
Assessing the Impact of Measurement Tools on Software

Mantainability Evaluation

Lerina Aversano and Maria Tortorella
Department of Engineering, University of Sannio, Benevento, Italy

Keywords: Software Metrics, Software Quality, Measurement, Evaluation.

Abstract: A relevant aspect of development and maintenance tasks is the evaluation of the software system quality.

Measurement tools facilitate the measurement of software metrics and application of the quality models.

However, differences and commonalities exist among the evaluation results obtained by the adoption of

different measurement tools. This does not allow an objective and unambiguous evaluation of a software

product quality level. In this direction, this paper proposes a preliminary investigation on the impact of

measurement tools on the evaluation of the software maintainability metrics. Specifically, metrics values

have been computed by using different software analysis tools for three software systems of different size.

Measurements show that the considered measurement tools provide different values of metrics evaluated for

the same software system.

1 INTRODUCTION

The software quality concept has evolved over time,

and includes many important requirements for a

correct product implementation, use and

maintenance. Therefore, the good quality of a

software products is an important requirement for

adopting and/or maintaining it. In this direction, the

availability of a quality models supporting software

engineer during their evaluation activities is very

important, in particular if they permit an objective

evaluation of the quality level of a software product.

In this context, the software analysis tools make

easier the difficult task of software metrics

evaluation and the quality models application. For

this purpose, many software measurement tools have

been developed. They have different characteristics

with reference to the programming languages they

analyze and software metrics they evaluate, and the

evaluator is often confused to identify the tool that

better addresses his/her needs. In addition, an

objective evaluation of some quality attributes is

difficult to obtain, even when a automatic

measurement tool is adopted. Indeed, differences

and commonalities exist among the evaluation

results obtained by the adoption of different

measurement tools. In this direction, this paper

proposes a preliminary investigation of the impact of

a set of measurement tools on the assessment of

software maintainability analysing diversity existing

among the different tools. Specifically, different

software measurement tools have been analysed

with the aim of understanding if their use brings to

an equivalent evaluation of the maintenability

characteristics. In particular, the analysis involved

the assessment of three different size software

systems. Overall, the results shows that the

considered measurement tools provide different

values of the metrics evaluated for the same

software system, bringing different maintenability

evaluations on the basis.

Next section of the paper describes some related

works. Section 3 illustrates the plan of the study

executed. Section 4 discusses the evaluation results,

and final considerations are given in the last section.

2 RELATED WORKS

In literature many software metrics are defined for

assessing the quality of software systems. Metrics

can be used for addressing different software

management tasks, such as software quality

assessment, software process improvement, and so

on. They can be measured by analyzing software

artefacts, such as source code.

Examples of the most popular metrics are;

number of lines of code (LOC), that is the simplest

392
Aversano, L. and Tortorella, M.
Assessing the Impact of Measurement Tools on Software Mantainability Evaluation.
DOI: 10.5220/0006793003920397
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 392-397
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

source code metric; the cyclomatic complexity,

representing an internal complexity of software

modules, and it is a good indicator to assume for

identifying the presence of buggy modules; those

ones of the CK metrics suite (Chindamber and

Kemerer, 1994), which indicate features of object-

oriented systems.

However, many widely used software metrics

have not a complete and/or unique definition. For

example, metric WMC (Weighted Methods for

Class), which is part of the CK metrics suite,

represents the weighted sum of the class methods,

but its definition does not suggest how methods are

weighted. The incompleteness of the definitions of

metrics has involuntarily impact on their evaluation.

Several research papers analyze the behaviour of

software metrics measurement tools. An analysis of

tools evaluating OO metrics has been discussed in

(Lincke, 2007), (Lincke et al., 2008). The authors

analysed the tools supporting the CK metrics and

concluded that the analysed measurement tools

output different values for the same metrics. This

was due to the difference in interpretation of the

metric. A similar study has been proposed in

(Codesido, 2011), where the authors observed that

the metrics supported by the tools complement each

other. In (Rutar et al., 2004) five tools making static

analysis of Java source code have been compared,

concluding that the usability of the results is

difficult. A further comparison has been presented in

(Bakar and Boughton, 2012) where the authors again

observed that different tools provide different metric

values for the same software system. In addition, the

values obtained with the manual calculation were

different from those obtained through the use of

tools, as well. Moreover, in (Tomas, 2013), an

analysis of open source tools analysing the Java and

evaluate the supported metrics is discussed, but the

authors do not provide any empirical validation.

