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A last-mile transportation system has previously been developed using semi-autonomous driving technologies.

For traffic management of this system, travel requests are gathered at a central server and, on this basis, the op-
eration schedule is periodically updated and distributed to each vehicle via intermediate servers. However, the
entire traffic system may stop if the central server malfunctions owing to an unforeseen event. To address this
problem, we propose a fault-tolerant mechanism for the traffic management system of a last-mile transporta-
tion service. We use a modified primary-backup (or so-called passive) replication technique. More precisely,
one of the intermediate servers is chosen as the central server and the other intermediate servers periodically
receive state-update messages from the central server, allowing them to update their state to match that of the
central server. If the central server fails, one of the node servers is selected to take over as the new central
server. The present paper also demonstrates the availability through failure patterns in experiments with a

prototype implementation.

1 INTRODUCTION

Improvements to public transport are important in re-
alizing the next-generation smart city. The conve-
nience of basic public transportation infrastructure,
such as railroads and large-scale facilities, is being
improved but the last-mile transportation network is
still underdeveloped. There is thus a need for the cre-
ation and social implementation of a new transporta-
tion system having high accessibility.

Last-mile transportation systems offer a conve-
nient means of transportation, especially for elderly
people and people with disabilities because a stop
can be finely moved to where there is passenger de-
mand. However, the transport network of such a sys-
tem tends to be complicated, and there remains the
problem that the speed of passenger transport is re-
duced by taking all passengers to all stops and by the
transfer operation during the movement process.

To improve the situation described above, a last-
mile public transportation system based on technolo-
gies of semi-autonomous driving has been developed
(Hasebe et al., 2017b). The previously proposed sys-
tem involved vehicles of two types, those that lead a
fleet and are driven manually and those that are driver-
less and follow another vehicle. One of the major fea-
tures of the system is the ability for vehicles to run in
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a fleet without physical connecting points, allowing
a fleet of vehicles to be smoothly reorganized. With
this feature, even if passengers with different desti-
nations board the same fleet of vehicles, by appro-
priately detaching or reorganizing vehicles at branch
points of the route (called nodes), the passengers can
reach their destinations without transferring between
fleets.

This transportation system aggregates the travel
requests in real time and dynamically determines the
schedule of the vehicles. To realize such scheduling,
the system has a single central server and intermedi-
ate servers (called node servers) placed at each node
to manage the traffic of the fleet by centralizing de-
mand information, and the system instructs each ve-
hicle from this central hub. However, the entire traf-
fic system may stop if the central server malfunctions
owing to some unforeseen event.

To address this problem, we propose in this pa-
per a fault tolerant mechanism for the traffic manage-
ment systems of last-mile transportation services. We
use a primary-backup (or so-called passive) replica-
tion technique to make the central server redundant.
More precisely, one of the node servers is chosen as
the central server and processes requests from pas-
sengers and then decides a new schedule to be de-
livered to other node servers at regular intervals. The
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other node servers receive the schedule from the cen-
tral server and give instructions to nearby vehicles.
These servers also periodically receive state-update
messages from the central server, allowing them to
update their state to match that of the central server.
If the central server fails, one of the node servers is
selected to take over as the new central server.

We here use the replication technique introduced
by (Hasebe et al., 2014) as the algorithm that re-
alizes this primary-backup replication; i.e., instead
of using the usual primary-backup technique based
on the majority-based consensus algorithm, we use
a modified Paxos algorithm that allows agreement to
be reached by fewer than half the nodes. Using this
replication technique, it is possible to continue traffic
management even if the network is divided and the
majority of the node servers fail.

In this paper, we also demonstrate availability
through failure patterns in experiments with a proto-
type implementation.

The remainder of the paper is organized as fol-
lows. Section 2 discusses related work. Section 3
overviews the transportation system targeted in this
study. Section 4 presents our passive replication tech-
nique for traffic management systems. Section 5
demonstrates the availability of the traffic manage-
ment system given various patterns of failure through
simulations. Finally, Section 6 concludes the paper
and presents future work.

2 RELATED WORK

Most replication techniques that have been proposed
so far can be classified into two main categories: state
machine and primary-backup replications.

