
Security Considerations for Microservice Architectures

Daniel Richter, Tim Neumann and Andreas Polze
Hasso Plattner Institute at University of Potsdam, P.O.Box 90 04 60, D-14440 Potsdam, Germany

Keywords: Security, Dependability, Cloud Infrastructure, Microservices.

Abstract: Security is an important and difficult topic in today’s complex computer systems. Cloud-based systems adop-
ting microservice architectures complicate that analysis by introducing additional layers. In the test system
analyzed, base layers are combined into three groups (compute provider, encapsulation technology, and de-
ployment) and possible security risks introduced by technologies used in these layers are analyzed. The
application layer focuses on security concerns that concern authorization and authentication. The analysis is
based on a microservice-based rewritten version of the seat reservation system of the Deutsche Bahn using
technologies such as Amazon Web Services, Docker, and Kubernetes. The comparison concludes that the
security of communication in the test system could be significantly improved with little effort. If security is
not considered as an integral part from the beginning of a project, it can easily be neglected and be expensive
to add later on.

1 INTRODUCTION

In microservice architectures, a complex system is
split into multiple, small and mostly independently
operating components, which communicate only via
well-defined interfaces. This allows each compo-
nent to be developed, tested, and scaled independently
((Richardson, 2017; Newman, 2015; Horsdal, 2016;
Fowler, 2016)). While microservice architectures can
reduce the complexity of a given system, it usually in-
troduces – in comparison to monolithic applications –
additional complexity through dependencies to sup-
porting technology e.g. for deployment, scaling and
management of containerized applications. In addi-
tion, the use of additional technologies increases the
surface attack area ((Dragoni et al., 2017)).

To get an overview of technologies dependencies
that a introduced in cloud-based applications that
adopt a microservice architecture, we built an appli-
cation based on Amazon Web Services, Docker, and
Kubernetes, which is experimental, microservice-
enabled reimplementation of the electronic seat reser-
vation system of the Deutsche Bahn. It consists of a
customer component (responsible for managing login
data), a seat component (providing queryable train
schedules and available seats) and a booking compo-
nent (managing all booking data). Additionally, each
of these components is backed by a separate data-
base. The front-ends were developed for two display

devices (single-page web/mobile application and
ticket machine) for which four additional services
were introduced (two front-end services and two
Backend-for-Frontend services).

Our test system is deployed to Amazon Web Ser-
vices (AWS). AWS introduces a variety of additio-
nal layers into the system: Firstly, the actual physical
computers in an AWS data center. This is followed by
three core AWS compute resources: Elastic Compute
Cloud (EC2)1, which provides and manages virtual
machines; Elastic Block Storage (EBS)2, which pro-
vides networked data storage volumes to EC2 instan-
ces; and Virtual Private Cloud (VPC)3, which offers
isolated networks for EC2 instances. Inside AWS, the
test system consists of several EC2 instances. All EC2
Kubernetes nodes run the Kubernetes node adminis-
tration software, responsible for further running ot-
her software on the node. The other important piece
of software running on Kubernetes nodes is Docker,
which manages the individual containers used to run
the actual software deployed by Kubernetes.

To simplify the analysis, we split our testbed into
three base layer groups: compute provider, encapsu-
lation technology and deployment. The highest layer,
the application layer, is the most complex layer in the

1https://aws.amazon.com/ec2/details/
2https://aws.amazon.com/ebs/details/
3https://aws.amazon.com/vpc/details/

608
Richter, D., Neumann, T. and Polze, A.
Security Considerations for Microservice Architectures.
DOI: 10.5220/0006791006080615
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 608-615
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



system. Our focus was to secure the communication
between individual application components (authen-
tication and authorization).

2 THE BASE LAYERS

In this section, the base layers – all layers except the
application layer – are analyzed. Since multiple lay-
ers often work together to provide one function, the
layers have been organized into the three groups com-
pute provider, encapsulation technology and deploy-
ment. Following that comparison, the security of the
chosen technologies is analyzed.

