in VT and CS
is a class in VS

• PT(x, y)← CS(x); PS(x, y), where PT is a property
in VT, PS is a property in VS and CS is the domain
of PS, defined in the source ontology OS.

3.2 Mapping Rules Patterns

This section proposes a set of MRs patterns that facili-
tate the design of RDF to RDF mappings by providing
templates for MRs.

Each MRs pattern will represent a generic solu-
tion to a given RDF to RDF mapping problem. This
section also proposes a more concise abstract syntax,
based on MAs (Pequeno et al., 2016), for represen-
ting the MRs pattern. The MAs support most types
of data restructuring that are commonly found when
mapping RDF to RDF. Moreover, the MAs suffice to
capture all types of mappings that can be expressed
using the R2R language (Bizer and Schultz, 2010).

Let OS = (VS, ΣS) be a source ontology and OT
= (VT, ΣT) be a target ontology. Assume that ΣS
and ΣT both have constraints defining the domain and
range of each property. Briefly, there are three types
of MAs:
• Class Mapping Assertion (CMA), which is a class

mapping;
• Object Property Mapping Assertion (OMA),

which is a property mapping whose target predi-
cate is an object property;
• Datatype Property Mapping Assertion (DMA),

which is a property mapping whose target predi-
cate is a datatype property.
Table 1 shows the formalism to express each type

of CMA and some types of DMA, as well as the MRs
patterns induced by these MAs. The whole forma-
lism can be found in (Pequeno et al., 2016). In Ta-
ble 1, we use the predicate hasUri[A1, . . . ,An](s,u) to
generate unique URIs. Intuitively, let ψ be a CMA
for a class CT of VT of form CT ≡CS[A1, . . . ,An], ha-
sUri[A1, . . . ,An](s, u) holds iff, when given a resource
s of CS, u is the URI obtained by concatenating the
namespace prefix for CT and values of A1, . . . ,An.

Table 2 shows examples of MAs that specify map-
pings between the source ontologies shown in Figs.1
and 2 and the target ontology in Fig. 3, as well as it
shows the MRs induced by MAs in Table 2.

Consider, for example, the MRs ψ1 and ψ3.
Those mapping rules specify that each triple s in
myspo:Genre produces the following triples:
• (s rdf:type mo:Genre). (ψ1)
• (s ex:genreName v), where v is a particular va-

lue of dc:title. (ψ3)

4 MAPPING PATTERNS

The proposed patterns are addressed to designers of
ontology-based on data exchange systems (mainly

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

240

Table 1: Transformation Rules Patterns.

MA Mapping Assertion Mapping Rules Pattern

CMA1 ψ: CT ≡ CS / f CT(s)← CS(s) ; f (s)
- ψ is the name of CMA
- CS is a class name of VS

- f is an optional filter over instances of CS

CMA2 ψ: CT ≡ CS[A1, . . . ,An] / f CT(u)← CS(s) ;
- ψ is the name of CMA hasUri[A1, . . . ,An](s, u) ;
- CS is a class name of VS f (s)
- A1, . . . ,An are datatype properties whose domain is CS

- f is an optional filter over instances of CS

DMA1 ψ: CT/PT ≡ CS/ϕ /PS / f / T , where PT(s, t)← CS(s);
- ψ is the name of DMA f (s) ;
- PT is a datatype property whose domain is CT (or a superclass of CT) ϕ(s,o) ;
- PS is a datatype property whose domain is CS (or a superclass of CS) PS(o,v) ;
- ϕ is an optional path from CS to CR, where CR is a class name of VS f (v);
- f is an optional filter over instances of PS T(v,t)
- T is an optional function that transforms values of datatype properties
- There exists a CMA ψ that matches the domain D of PT with CS

DMA2 ψ: CT/PT ≡ CS[A1, . . . ,An]/Ai, where PT(u,v)← CS(s) ;
- ψ is the name of DMA f (s) ;
- PT is a datatype property whose domain is CT (or a superclass of CT) Ai(s,v) ;
- Ai, 1 ≤ i ≤n, are datatype properties whose domain is CS hasUri[A1, . . . ,An](s, u)
- There exists a CMA ψD that matches the domain D of PT with CS[A1, . . . ,An]

Table 2: Mapping Assertions.

