Searchitect - A Developer Framework for Hybrid Searchable Encryption

Keywords:

Abstract:

(Position Paper)

Ulrich Habock, Manuel Koschuch, Ines Kramer, Silvie Schmidt and Mathias Tausig
Competence Centre for IT Security, University of Applied Sciences, FH Campus Wien, Vienna, Austria

Symmetric Searchable Encryption, Hybrid Encryption, Privacy Enhancing Technologies, Developer Frame-
work.

In light of the trend towards cloud-based applications, privacy enhancing technologies are becoming increa-
singly important. Searchable encryption (SE) allows to outsource data to the cloud in a secure way, whilst
permitting search functionality on that encrypted data: the host is able to perform search queries on behalf of
the user, but without having access to the encryption keys. We propose Searchitect, a developer framework
which allows to enhance existing cloud-based applications with searchable encryption. Searchitect provides
a ready-to-use client-server infrastructure, which is expandable by custom SE schemes, the server being a
configurable webservice offering searchable encryption as a service (SEaaS). Unlike other searchable encryp-
tion frameworks our approach is hybrid: Searchitect separates the index component from the data encryption
scheme, leaving the application’s own specific encryption paradigm and access control untouched. In this way,
we hope to ease the integration of searchable encryption into already existing cloud-based applications, requi-
ring only the client code to be modified. Further, as searchable encryption is a very active field of research,
we emphasize the experimental character of Searchitect’s framework. It aims at developers keeping track of

recent SE developments, providing an easy deployable solution for testing in public and private clouds.

1 INTRODUCTION

Supported by the trend towards mobile and web appli-
cations, outsourcing data to the cloud is becoming an
increasingly popular solution to provide access from
and to multiple devices or users. In respect of data
breaches reported by the news on an almost daily ba-
sis, e.g. Anthem’s 80 Million (The Guardian, 2015),
Yahoo’s 1 Billion (New York Times, 2016), or the
more recent Equifax breach (Cision PR Newswire,
2017), securing cloud resources from unauthorized
access poses a serious challenge. As a primary coun-
termeasure, many cloud-based services encrypt user’s
data not only in transit but also at rest, hosted in the
cloud. In general, data does not allow to perform me-
aningful operations on it while encrypted. Whenever
a user wants to benefit from services which operate on
her data, providing access to her encryption keys (or
having the cloud-storage provider decrypt the data) is
the only convenient solution to most current approa-
ches. However, such a step has to be considered ca-
refully: on the one hand with respect to the provi-
der’s capability to meet certain security requirements
(i.e., server trust), and on the other hand concerning

Habéck, U., Koschuch, M., Kramer, I., Schmidt, S. and Tausig, M.
Searchitect - A Developer Framework for Hybrid Searchable Encryption (Position Paper).
DOI: 10.5220/0006789402910298

privacy issues in case of key leakage or third-party
access.

Searchable encryption (SE) is a privacy enhancing
technology which allows a server to search on encryp-
ted data without having access to plaintext informa-
tion or the encryption key itself. The server knows
what it does, i.e. processing an encrypted search
query over encrypted data (mostly an index) resulting
in an encrypted outcome, but does not learn anything
valuable about neither the query’s nor the document’s
content. Since the pioneering work of Song, Wagner
and Perrig (Song et al., 2000), dozens of SE sche-
mes have been designed trying to balance usability,
security, efficiency, and scalability, see (Bosch et al.,
2014) or the more recent position paper (Asghar et al.,
2017) for a comparative overview. In spite of the
special attention received by academic research, re-
ception of these schemes in real world applications
is still poor. All SE schemes providing multi user
access are at least of linear complexity in the num-
ber of encrypted items, hence being impracticable at
large scale. Also Searchable Symmetric Encryption
(SSE) schemes, which cover the single user setting,
vary largely with respect to efficiency and compact-

291

In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (loTBDS 2018), pages 291-298