2.1 Technologies for Layer Groups

As the technology used in each layer can directly im-
pact its security analysis, we first compare multiple
alternative technologies for each layer group. Our test
system’s layers are grouped as follows:

The compute provider group consists of all AWS
related layers and generally provides some kind of
computing infrastructure consisting of either phy-
sical or virtual machines, some networking solu-
tion, and some file storage system.

The encapsulation technology group mainly con-
sists of the Docker layer and the Weave layer.
Both can be used independently of each other;
here, they work together to provide a distributed
runtime environment for containers. This group is
responsible for isolating services from each other
so they cannot interfere with each other (except
by predefined communication).

The deployment group contains the Kubernetes lay-
ers and is responsible for taking software in source
or binary format and ensuring its execution and
configuration.

2.1.1 Compute Provider

A compute provider is required to provide the infra-
structure to run some software. The core functiona-
lities are: Starting a new machine (based on some
template) and connect it to some network. This usu-
ally involves assigning some kind of computing capa-
city to the new machine, configuring it and starting it.
There are two types of machines which can be distin-
guished:

To start a physical machine, some hardware is allo-
cated and configured. In some situations, this may
involve purchasing and installing the hardware be-
forehand.

A physical machine itself can run multiple virtual
machines. Starting a virtual machine usually in-
volves allocating some capacity on an existing
physical machine and then starting it from some
predefined image.

Another important classification is the type of pro-
vision: A data center owned by the company plan-
ning to use the compute provider, a data center opera-
ted by a third party, or a cloud provider (provider of
mostly virtual machines with the additional restriction
that new machines can be requested in an automated
fashion, using an API).

Since cloud providers are much more modern
than the data center-based approaches, they were the
technology of choice for our testbed. The most com-
monly known commercial cloud providers are AWS,
Google Cloud Platform (GCP)4 and Microsoft Azure5

((Coles, 2017)). The most popular self-hosted cloud
provider is OpenStack6 ((Buest, 2014)), although it is
also offered in hosted form by various third parties.
Even though the cloud providers are mostly equal in
functionality, AWS was chosen for two reasons: AWS
was by far the largest cloud provider ((Coles, 2017)),
and it was also the cloud provider of choice of Deut-
sche Bahn, our project partner.

2.1.2 Encapsulation Technology

Encapsulation could be achieved by running each ser-
vice on a separate machine. The decision to use a
separate encapsulation layer was made to achieve a
higher degree of flexibility. In microservice architec-
tures services usually are very lightweight and may
only run for a short period of time. This makes for
example the use of machines provided by AWS une-
conomical: AWS bills at least one hour for a started
instance and even the smallest EC2 instance type is
was too large for a single service. Therefore, an en-
capsulation technology which allows running multi-
ple services on one EC2 instance was needed.

On modern operating systems, there are generally
two different encapsulation technologies:

VM-based encapsulation Each encapsulated pro-
cess runs in its own virtual machine. This involves
some overhead, since hardware such as storage
devices needs to be simulated. Since a virtual ma-
chine requires an entire operating system running
inside it, they are generally rather heavy-weight.

Container-based encapsulation Operating system-
provided methods are used to isolate processes

4https://cloud.google.com/
5https://azure.microsoft.com/en-us/
6https://www.openstack.org/

Security Considerations for Microservice Architectures

609



on the host system. This imposes a smaller over-
head than a VM-based approach and also allows
resources to be easily shared between encapsula-
ted processes or with the host. As a limitation,
only encapsulating software for the same opera-
ting system as the host is supported.

Each technology has several advantages and disad-
vantages; the most important arguments are listed be-
low:

(a) VM-based solutions provide greater isolation than
container-based solutions. A vulnerability in the
encapsulated software could thus have a greater
impact when using containers.

(b) Container-based solutions have a lower overhead,
which allows for more efficient usage of compu-
ting resources ((Felter et al., 2015)).

(c) VM-based solutions can run software indepen-
dently from the host operating system, whereas
container-based solutions only support software
written for the host operating system.

(d) There is an abundance of tools, infrastructure,
and pre-built software available for mainstream
container-encapsulation technology. This is not
necessarily applicable for VM-based solutions.

For our testbed, the choice fell on Docker – a
container-based approach –, which has been widely
used in IT projects in recent years and for which a lot
of tools and pre-built software is available.