Label Mapping Assertion Mapping Rules
ψ1 mo:Genre ≡ myspo:Genre mo:Genre(s)← myspo:Genre(s)

ψ2 mo:Label ≡ myspo:MusicArtist[myspo:recordLabel] mo:Label(u)← myspo:MusicArtist(s); hasURI[ψ2](s,u)

ψ3 mo:Genre / ex:genreName ≡ myspo:Genre / dc:title ex:genreName(s,t)← myspo:Genre(s); dc:title(s,t)

ψ4 mo:Label / ex:labelName ≡ ex:labelName(u,v)← myspo:MusicArtist(s);
myspo:MusicArtist[myspo:recordLabel] / myspo:recordLabel myspo:recordLabel(s,v) ; hasURI[ψ2](s,u)

ψ5 mo:MusicArtist ≡ dbo:MusicalArtist mo:MusicArtist(s)← dbo:MusicalArtist(s)

data integration ones) to better specify how the source
ontologies are related to the target ontology and how
to create mappings that transform source instances
into target instances. We define various patterns in
order to cover the more commons types of mapping
found in the LOD (Ritze et al., 2009). Each pattern
consists of a description of the goals of the pattern,
the context, and constraints in which it can be used,
a description of the solution in mapping formalisms
and in R2R mapping language, examples and related
patterns. The mapping formalisms abstract the way
in which the correspondences and transformations of
instance data between the ontologies can be specified
and the R2R language provides an API that makes the
mapping ready to be used in the practice. Other map-
ping languages can be used, instead of R2R one, for
example, the SPARQL. If it is the case, we suggest the
reader use our mapping formalism as a guide to crea-
ting the mappings in the SPARQL or other languages
of your choice.

We have defined a mapping catalogue consisting
of 12 mapping patterns. Figure 7 shows the classifi-

cation of the mapping patterns in accordance with the
type of mapping involved.

Figure 7: Pattern catalogue.

A mapping between ontology terms can be a map-
ping between classes or a mapping between proper-
ties. Since there are two types of properties (object
and datatype), in Fig. 7, we grouped the patterns into
three groups: classes, object properties and datatype

Towards Semi-automatic Generation of R2R Mappings

241

properties. Each group was further divided in order
to solve a specific mapping problem. For example,
the class mapping patterns were divided into mapping
patterns between semantically equivalent classes and
mapping patterns between non-equivalent classes (de-
termine when two classes are semantically equivalent
or not is outside of the scope of this work, but the
reader can see (Rodriguez and Egenhofer, 2003) for
more details about this subject).

Due to limited space, in this paper, we exemplary
illustrate one mapping pattern representative of the
pattern catalogue. We refer to the reader to (Pequeno
et al., 2016) for see the whole pattern catalogue.

In the remainder of this paper, consider
OT=(VT,ΣT) be a target ontology, with VT and
ΣT being, respectively, the target vocabulary and the
set of constraints of OT, and OS=(VS,ΣS) be a source
ontology with VS and ΣS being, respectively, the
source vocabulary and the set of constraints of OS.

4.1 Mapping Pattern of Semantically
Non-Equivalent Class

Name: Semantically Non-Equivalent Class Mapping
Alias: CM2
Problem: How should we specify the mapping of the
instances of a class CS in VS into instances of a class
CT in VT ?
Context:

• CT and CS are classes in vocabularies VT and VS,
respectively.

• A1,. . . ,An are datatype properties whose domain
is CS.

• CT and CS are NOT semantically equivalent, i.e.
they do not represent the same object of the real
world

• f is a condition of selection (a predicate) over in-
stances of CS (f is optional).

• The terms may have the same name or different
names in the different ontologies.

For example, the class mo:Label of MyMusic
ontology corresponds to class/property combination
myspo:MusicArtist[myspo:recordLabel] in Myspace
ontology. It illustrates a mapping between not seman-
tically equivalent classes (i.e., classes that do not re-
present the same object of the real world).
Force:

The mapping can be complete (when there is no
condition of selection over instances, thus all instan-
ces of CS are mapped into instances of CT) or partial
(when only some instances of CS are mapped, i.e.,

those instances that satisfy the condition of selection
(filter)) .
Solution:

Mapping Rule: CT(u) ← CS(s); f (s);
hasUri[A1,. . . ,An](s, u)

This rule specifies that for each triple < s
rdf:type CS >, such that f (s) = true and u=
hasUri[A1,. . . ,An](s), a triple < u rdf:type CT> is ge-
nerated. Note that the instances of s and u have diffe-
rent URIs since they do NOT represent the same ob-
ject in the real world. Thus, “CS[A1,. . . ,An]” defines
a “new class”, whose instances are embedded in the
instances of CS defined by the above mapping rule.
Therefore, the class CT is semantically equivalent to
the embedded class CS[A1,. . . ,An].

Mapping Assertion: ψ: CT ≡ CS[A1,. . . ,An] / f
(CMA2)

R2R mapping: Template T2
Class Mappings
mp: ψC

a r2r:ClassMapping ;
r2r:prefixDefinitions “prefixExp” ;
r2r:sourcePattern “?SUBJ a S:CS sQuery” ;
r2r:targetPattern “?s a T:CT” ;
r2r:transformation

“?s=generateUri(?SUBJ, [A1,. . . ,An])” .