In state machine (i.e., active) replication (Schnei-
der, 1990), each server processes requests from
clients and transitions independently. Generally, each
transition is coordinated across servers by means of a
consensus algorithm. Although this technique is use-
ful, it has two important drawbacks as a result of its
low response time: a high computational cost and the
need for client requests to be processed in a determin-
istic manner. Meanwhile, primary-backup replication
is useful because of its low computational cost and
applicability to nondeterministic services. However,
as mentioned in Section 1, a mechanism that allows
agreement on the current primary and its implemen-
tation is needed; this is not necessary in state machine
replication systems. As explained above, the mer-
its and demerits of these techniques are complemen-
tary. To counter these drawbacks, variant schemes
have been proposed in recent years. These include

Figure 1: Conceptual illustration of a fleet of passenger-
carrying vehicles.

semiactive replication (Stodden, 2007) and semipas-
sive replication (Defago and Schiper, 2004).

However, it is assumed that these techniques will
employ a majority-based consensus. Thus, although
the techniques guarantee replica consistency, they
cannot tolerate the simultaneous failure of a major-
ity of the nodes or partitioning of the network. To
address the issue of availability, Dolev et al. (Dolev
et al., 2010) proposed optimistic state machine repli-
cation based on a self-stabilizing consensus algorithm
(Dijkstra, 1974; Dolev, 2000). Subsequently, they
suggested a self-stabilizing primary backup replica-
tion technique and its application to Internet service
platforms (Hasebe et al., 2011).

As shown above, various replication techniques
have been proposed and widely used in distributed
systems. However, application of the techniques to
transportation systems has not been thoroughly inves-
tigated. One motivation of the present study is to
show the usefulness of such a replication technique
in the development of a transportation system.

3 OVERVIEW OF LAST-MILE
TRANSPORTATION SYSTEMS

This section outlines the last-mile transportation sys-
tem targeted in this study. (Also see the literature
(Hasebe et al., 2017b; Hasebe et al., 2017a) for a more
detailed explanation.)

3.1 Vehicles

The transportation system targeted in this study con-
sists of vehicles that are able to travel in a row without
having physical contact points. A conceptual illustra-
tion is shown in Fig. 1.

The vehicles are classified according to their func-
tion into two types.

o Lead vehicles: vehicles driven manually at the
head of a fleet of vehicles.

e Trailing vehicles (or trailers for short): driver-
less vehicles that run autonomously behind an-
other vehicle.

Vehicles can be arbitrarily connected through elec-
tronic control to a fleet as long as the fleet capacity
is not exceeded.
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3.2 Traffic Network

In the transportation system, as for existing railroad
and bus networks, the travel routes connect a plural-
ity of prescribed stops where passengers may board
or alight. Additionally, in this travel route network,
zones are provided depending on the geographic lo-
cation where stops overlap with one or more zones.
Usually, there are multiple stops in each zone and a
travel route passing through all the stops in a zone
is set. Here, a stop located in multiple zones (i.e., a
stop at branch points in the traffic network) is called a
node.

3.3 Reorganization of Vehicles

Lead vehicles can disconnect any trailers at a node.
In addition, a location for a vehicle pool is provided
at each node for the temporary parking of detached
unmanned lead vehicles. Furthermore, a lead vehicle
can be provided with any number of trailers from the
vehicle pool, as long as the fleet capacity is not ex-
ceeded.

3.4 Vehicle Traffic Management

To realize our vehicle traffic management scheme, the
operation schedule needs to be arranged according to
the current requests and delivered to each vehicle. We
here assume a certain centralized control. Specifi-
cally, we set up a server for vehicle operation man-
agement (hereinafter referred to as the central server)
in the system’s hub. The central server receives re-
quests for travel from passengers using smartphones
or other means of communication, minimizes passen-
ger waiting time, determines a targeted optimum op-
eration schedule, and instructs each lead vehicle.

Moreover, in addition to the central server, a
server at each node (hereinafter referred to as a node
server) is maintained. The configuration and the op-
eration route of a fleet as determined by the central
server are transmitted once to each vehicle via the
node server within the communication network.