One further layer is part of the encapsulation group:
The networking layer. If containers or virtual ma-
chines are used, multiple network addresses (one for
each encapsulated piece of software) are needed. Ad-
ditionally, it may is desirable to allow encapsulated
applications to communicate with each other but nit
with the machines they are running on. As such, a
separate network is usually required for encapsula-
ted applications. Some technologies require special
support from the host’s networking hardware, whe-
reas others build so-called overlay networks ((Galuba
and Girdzijauskas, 2009)) where each machine runs a
special software which wraps network packets des-
tined for another machine with some metadata and
sends the wrapped packets to the other machine using
a physical network.

Our testbed uses Weave Net that provides a virtual
network, available on all nodes, which is used by the
software deployed by Kubernetes to communicate.

2.1.3 Deployment

Deployment refers to the action of taking a piece of
software, configuring it, and ensuring it is running on

some machine. While this can be done “by hand”,
an automated system was required to allow smooth
operation of the testbed and avoid an error-prone, ma-
nual process: The project’s continuous integration in-
frastructure required setting up entirely new environ-
ments, each with about half a dozen services.

There are several technologies which can be used
to distribute containers among multiple nodes, with
popular choices being Docker Swarm7 and Kuberne-
tes.

2.2 Security Evaluation of Base Layer
Technologies

Given our testbed, we shortly discuss selected secu-
rity aspects of the chosen base layer technologies.

2.2.1 Compute Provider

As the data center is managed by Amazon, the se-
curity there cannot be influenced by its customers.
However, Amazon states that its data centers comply
with various commercial and governmental security
guidelines ((Amazon Web Services, 2017)) such as
PCI DSS Level 1 (Payment Card Industry Data Se-
curity Standard). Among others, PCI DSS requires
a) “Restricting physical access to cardholder data”
(which, in the context of AWS, means that physi-
cal access to the actual hardware must be restricted),
b) “Track and monitor all access to network resour-
ces and cardholder data” and c) “Regularly test secu-
rity systems and processes” ((PCI Security Standards
Council, 2016)). Given this certification and others,
for the scope of this analysis it can be assumed that a
AWS data center and hardware is set-up and managed
in a secure manner.

AWS allows the modification of resources by
using either a web interface (AWS Management Con-
sole) or an API. Access to the Management Console
is secured using a username and password and, de-
pending on the configuration, a two-factor authenti-
cation token. Accessing the API requires an access
key. AWS offers a fine-grained permission system
and the CloudTrail8 service which, if configured, re-
cords all access to AWS resources along with which
user accessed the resource and how they authenticated
to do so.

AWS allows the creation of detailed rules for com-
munication between EC2 instances. This feature is
used extensively in the test system. Figure 1 shows
inbound network rules for an ingress node – which
ports are open is tightly restricted with only those ab-

7https://docs.docker.com/engine/swarm/
8https://aws.amazon.com/de/cloudtrail/

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

610



Figure 1: Screenshot of the inbound network rules
of an ingress node: The ingress node is part of three
security groups: The HPI-Internal-SSH security group
(sg-63995708) allows SSH access from the bastion ser-
ver (sg-ac06c6c7) and any ingress nodes. The HPI-Kube
security group (sg-0234f469) allows communication bet-
ween all Kubernetes nodes. The HPI-Kube-Ingress security
group (sg-61408f0a) allows ingress nodes to receive net-
work requests from the bastion server as well as members
of the HPI-Internal-SSH security group.

solutely necessary to operate the test system being
made available.

The EC2 instances should be secured as any other
Linux server, however for simplicity we limited our-
selves to just a small number of steps: a) we relied on
Amazon VPC to act as a firewall instead installing one
on-machine, b) we logged-in into a non-root account
using the sudo program for privileged operations, and
c) we have disabled password-based SSH access.

2.2.2 Encapsulation Technology

The encapsulation technology group contains two
layers, Docker and Weave Net. Both were used in
their default configuration: Docker allowed certain
users full access to the computer on which it is instal-
led, as it is required by Kubernetes. Weave Net was
configured and managed by Kubernetes. Security-
wise, the Weave Net default configuration could be
improved by specifying a password to encrypt com-
munication between the Weave Net instances running
on each node.