S:CS and T:CT are directly obtained from the
CMA2. prefixExp and sQuery are variable with
the same role than explained in CM1 pattern and
generateUri() is the function to generate the new
URI for CT based on the predicate hasUri[A1,. . . ,An]
defined in the MR.

Example: Mapping between the non-
semantically equivalent classes mo:Label and
myspo:MusicArtist[myspo:recordLabel].
•Mapping rule: ψ2 shown in Table 2
•Mapping Assertion: ψ2 shown in Table 2
• R2R mappings:

Class Mapping
mp:ψ2

a r2r:ClassMapping ;
r2r:prefixDefinitions “mo:. . . . myspo:. . .”.
r2r:sourcePattern “?SUBJ a

myspo:MusicalArtist ;
myspo:recordLabel ?s” ;

r2r:targetPattern ‘?u a mo:Label”;
r2r:transformation “?u=

generateUri(?SUBJ, [?s])” .

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

242

5 APPLYING MAPPING
PATTERNS TO GENERATE R2R
MAPPINGS

In this section, we present how to use the mapping
patterns to generate the R2R mappings between a tar-
get ontology and a source one. In our proposal, the
process to create R2R mappings to transform instan-
ces from an ontology into another one consists of two
steps:
1. Define the MAs that formally specify the rela-

tionships between the target ontology and the
source one.

2. Generate a set of R2R mappings based on the
MAs generated in step 2, in order to populate the
target ontology with values from the source(s) on-
tology(ies).
By using our MAs, the user focuses on the map-

ping itself, since: a) our language is less verbose than
the usual mapping languages, and b) it is easy to learn.
In the current work, the MAs are manually specified.
However, we use the RBA tool (Vinuto, 2017), which
has a GUI, to help us in this task.

The generation of the R2R mappings is based on
the vocabulary of the ontologies (target and source)
and on the MAs, which are part of the mapping pat-
terns. Let M be a set of MAs that defines a mapping
between the target ontology OT and the source one
OS such that M satisfies the constraints identified to
each mapping pattern that contains the MA. Figure 8
shows the algorithm to automatically generate the sta-
tements of R2R mappings from MAs in M .

foreach class CT in OT do
G R2RclassMapping(CT)
foreach object property PT whose domain is CT do

G OMA R2RpropMapping(PT)
end
foreach datatype property PT whose domain is CT do

G DMA R2RpropMapping(PT)
end

end

Figure 8: Generate the R2R mapping from MAs.

The algorithm 8 generates a set of R2R class map-
pings, at least one for each class CT in OT, and a set of
R2R property mappings, at least one for each property
PT in OT since they have a MA specified. For each
class CT in OT, the algorithm first spans all CMAs of
CT, in order to create the R2R class mappings through
the algorithm G R2RclassMapping. Then, it spans all
datatype properties PT whose domain is CT, in order
to create R2R property mappings through the algo-
rithm G DMA R2RpropMapping. Finally, the algo-
rithm spans all object properties PT whose domain is

CT, in order to create R2R property mappings through
the algorithm G OMA R2RpropMapping.

Figure 9 shows the procedure
G R2RclassMapping(). The R2R mapping is
generated using the templates T1 or T2 in accordance
with the type of mapping pattern (CMA1 or CMA2,
respectively). Both templates use two variables that
will be bound with values obtained from the CMA,
and/or from the ontologies. These variables are:
prefixExp, which keeps the prefixes presents in the
elements of the CMA and sQuery, which keeps the
expression used in the r2r:sourcePattern clause.
Whether the CMA has a filter f , then the source
pattern clause contains a filter expression. In this
case, FilterExp() is used in order to convert f to the
R2R syntax and its result is concatenated with the
value of sQuery.

Procedure G R2RclassMapping()
Input: CT

// ψC is of form ψC: CT ≡ CS/f or ψC or

// ψC is of form ψC:CT ≡ CS[A1, . . . ,An]/f
foreach CMA ψC of CT do

sQuery = NULL
prefixExp = getPrefixes(ψC) // obtain prefixes given

in ψC

if f 6= NULL then
sQuery = sQuery + FilterExp(ψC)

end
if ψC is of form ψC: CT ≡ CS/f then

// ψC is a CMA1 mapping pattern

use template T1
else

// ψC is a CMA2 mapping pattern

use template T2
end

end

Figure 9: G R2RclassMapping().

For example, the R2R mapping shown an
example of the CMA2 mapping pattern was
generated using ψ2 and template T2. The
r2r:prefixDefinitions clause was obtained from ψ2
in addition with MyMusic ontology and MySpace
ontology. The r2r:sourcePattern clause was obtai-
ned from the source pattern of the CMA ψ2, being
that S:CS = “myspo:MusicalArtist” and sQuery = “;
myspo:recordLabel ?s”. The r2r:targetPattern clause
was obtained from the target pattern of the CMA ψ2,
being that T:CT = “mo:Label”.