The aim of the comparative study proposed in

this paper is to further investigate the behaviour of a

set of selected software measurement tools and

related features, with the aim of understanding if the

evaluation they perform regarding the metrics

interpret and evaluate the same metrics and by

applying the same strategy. Differently from the

previous papers, the presented study focuses on a

wider set of software metric tools.

3 PLAN OF THE STUDY

The execution of the presented study, required a

planning of the activities to be executed. The main

steps are the following:

 Scope Definition. The aim is to investigate the

impact of the software measurement tools on the

evaluation of software quality metrics, with the

goal of verifying if they induce to different

maintenability evaluations. The task required the

selection of the software measurement tools to

analyse. Tools have been compared on the basis of

the metrics they consider and the measurement

they perform. In particular, the paper investigates

on the following question: Do the software

measurement tools impact of the software

maintainability assessment? If yes, what is the

kind of impact they have?

 Metrics Selection. The aim of this step is to select

a comprehensive set of metrics useful for the

evaluation of the software maintenability

characteristics. Its execution has required the

analysis both standards and quality models, and

selected tools. The selected metrics have been

analyzed with reference of the chosen tools for

understanding their impact on the maintainability

measurement.

 Selection of the Software Systems. The step

aimed at choosing the set of software systems to be

analyzed for assessing their maintenability by

using the selected measurement tools. Open source

software systems have been considered. Their

selection had to take into account the license kind,

as many tools are just partially open source and

their source code is not always available. In

addition, just Java software systems were

considered.

 Metric Evaluation. This steps has entailed the

measurement of the chosen metrics by assessing

the considered software analysis tools for

evaluating the selected software systems.

 Analysis of the Results. This step has compared

the values of the software maintenability

characteristics evaluated on a software system by

using the different software measurement tools.

The aim was to verify how similarly the evaluation

tools evaluate the metrics concerning a

characteristics and apply the same rules for

evaluating the same metric.

The following subsections describe with a

greater details the process applied for performing the

selection of the considered software measurement

tools and the selected metrics.

Assessing the Impact of Measurement Tools on Software Mantainability Evaluation

393

3.1 Metric Selection

The study of standards and evaluation models helped

in the identification of metrics, features and sub-

features useful for evaluating by the software

maintenability by using the considered software

analysis tools.

The considered metrics have been selected by

taking into account which metrics the chosen

software measurement tools could evaluate. In

particular, the considered metrics can be grouped as

it follows:

 Dimensional Metrics: LOC (Lines of Code),

TLOC (Total Lines of Code), NOP (Number of

Packages), NOM (Number Of Methods), MLOC

(Medium LOC per method), NOA (Number Of

Attributes), etc.

 Object Oriented Metrics used are the object

oriented metrics proposed by Chidamber and

Kermerer in 1994 (Chidamber and Kemerer,

1994), called CK Metrics, are considered. Some

examples are: WMC (Weighted Methods for

Class), CBO (Coupling between Objects), RFC

(Response For Class), LCOM (Lack of Cohesion

of Methods), DIT (Depth of Inheritance Tree),

NOC (Number of Children) (Henderson-Sellers,

1996).

Table 1: Maintainability metrics.

Analyzability

LOC

Stability

LOC

Class&

Interface
D

CC

NOA

Changeability

NOC

Testability

NOC

LCOM LOC

CC DIT

3.2 Measurement Tools

The software analysis tools to be considered were

chosen among the most used open source systems

used for measuring software metrics. Open source

and freeware analysis tools were considered for

permitting their adoption without spending limits

In addition, the tools were chosen also on the

basis of the programming language they could

analyse and evaluate. In particular, as the results of

the measurements to be performed have to be

compared, all the chosen tools need to analyze the

software systems written by using the same

programming languages.

The considered software systems perform a scan

of the code and identify eventual errors in the code

in an automatic way. They also allow the analysis of

the code and automatic evaluation of a large number

of metrics. The search of a suitable set of software

tools was executed by making a free search on the

internet. More than forty software analysis tools

were identified in the site SourceForge.net. In order

to compare them, only the tools analysing Java

software code were taken in consideration. Their

recorded characteristics were: Name, home page

link, license type, availability, supported

programming languages, operating supported

system/environment and evaluated metrics. In the

end of this preliminary analysis, nine software

analysis tools were selected and they are:

 Eclipse Metrics Plugin 1.3.6 A metrics

calculation and dependency analyzer Eclipse

plugin for (http://easyeclipse.org/site-

1.0.2/plugins/metrics.html)

 CCCC A command-line tool. It analyzes C++

and Java files and generates reports on various

metrics. (http://cccc.sourceforge.net/)

 Understand A reverse engineering, code

exploration and evaluation metrics tool for

different programming languages. It provides a

collection of metrics. (https://scitools.com/)

 JArchitect A static analysis tool for Java

evaluating numerous code metrics, and allowing

for some metric visualization.