2.2.3 Deployment

Kubernetes and Weave Net provide one network to all
applications running in Kubernetes, allowing them to
communicate without restrictions by default. By em-
ploying so-called Network Policies, communication
can be limited to specific applications (similar to the
inbound network rules of AWS VPC).

The Kubernetes API server allows the creation
and modification of resources in the Kubernetes clus-
ter. Kubernetes 1.5 – the current version when the
testbed was initially set-up – provides very coarse-
grained access control mechanisms (essentially either

full or no access to the cluster, the API server even
provided an unauthenticated and unencrypted end-
point); This changed with Kubernetes 1.6, which in-
troduced Role-Base Access Control (RBAC), a fine-
grained permission system.

3 THE APPLICATION LAYER

The application layer contains the individual appli-
cation components and is the most complex layer in
the test system. The security analysis of this layer
will focus on securing the communication between
those individual components. To simplify that analy-
sis, the application components are grouped together
into another set of layers, based on how information
flows through the system.

The most important aspect of securing the com-
munication between application components is pre-
venting unauthorized access, which usually involves
the processes of authentication and authorization.

3.1 Authentication and Authorization
Methods

Various methods exist to implement authentication
and authorization in IT systems, some common ones
are listed below:

Trust The implemented service trusts that it is only
accessed by those parties who should access it.

Network policy A network policy which prevents all
but authorized parties from communicating with
the service is enforced.

IP-based The service itself makes a decision based
on the IP address where the request to the service
originates from.

Key/token-based An access key, or access token, is
transmitted with each request and only if a known
and correct key is passed, access is granted to the
service.

MAC-based (Message Authentication Code) The
contents of the request, as well as the access key,
are passed through a cryptographic hash function
and then transmitted.

Signing-based & Certificate-based Asymmetric
cryptography is used to sign the request.

Session-based & Password-based The first request
to a service is unauthenticated and initiates the
session. Subsequent requests identify the session
they belong to by, for example, using one of the
previous methods.

Security Considerations for Microservice Architectures

611



Table 1: Authentication Method Summary.

Method
Fine-grained
access control

Secret-
based

Session-
based

Network-
based Stack Level

Trust No No No No N/A
Network policy No No No Yes Network

IP-based Yes No No Yes Network/
Application

Key/token-based Yes Yes, pre-shared No No Application
MAC-based Yes Yes, pre-shared No No Application
Signing-based Yes Yes, asymmetric No No Application
Certificate-based Yes Yes, asymmetric No No Transport

Session-based Yes, within
a session

Yes, after
session start Yes No Application

Password-based Yes
Yes,

pre-shared and
after session start

Yes No Application

To properly compare authentication and authorization
methods and to analyze their applicability for the dif-
ferent communication channels in the next section,
Table 1 gives a summary of all the methods based on
various criteria. Each column corresponds to one of
the criteria listed below:

Support of fine-grained access control classifies
whether a method supports more granular permis-
sions than either no access or unrestricted access.
The addition “within a session” means that
users can gain (exclusive) access to additional
resources valid for the duration of their session.

Secret-based classifies whether a method requires
clients to store and manage some kind of secret.
The following types of secrets are distinguished:

pre-shared A secret which must be known to the
client and server before the initial request.

asymmetric A secret for use with asymmetric
cryptography – the client stores a secret key and
the server recognizes the associated public key
(based on a list of known public keys or using
another level of asymmetric cryptography)

after session start During the initiation of a ses-
sion, a secret is sent to or generated on the
client. This secret is used during subsequent
requests.

Session-based classifies whether a method makes
use of, or requires, sessions.

Network-based classifies whether a method is
network-based.

Stack level classifies at which level in the technology
stack a method operates. Three values are used:

Network The method is implemented as part of,
or relies on, the network.

Application The method is implemented in the
application itself.

Transport The method is implemented in the
transport layer (somewhere between the net-
work and the actual application).