4 REPLICATION TECHNIQUE
FOR A TRAFFIC
MANAGEMENT SYSTEM

4.1 Overview

Figure 2 is an overview of the proposed traffic man-
agement system. (See also the literature for the de-
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Figure 2: Overview of the traffic management system.

tailed primary-backup replication used in this system
(Hasebe et al., 2011; Hasebe et al., 2014)). As ex-
plained above, in our proposed traffic management
system, one node is selected as the central server.
The central server receives the travel demand sent by
the passengers using smart phones and similar de-
vices and periodically determines the optimized travel
schedule with respect to the waiting times of the pas-
sengers and the traveling costs. Furthermore, this
schedule is delivered to each node server and gives
instructions to each vehicle arriving at a node. (The
reason for passing through node servers is that this
method is cheaper than constructing a communication
network that issues direct commands from the central
server to each vehicle in a wide-area transportation
network.) Simultaneously with the distribution of the
schedule, the central server periodically distributes in-
formation on the travel demand accumulated at the
central server as an update state to the node servers.

In addition to the above process, all node servers
continually execute the optimistic consensus algo-
rithm originally introduced in (Hasebe et al., 2011)
in parallel to agree on the current central server. If the
central server fails, according to the failure detector
installed at each node server and the consensus algo-
rithm, another node server will become the new cen-
tral server. (In this sense, the central and node server
are hereinafter referred to as the primary and backup,
respectively.

4.2 Fault Tolerant Mechanism

The proposed fault tolerant mechanism in the traffic
management system is realized by three processes.

1. Failure detection

2. Periodic execution of the optimistic consensus al-
gorithm of (Hasebe et al., 2011)

3. Primary-backup communications

4.2.1 Failure Detection

Failure detectors are popular applications that are re-
sponsible for detecting server failures or crashes in
a distributed system. Our proposed system is based
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on the usual heartbeat-style technique; i.e., each node
periodically transmits its own heartbeat packet while
simultaneously monitoring the heartbeat packets re-
ceived from other servers. If a heartbeat is not ob-
served within a threshold time interval, the receiver
considers the sender to have failed.

4.2.2 Optimistic Consensus Algorithm

The agreement algorithm decides which server is cen-
tral among node servers. According to this algorithm,
a value to be agreed upon is proposed by a server
called the coordinator. The coordinator is in charge of
a server with the lowest server ID among the servers
judged to be normal. The coordinator proposes the
role of each server, and each server agrees with the
proposal. A proposed value is created so that any one
of the servers judged to be normal can be set as the
central server and other servers are usual node servers.

4.2.3 Primary-backup Communications

Primary backup communication replicates the state of
the central server to other node servers. This com-
munication also receives the request sent by the pas-
senger, calculates the operation schedule, and returns
the response. The state update is transmitted from the
central server to the other servers. Here, the state up-
date includes the passengers’ requests that have been
received so far, the latest operation schedule, and the
schedules distributed so far to each node server. In
addition, the latest schedule is delivered by this com-
munication.

4.2.4 Behavior of Vehicles

Each lead vehicle informs the node server that it has
arrived at the node and receives an instruction from
the node server. In particular, when arriving at the
node, if the node server is out of order, the lead ve-
hicle runs on a predetermined emergency route while
considering the destination of the present passenger in
travelling to another node. The vehicle then receives
the latest schedule and continues operation.

S EXPERIMENTS WITH
IMPLEMENTATION

To verify the correctness of our proposed mechanism
and to demonstrate the availability with various types
of server and network failures, we conducted ex-
prements with our current prototype implementation.
The modules described in the previous section behave

independently and communicate with each other by
means of asynchronous message passing. To imple-
ment these concurrent processes, our prototype was
developed by Scala (Odersky et al., 2008). In par-
ticular, the interprocess communications were imple-
mented by means of Akka, which is a Scala Actors
library.

5.1 Experimental Setup

The experiments were conducted on 12 identical PC
servers, each of which was equipped with Intel Xeon
CPU E3-1220L V2 2.30 GHz, two HDDs with 1TB
capacity, and 4GB of memory. The OS is Ubuntu
16.04.3 LTS. Each server was connected to a sin-
gle switch via a 100Base-T network adapter. In our
implementation, each node server, lead vehicle, and
trailer was implemented as a single actor.