(http://www.jarchitect.com/)

 Stan4j An Eclipse plug-in that allows for

analysis of the dependencies between classes

and packages, and evaluates code metrics.

(http://stan4j.com/)

 CodePro Analytix An Eclipse plug-in, offered

by Google and regarding software quality

improvement and reduction of development

costs. It provides support for code analysis,

dependency analysis and metric measurement.

(https://marketplace.eclipse.org/content/codepro

-analytix)

 LocMetrics A freeware simple tool, used to

measure the size of a software program by

counting the number of lines in the source code.

(http://www.locmetrics.com/)

 SourceMonitor a tool for code exploration,

including the measurement of a set of metrics

related to the identification of complexity.

(http://www.campwoodsw.com/sourcemonitor)

 CodeAnalyzer A Java application for C, C++,

Java, Assembly, Html. It calculates metrics

across multiple source trees as one project.

(http://www.codeanalyzer.teel.ws/)

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

394

4 EVALUATION

The metric values evaluated using the measurement

tools have been used to analyze the Maintenance

feature. For such analysis, SimMetrics 1.0 software

has initially been considered. In particular, as it can

be seen from Figures 1 and 2 and Table 2,

LocMetrics and CodeAnalyzer allow the measure of

a lower number of metrics respect the others.

Figure 1: Maintainability of SimMetrics 1.0.

On the other hand there are tools that provide

Maintainability values of not too distant, such as

Metrics, JArchitect, Stan4j and CodePro. The first

pair gives a value around 2, and the other two tools

instead a value around 1.7. As it can be seen from

Figure 2, the values of Metrics and JArchitect are

quite similar.

To further investigate the differences in the

metric values of the various tools of measurement,

the analysis has been focused only on the tools that

provide four or more metrics together, that are

Metrics, Stan4j, JArchitect, CodePro Analityx and

Understand. The results of the for SimMetrics 1.0

are in Table 2.

As Figure 1 indicate, Metrics and Stan4j bring to

a Maintainability value near to 2.0, JArchitect brings

to a value of 2.77 while Understand and CodePro

Analytix provide a value near to 1.60.

In particular, JArchitect supplies the highest

maintainability index because it has a Stability Index

higher than others, this is due to a value of the LOC

metric much lower than others, which positively

influences the evaluation of the characteristic being

considered.

Indeed, as already mentioned the LOC metric

obtained with Metrics is equal to 2038 while for

JArchitect it is 1191, therefore this conduct to a

different evaluations of the Analyzability and of the

Maintainability.

Analyzability

Stability

Changeability

Testability

Figure 2: Overall maintainability metrics for SimMetrics 1.0.

Assessing the Impact of Measurement Tools on Software Mantainability Evaluation

395

Table 2: metric values of the maintainability metrics.

Tools/

Metrics
Metrics Stan4j Jarchitect CodePro Understand

Analyzability

LOC 2238 2467 1191 2238 2237

Class&

Interface
47 47 47 47 47

CC 1,63 1,36 1,86 1,55 1,53

NOA 2,77 3,64 3,69 2,5 n/a

Changeability

NOC 0,61 0,53 0,55 0,74 0,61

LCOM 0,28 5,49 0,28 n/a 46,46

CC 1,63 1,36 1,86 1,55 1,53

Stability

D 0,38 0,42 0,14 0,19 n/a

LCOM 0,28 5,49 0,28 n/a 46,46

Testability

NOC 6,05 6,79 6,72 5,23 6,39

LOC 2238 2467 1191 2238 2237

NOC 0,61 0,53 0,55 0,74 0,61

DIT 1,71 1,47 1,49 2,48 1,68

For Tool Metrics and Stan4j, it can be observed

that they assume a quite similar to Maintainability

value. This is due to the fact that Metrics has assume

Analyzability and Stability values higher than

Stan4j, but it reports a lower Changeability value

respect to Stan4j.