The following investigation of the individual commu-
nication channels is simplified by ordering the diffe-
rent authentication and authorization methods based
on the level of security they provide.9 To avoid dupli-
cating that analysis, a conditional ordering is defined
and given below:
Trust vs. network-based: Since trust provides no

authentication and authorization, network-based
methods are more secure than the trust method.

Network policy vs. IP-based The network policy-
based method is generally preferable, as it is inde-
pendent of the application. The IP-based method
however, has the advantage that it supports fine-
grained access control, so if that is needed, the IP-
based method is the only possible network-based
method.

Network-based vs. secret-based For both methods,
the application itself is vulnerable: If an attac-
ker is able to compromise the application, they
can gain access to secrets available to the appli-
cation and act on behalf of the application, using
the available network interfaces. For the network-
based methods, the network is additionally vul-
nerable: If an attacker gains sufficient access to

9Often multiple methods will be equally applicable to a
channel, in which case the method of choice should be the
most secure authentication and authorization method.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

612



the network, they can impersonate the applica-
tion. For the secret-based method, the secret dis-
tribution mechanism is an additional vulnerability.
Thus, which method is more secure depends on
whether a compromise of the network or the se-
cret distribution mechanism is more likely.

Token-based vs. MAC-based Both methods work
similarly, however for the MAC-based methods
the token is never transmitted over the network,
which decreases the risk of it being intercepted.

Mac-based vs. signing-based A signing-based met-
hod uses different keys on the client and server,
reducing the risk of compromise. Additionally,
depending on the exact implementation, keys can
be generated independently of the server, which
decreases the complexity and attack surface of the
server.

Signing-based vs. certificate-based While they
should offer the same security as signing-based
methods, certificate-based methods have the ad-
vantage of standardization. This standardization
makes it easier to replace an application using the
certificate-based methods and also means a lower
likelihood of introducing security vulnerabilities
compared to implementing custom signing-based
methods.

Session-based A session-based method is usually
used in different situations: It can be used when
using a secret is impossible and identifies one user
over several consecutive requests, but not between
sessions.

Password-based This method is mostly the same as
the token-based method. However, instead of sen-
ding the token on every request, it is sent only on
the first request; afterwards, some kind of session
identifier is sent with each request. This makes it
more secure than the token-based method, as the
risk of leaking the token is reduced.

3.2 Evaluation of Authentication and
Authorization in our Testbed

Our testbed is a simplified reimplementation of the
Elektronische Platzbuchungsanlage (EPA, “electronic
seat reservation and booking system”) of Deutsche
Bahn, that is responsible for managing seat reserva-
tions in trains all across Germany. It consists of:

Customer component This component is responsi-
ble for managing login data. It is mostly unused
in the current project, as it focused on the ticket
purchase and seat reservation process.

Seat component “Seat & schedule component”
would probably be a more appropriate name for
this component, however the name assigned by
the previous project was kept for consistency.
This component provides a queryable schedule of
all trains, as well as the ability to access which
seats are available on a given train.

Booking component This component manages all
booking data: which routes were booked and
which seats are reserved on which trains.

Additionally, each of those three components is bac-
ked by a separate database. The front-ends for those
components were developed for two display devices:
A single-page web/mobile application and a ticket
machine user interface, which was also based on web
technologies and built as a single-page web applica-
tion.

Data Storage Group

Database Database

Core Components
Group

Core 1 Core 2

BFF Group

BFF 1 BFF 2

Front end Group

Front 1 Front 2

Ticket MachineWeb / Mobile

Display 
Devices

(a) (a)

(b)

(c)
(c)(c)(c)

(d) (f) (e) (g)

Figure 2: Overview of Communication Groups: The four
rectangles represent the four communication groups, con-
taining example services illustrated as ellipses. Each colo-
red/labelled arrow represents one communication channel,
with the arrowhead indicating the receiver of the commu-
nication request. The display devices are not part of any
group and are represented as hexagons.

The components of our testbed have been grouped
together in the following groups/layers to reduce the
amount of communication channels which need to be
considered:

Data Storage Group contains only the database
backing the customer, seat and booking compo-
nents. It is only accessed by the core components
group, and there is no inter-group communication
in the test set-up, although that is certainly possi-
ble in other situations.