In this experiment, we assumed that there were
7 node servers, 2 lead vehicles, and 3 trailers in the
transportation system. The failure detector transmit-
ted the heartbeat every 10 seconds and confirmed the
heartbeat received every 20 seconds. The agreement
algorithm executed every 60 seconds and the upper
limit time for the coordinator to wait for replies was
20 seconds. In addition, usual network delay was
mimicked by generating artificial random delay up to
5 seconds for all communications.

As examples of possible failures in real systems,
we considered the follwoing four cases.

Case 1. Failure of the majority of nodes: four node
servers (Server 1-4), including the primary, fail at
the same time.

Case 2. Network delay: communication delay oc-
curs in the network between two groups of node
servers, Servers 1-4 and 5-7, and then the system
recovers.

Case 3. Network partitioning: network partioning
occurs, splitting the node servers into two groups,
Servers 1-4 and 5-7, and then the system recov-
ers.

Case 4. Failure to receive operation schedule: a
lead vehicle that arrived at a node fails to receive
the operation schedule from the node server.

5.2 Experimental Results

5.2.1 Case 1: Failure of the Majority of Nodes
Fig. 3 illustrates the behavior of the system when the
majority of node servers (Servers 1-4) fail and the

system recovers after a lapse of 30 and 300 seconds,
respectively.
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Figure 3: Case 1. failure of the majority of nodes.
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Figure 4: Case 2. network delay.

In this experiment, after 60 seconds from the fail-
ure, the consensus algorithm is executed for the first
time after the failure. In this execution, the procedure
of the consensus is continued even though the major-
ity of node servers fail, and then, after 100 seconds
from the failure, Servers 5-7 agree with the value that
makes Server 5 primary and Servers 6 and 7 backups,
and the role of central server was inherited. Further-
more, after 60 seconds from the recovery, the consen-
sus algorithm is executed again in which all servers
including Servers 1-4 participate. As a result, after
20 seconds, agreement is reached by the execution of
the algorithm that makes Server 1 primary and the rest
backups.

5.2.2 Case 2. Network Delay

Fig. 4 illustrates the behavior of the system when
communication delay occurs in the network between
two groups of node servers, Servers 1-4 (say, Group
A) and Servers 5-7 (say, Group B), and then the sys-
tem recovers after a lapse of 30 and 300 seconds, re-
spectively.

As a result of executing the consensus algorithm
immediately after the occurence of delay, agreement
is reached with the value that makes the Server 1 pri-
mary, as before the delay. After 40 seconds, the con-
sensus algorithm is executed independently in each
of Groups A and B. As a result, in Group A, Server 1
becomes primary while Servers 2 and 3 become back-
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Figure 5: Case 3. network partitioning.

ups. On the other hand, in Group B, Server 4 becomes
primary and Servers 5-7 become backups.

Furthermore, in the execution of the next consen-
sus algorithm, since the decision value of the previ-
ous agreement in Group A has not arrived at Group
B caused by the communication delay, the role of the
servers in Group B is not given.

In the subsequent executions of the consensus al-
gorithm, in Group A, the case where roles are not
given because the previous agreed value in Group B
arrives and the case where they agree on the sug-
gested value of Server 1 alternately appear. On the
other hand, in Group B, Server 4 becomes primary
and Servers 5-7 continue to be backups.

As a result, in the period when the communica-
tion delay occurs, although the system configuration
often changes, there is no time in which the primary
does not exist. Also, after recovering from the com-
munication delay, the system immediately returns to
a normal state, where Server 1 becomes primary and
the remaining servers become backup.

5.2.3 Case 3. Network Partitioning

Fig. 5 illustrates the behavior of the system when net-
work partitioning occurs between two groups of node
servers, Servers 1-4 (say, Group A) and Servers 5-7
(say, Group B) and then the system recovers after a
lapse of 30 and 300 seconds, respectively.