Algorithms G OMA R2RpropMapping() and
G DMA R2RpropMapping() will not be described
here due to space limitations. A detailed description
of them can be found in (Pequeno et al., 2016).

Towards Semi-automatic Generation of R2R Mappings

243

6 RELATED WORK

In the literature, there are some works that propose
patterns to deal with problems in data exchange sce-
narios. For example, (Ritze et al., 2009) propose pat-
terns to detect correspondences between classes and
properties; (Sváb-Zamazal et al., 2009) and (Scharffe
et al., 2014) propose patterns to deal with the trans-
formation of ontology to another (named the ontology
alignment problem).

Defining correspondences between classes and
properties is not the same as defining how an onto-
logy can be filled from another. This means that it
is not enough we identify the correspondences bet-
ween the terms of different ontologies, we need to
specify how exactly a resource can be added from
other ontology(ies). In fact, in other scenarios (for
example schema mapping) correspondences are used
as the first step in approaches to load a schema ba-
sed on data from other schemas. Therefore, none of
these works presents a complete solution to the pro-
blem described in this paper.

In (Scharffe et al., 2014), for example, the aut-
hors focus on ontology mediation, which lies in the
specification of correspondences between ontology
terms. Their correspondences differ from our map-
pings since that they must be valid both side of the
matching (in our mappings the assigned is from the
source to the target only). Their solution is not enough
to be used in our context because the authors do not
really show how an instance of one ontology can be
transformed in an instance of another. In (Rivero
et al., 2012), the authors present RDF to RDF map-
ping patterns (the same context of our patterns), ho-
wever, different of our work, their paper only shows
the definition of the problem included in each pattern
and some examples, none solution is discussed to re-
solve them.

7 CONCLUSION

This paper presented a proposal to semi-automatically
generate R2R mappings using mapping patterns. The
solution presented in the pattern allows the users not
only specify mappings between terms of two ontolo-
gies in a clear and concise way but provides a map-
ping that is ready to be used in the real scenarios.
Although mapping patterns seem to be complex for a
normal user, they group the most common problems
that a designer must encounter when he/she is defi-
ning mappings between ontologies. Because mapping
problems are catalogued and there are examples in
each mapping pattern, it is easier to identify and find

a solution for each situation.
We have implemented a tool, named RBA (Vi-

nuto, 2017), for helping the designer in the process of
definition of the mappings, which uses the proposed
patterns. We have tested our approach in some toy ex-
amples, but we intend to make some experiments for
measure the time needed for the creation of the map-
ping patterns in order to determine whether the effort
in creating the MAs is higher than the creation of the
actual R2R mappings.

As a future work, we intend to carry out a deep
study to show how our proposal is generally useful in
different use cases of R2R and to carry out a detailed
comparison with other state-of-the-art tools.

REFERENCES

Bizer, C. and Schultz, A. (2010). The R2R framework:
Publishing and discovering mappings on the web. In
COLD’10, volume 665.

Lutz, C. (2002). Description logics with concrete
domains—a survey. In AiML’02), France.

Pequeno, V., Vidal, V., Vinuto, T., and Galhardas, H.
(2015). Automatic generation of R2R mappings from
correspondence assertions. In SBBD.

Pequeno, V. M., Vidal, V. M. P., and Vinuto, T. (2016).
Towards automatic generation of R2R mappings.
Technical report, INESC-ID.

Ritze, D., Meilicke, C., Šváb-Zamazal, O., and Stucken-
schmidt, H. (2009). A pattern-based ontology mat-
ching approach for detecting complex corresponden-
ces. In OM’09, pages 25–36, Germany.

Rivero, C. R., Schultz, A., Bizer, C., and Ruiz, D. (2012).
Benchmarking the performance of linked data transla-
tion system. In LDOW’12, France.

Rodriguez, M. A. and Egenhofer, M. J. (2003). Determining
semantic similarity among entity classes from diffe-
rent ontologies. TKDE’03, 15(2):442–456.

Scharffe, F., Zamazal, O., and Fensel, D. (2014). Ontology
alignment design patterns. Knowl. Inf. Syst., 40(1):1–
28.

Schultz, A., Matteini, A., Isele, R., Bizer, C., and Becker, C.
(2011). LDIF - Linked Data Integration Framework.
In COLD’11.

Shvaiko, P. and Euzenat, J. (2013). Ontology matching:
State of the art and future challenges. TKDE’13,
25(1):158–176.

Sváb-Zamazal, O., Svátek, V., and Scharffe, F. (2009).
Pattern-based ontology transformation service. In
KEOD’09, pages 210–223, Portugal.

Vinuto, T. d. S. (2017). Uma abordagem para a geração
semiautomática de mapeamentos R2R baseado em
padrões. Master’s thesis, Universidade Federal do
Ceará, Fortaleza, Brazil.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

244