Core Components Group contains the three core
components, customer, seat and booking. These
are accessed by the BFF group and do access the
data storage group. Additionally, some requests

Security Considerations for Microservice Architectures

613



trigger inter-group communication between the
components in the group.

Backend-for-Frontend (BFF) Group consists of
the two BFFs,(Newman, 2015) one for each
display device. These are accessed directly by the
display devices and communicate with the core
components group, if necessary. No inter-group
communication happens between the different
BFFs.

Front-End Group consists of the static web servers
for the two front-ends. They are accessed by the
display devices as well, however, they perform no
other communication.

As shown in Figure 2, there are seven different com-
munication channels between, within, and with the
four groups. This number is further increased by the
fact that the two display devices have not been com-
bined, as they have different communication patterns
depending on the version: The web/mobile front-end
and BFF are open to the public. In this respect, no
assumptions can be made about the requests sent to
these services. It cannot be assumed that communi-
cation with these services will only take place from
the official application and in the manner intended by
the application developers. The BFF and the fron-
tend must be able to handle all requests, including
those made directly by a malicious third party, cor-
rectly. The opposite is the case with ticket vending
machines: The team controls the hardware and possi-
bly the network that is used for communication with
the frontend and the BFF. Therefore, if necessary, it
can be assumed that the communication from the tic-
ket machine will only take place in the way intended.
But even without this assumption, the hardware of the
ticket vending machine is still controlled by the team
and can be regarded as trustworthy – at least with a
sufficiently secure hardware design – which enables
additional security-relevant operations such as cryp-
tography with pre-shared keys.

The communication channels distinguish themsel-
ves as follows:
(a) This communication channel interacts with

third-party software, therefore the team did not
have full control over the authentication and aut-
horization methods used.

(b) Communication between different core compo-
nents can usually be assumed to happen over a
trusted network.

(c) Communication between the BFFs and core
components is very similar to (b) except that they
may reside on separate networks and that the
BFFs may be considered untrusted since they are
directly accessible from a public network.

(d) Communication takes place over a public net-
work and originates from an untrusted device.

(e) Following the defense-in-depth approach, it was
assumed, that communication takes place over a
public network here as well. However, contrary
to (d), communication originates from a trusted
device.

(f) Once again communication happens over a pu-
blic network from an untrusted device. Since
the front-end services only offer static resources
which must all be publicly accessible due to the
nature of a web application, no authorization or
authentication is required or possible here.

(g) As opposed to (f), resources accessed using this
channel do not have to be publicly accessible. As
such, some form of authorization and authentica-
tion can be implemented if the resources should
remain inaccessible to the public. Similar to (e)
it was again assumed that communication takes
place over a public network.

In total, two authentication and authorization met-
hods were used: Token-based authentication and aut-
horization was used to connect to the database ser-
vers; session-based authentication and authorization
was used for connections between the display devices
and BFFs.

4 CONCLUSION AND
FUTURE WORK

This paper evaluated the security of a microservice
architecture: It first analyzed the security of the base
layers, before focusing on authentication and aut-
horization in the application layer. The practicality
of multiple authentication and authorization methods
was analyzed in the context of a reimplementation of
the Elektronische Platzbuchungsanlage of Deutsche
Bahn.

In comparison to monolithic applications, the use
of cloud-infrastructure (compute provider layer) in-
troduces additional complexity as well as additional
attack vectors. Compared to classic VM-based cloud
applications, technologies introduced in the encapsu-
lation technology layer lead to the fact that more sa-
fety requirements have to be met. Currently, the ana-
lysis of additional security concerns is only limited
to aspects regarding authorization and authentication
(A2:2017; number two of ((Open Web Application
Security Project, 2017)). But an increasing number
of used technologies affects other risks, too: secu-
rity misconfiguration (A6:2017), vulnerable compo-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

614



nents (A9:2017) or insufficient logging and monito-
ring (A10:2017). Also, Dev-ops, a software engineer-
ing culture and practice aimed at unifying develop-
ment and operation that is often used in conjunction
with microservices, introduces non-production envi-
ronment exposure as a microservice-specific risk.