After the occurrence of network partitioning, the
consensus algorithm is executed independently in the
two groups. As a result, Server 1 and Server 4 are
chosen as primary. This suggests that although the
consistency of the system cannot be guaranteed, it is
possible to avoid the interruption of services due to
the loss of the central server. When recovering from
the network partitioning, after a lapse of 360 seconds,
the consensus algorithm is executed by all servers,
and after 20 seconds, they reach the agreement that
returns the system to the state before the occurence of
the failure.
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Figure 6: Case 4. failure to receive operation schedule.

5.2.4 Case 4. Failure to Receive Operation
Schedule

Fig. 6 illustrates the behavior of the system when
Lead vehicle 1 arrives at the node where the server 5 is
located after a lapse of 55 seconds. In this experiment,
Lead vehicle 1 tries to receive the operation schedule
from the server in 4 seconds immediately after arrival,
but could not receive it due to a failure of the server.
Therefore, this process is repeated five times in suc-
cession. Still, because the vehicle could not receive
the operation schedule, it moves to another certain
node in order to try to receive the operation sched-
ule from another server. As a result, it can be avoided
that the vehicle keeps waiting under the failed server,
and the operation of the vehicle can be continued.

In addition, Lead vehicle 1 arrives again at the
same node after 259 seconds, but similarly it was
unable to receive the operation schedule in the first
4 seconds, and repeatedly waited for reception five
times and moved to another node again. Also, for the
Lead vehicle 2, after arriving at the same node, it be-
haves similarly to the Lead vehicle 1 without termi-
nating the transportation service.

6 CONCLUSIONS AND FUTURE
WORK

We proposed a fault-tolerant mechanism for the traffic
management system of a last-mile transportation ser-
vice. The basis of our mechanism is to use a primary-
backup replication technique. More precisely, one
of the node servers is selected as the central server
and the other servers periodically receive state-update
messages, thereby allowing another node server to
take over when the central server fails. In particular,
the primary-backup replication used in this study is
an optimistic version previously introduced (Hasebe
et al., 2011). This makes it possible to tolerate var-
ious patterns of failures, including the simultaneous

failure of the majority of servers and network parti-
tioning.

We are currently conducting demonstration exper-
iments using golf carts to realize this transportation
system. In future work, we will investigate the trans-
portation system further to refine our implementation
in experiments.

REFERENCES

Defago, X. and Schiper, A. (2004). Semi-passive replica-
tion and lazy consensus. Journal of Parallel and Dis-
tributed Systems, 64(12):1380-1398.

Dijkstra, E. W. (1974). Self-stabilizing system in spite
of distributed control. Communication of the ACM,
17(11):643-644.

Dolev, S. (2000). Self-Stabilization. MIT Press.

Dolev, S., Kat, R. 1., and Schiller, E. M. (2010). When con-
sensus meets self-stabilization. Journal of Computer
and System Science, 76(8):884-900.

Hasebe, K., , Tsuji, M., and Kato, K. (2017a). Deadlock
detection in the scheduling of last-mile transportation
using model checking. In I5th IEEE International
Conference on Dependable, Autonomic and Secure
Computing.

Hasebe, K., Kato, K., Abe, H., Akiya, R., and Kawamoto,
M. (2017b). Traffic management for last-mile public
transportation systems using autonomous vehicles. In
IEEE 3rd International Smart Cities Conference.

Hasebe, K., Nishita, N., and Kato, K. (2014). Highly
available primary-backup mechanism for internet ser-
vices with optimistic consensus. In /IEEE Third Inter-
national Workshop on Cloud Computing Interclouds,
Multiclouds, Federations, and Interoperability, pages
410-416.

Hasebe, K., Yamatozaki, K., Sugiki, A., and Kato, K.
(2011). Self-stabilizing passive replication for inter-
net service platforms. In 4th IFIP International Con-
ference on New Technologies, Mobility and Security.

Odersky, M., Spoon, L., , and Venners, B. (2008). Program-
ming in Scala. Artima.

Schneider, F. B. (1990). Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299-319.

Stodden, D. (2007). Semi-active workload replication and
live migration with paravirtual machines. In Xen Sum-
mit, Spring 2007.

557