In case, instead of the CodePro and Understand

tools, they assume Maintainability value quite

similar because they have a almost equal values for

the metrics. The difference is due to the two metrics

that are not evaluated by Understand, D and NOA,

and by CodePro which is LCOM. Conversely,

Understand provides a very high value in the case of

LCOM metric that weighs unmatched metrics.

A deeper evaluation has been performed on 20

software systems to understand if emerged

differences related to SimMetrics.

Observing the indexes it is possible to observe that

the Maintainability obtained with Metrics and

Stan4j, report the same differences emerged with

SimMetrics assessment.

Only in the case of JGraph software evaluation the

values of the two tools produce an almost similar

index (Metrics 2.08, Stan4j 2.06).

Instead, comparing the results obtained using

Metrics and JArchitect tools in can be observed in

the first graph of Figure 3 that the evaluated

software do not always have different values, but

going to observe the second graph of Figure 3 it may

be noticed that some software has almost the same

indices as iReport, EasyMock and Judo software

with a value of 2.21.

5 CONCLUSIONS

Have been discussed and reasoned about for years,

but only few metrics have even been experimentally

validated.

Nowadays, software engineering managers always

more often needs to deal with quantitative data

regarding the quality of a software system.

Indeed, a number of metrics are generally adopted

and measured during maintenance and evolution

processes to predict effort for maintenance activities

and identify parts of the software system needing

attention.

Figure 3: Maintainability of 20 assessed software systems.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

396

However, a lot of metrics have been discussed

and reasoned about for years, but only few metrics

have been experimentally validated.

Numerous software metrics tools exist that are

used to evaluate the software metrics, however, in

order to use them in practice, it would be necessary

their validation for knowing how they behave and

their evaluation have to be interpreted. The

evaluation presented in this paper showed that

differences exist among the software metrics tools,

at least among those ones that have been

investigated.

The evaluation highlighted that the tools

delivered similar results just for certain metrics. In

the large part of the cases, each tool provides a

different value for each common metric, and this

difference is more evident with the increasing of the

size of the analysed software system. This depends

on the fact that each tool interprets differently the

metrics, calculates them by applying different

rules, and very often do not implement the

evaluation by applying the intended definition. the

work also analyzed how the existing differences in

the values of the metrics evaluated with different

tools influences the evaluation of higher level

characteristics, such as the maintainability. In fact,

the obtained results have highlighted the very

different maintenability values obtained by applying

the different measurement tools.

A better definition the evaluation process will be

formalized in the future works, which will also aim

at performing a more extensive evaluation by

applying the assessment process to higher number of

case studies.

REFERENCES

S. R. Chidamber and C. F. Kemerer. A Metrics Suite for

Object-Oriented Design. IEEE Transactions on

Software Engineering, 20(6):476–493, 1994.

B. Henderson-Sellers. Object-oriented metrics: measures

of complexity. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1996.

W. Li and S. Henry. Maintenance Metrics for the Object

Oriented Paradigm. In IEEE Proc. of the 1st Int. Sw.

Metrics Symposium, pages 52–60, May 1993.

R. Lincke. Validation of a Standard- and Metric-Based

Software Quality Model – Creating the Prerequisites

for Experimentation. Licentiate thesis, MSI, V ̈axj ̈o,

University, Sweden, Apr 2007.

R. Lincke, J. Lundberg, W. Löwe, Comparing software

metrics tools, Proceedings of the 2008 international

symposium on Software testing and analysis. ACM,

2008.

N. Rutar, C. B. Almazan, J. S. Foster, A comparison of

bug finding tools for Java, In proceedings of the IEEE

15th International Symposium o Software

Engineering, ISSRE, 2004.

I. Lamas Codesido, Comparación de analizadores estáticos

para código java, 2011.

N. S. Bakar, C. V. Boughton, Validation of measurement

tools to extract metrics from open source projects,

IEEE Conference on Open Systems (ICOS), IEEE,

2012.

E. H. Alikacem, H. Sahraoui, Generic metric extraction

framework, Proceedings of the 16th International

Workshop on Software Measurement and Metrik

Kongress (IWSM/MetriKon). 2006.

P. Tomas, M. J. Escalona, M. Mejias, Open source tools

for measuring the Internal Quality of Java software

products. A survey, Computer Standards & Interfaces

36(1): 244-255, 2013.

Assessing the Impact of Measurement Tools on Software Mantainability Evaluation

397