The main conclusions of this paper are that 1) mo-
dern computer systems are very complex, due to the
many layers they are made up from, and 2) security
is hard, takes effort, and should be an important con-
sideration from the beginning of a project instead of
an afterthought. At many points, security measures
were not taken “for simplicity” or because “(human)
resources were unavailable”. While this may have
been acceptable in the test system, a real-world pro-
duct should never be launched with this many issues
or areas of improvement.

We believe this shows very clearly why security is
such a difficult topic: The benefits are hidden and the
costs are high. The implementation of security in se-
veral microservices and in all system levels requires
effort and careful planning. Once a project has star-
ted, security can easily be neglected for more immedi-
ately pressing concerns and may be difficult and even
more expensive to add later. Even if security is a con-
sideration from the beginning, there is often a choice
between complexity and practicality. For example, to
increase security, it would be possible to implement
not only certificate-based authentication and authori-
zation, but network policy-based authentication and
authorization as a second layer of security. However,
this would increase costs and complexity. Although
the certificate-based method is clearly more secure
than the certificate-based method, it is also more com-
plex to implement than a token-based method because
an additional infrastructure is required to manage all
cryptographic keys.

As a final summary, we conclude that security
should be a consideration from the very beginning of
planning a system, to be able to implement effective
and comprehensive security measures throughout the
project – especially if monolithic applications are to
be realized based on microservice applications.

ACKNOWLEDGEMENTS

The authors would like to thank Lena Feinbube, Leo-
nard Marschke, Cornelius Pohl, Robert Beilich, Tim
Basel, Timo Traulsen, Henry Hübler, Dr. Stephan
Gerberding, Wolfgang Schwab, and Ingo Schwarzer
for their support and assistance with this project.

REFERENCES

Amazon Web Services (2017). AWS Cloud Compli-
ance. https://aws.amazon.com/compliance/. (visited
on 2017/07/16).

Buest, R. (2014). Top 15 open source cloud compu-
ting technologies 2014. http://analystpov.com/
cloud-computing/top-15-open-source-cloud-
computing-technologies-2014-24727. (visited
on 2017/07/16).

Coles, C. (2017). AWS vs Azure vs Google Cloud Market
Share 2017. https://www.skyhighnetworks.com/
cloud-security-blog/microsoft-azure-closes-iaas-
adoption-gap-with-amazon-aws/. (visited on
2017/07/16).

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara,
M., Montesi, F., Mustafin, R., and Safina, L. (2017).
Microservices: Yesterday, today, and tomorrow. In
Present and Ulterior Software Engineering, pages
195–216. Springer, Cham. DOI: 10.1007/978-3-319-
67425-4 12.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015).
An updated performance comparison of virtual machi-
nes and linux containers. In 2015 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 171–172. DOI: 10.1109/IS-
PASS.2015.7095802.

Fowler, S. J. (2016). Production-Ready Microservices:
Building Stable, Reliable, Fault-Tolerant Systems.
O’Reilly Media. ISBN: 978-1-4919-6597-9.

Galuba, W. and Girdzijauskas, S. (2009). Overlay Network,
pages 2008–2008. Springer US, Boston, MA. DOI:
10.1007/978-0-387-39940-9 1231.

Horsdal, C. (2016). Microservices in .NET Core: With C#,
the Nancy Framework, and Owin Middleware. Man-
ning Publications. ISBN: 978-1-61729-337-5.

Newman, S. (2015). Building Microservices. O’Reilly Me-
dia. ISBN: 978-1-4919-5035-7.

Open Web Application Security Project (2017). OWASP
top 10 security risks 2017. https://www.owasp.org/
index.php/ Top 10-2017 Top 10. (visited on
2018/01/24).

PCI Security Standards Council (2016). Payment
card industry (pci) data security standard, v3.2.
https://www.pcisecuritystandards.org/document
library?category=pcidss&document=pci dss. (visited
on 2017/07/16).

Richardson, C. (2017). Microservice Patterns. Manning
Publications Co. ISBN: 978-1-61729-454-9.

Security Considerations for Microservice Architectures

615