ISBN: 978-989-758-296-7

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

Cloud App — Encrypted
X Application Cloud Storag
(does document encryption
in it's own way)
_____________ —— SE API - add,del,search
RESTful
Searchitect API Searchitect hi
Web Service encr. | Client Library Searchitect
query Framework
iPIugin iPIugin (augments the app's
encryption
SE backend SE by an encrypted
module scheme searchable index)
" (index-related part) e able index,
(index-related part;

customizable

Searchitect Cloud User's device

Figure 1: The Searchitect framework, integrated in an ar-
bitrary end-to-end secured cloud application. Searchitect
acts as an abstraction layer between the application and (the
index-related components of) the custom SE scheme. In
this hybrid way the cloud application is complemented by
search functionality, leaving it’s own way to handle docu-
ment encryption untouched.

ness. Furthermore, many published schemes are in a
rather experimental state and should be used with cau-
tion: although supplied by rigorous security proofs,
the threat model considered is often too restrictive
to capture all consequences of information leakage
as shown by (Zhang et al., 2016), (Liu et al., 2014),
(Naveed et al., 2015), (Cash et al., 2015), (Liu et al.,
2014), and (Grubbs et al., 2016). From the viewpoint
of software developers, the situation is even less sa-
tisfactory. Among sufficiently versatile schemes with
proven security, only few publications report concrete
performance numbers or make their prototype code
accessible to the public. To the best of our knowlegde,
the only open source software libraries implementing
state of the art single user schemes are

e the Clusion Library (Encrypted Systems Lab,
2017), an SSE Java library which provides va-
riations of the schemes from (Cash et al., 2014)
and (Kamara and Moataz, 2017), including a dis-
tributed version of the former based on MapRe-
duce/HADOOP for Amazon AWS,

e the Open SSE library (Bost, 2017), a C++ library
which implements forward and backward secure
SSE schemes from (Bost, 2016) and (Bost et al.,
2017).

Altough there exist experimental SE frameworks
such as Mylar (Popa et al., 2014a), CryptDB (Popa
et al., 2011a), or CloudCryptoSearch (Ferreira and
Domingos, 2013), they either aim at the integration
of searchable encryption into specific environments,
are not designed to be flexible in their SE backend,
or do not provide comprehensive documentation. In
this position paper, we propose Searchitect, a develo-

292

Searchitect
Web Service

search tokenﬁ

@

@ doc IDsg
®d0c ID(s) Cloud
R
- Storage
@doc(s)‘

Cloud-Based Application

Figure 2: Searchitect’s system model for searches. The se-
arch over encrypted indexes is separated from the applica-
tion’s own way to encrypt and host the data collection. Se-
architect’s web service can be either hosted independently
or outsourced to our Searchitect cloud.

per framework which provides a ready-to-use client-
server architecture for index-based searchable sym-
metric encryption.

1. As a hybrid solution, cf. Figure 1 and 2, Sear-
chitect integrates search functionality by not in-
terfering with the application’s own way to handle
end-to-end encryption and access control of plain-
text documents. Instead, Searchitect complements
the application by a customizable infrastructure
for searchable index encryption, the server-side
part of which can (but not necessarily has to)
be entirely separated from the application’s cloud
storage. This allows to apply our framework
to environments with restricted access to server-
side code, e.g. a cloud backup (or any other)
program that just utilizes (arbitrary) cloud stora-
ges. Whenever such separation is desired, Sear-
chitect’s server-side part can be outsourced to our
proposed Searchitect cloud, offering search over
encrypted data as a service.

2. As an extensible solution, Searchitect is not re-
stricted to any specific index-based schemes.
Instead, we foster developers to implement sche-
mes of their own choice and provide testing and
evaluation features within our framework.

3. As an open source solution, client and server-side
code will be made available under an Open Source
Initiative (OSI') approved open source license.
Searchitect will be supplemented by a compre-
hensive documentation, including guidelines and
implementation examples to serve the needs of
application developers, who do not have specific
knowledge of cryptography.

Due to the experimental state of searchable encryp-
tion in general, we strongly emphasize that our (as

Uhttps://opensource.org/

Searchitect - A Developer Framework for Hybrid Searchable Encryption (Position Paper)

any other) SE framework should be used in prototype
software projects only. Until current reasearch has
converged, Searchitect might help developers keeping
track of recent SE developments, providing an easily
deployable solution for testing in public and private
clouds.

The remainder of this paper is organized as fol-
lows. In Section 2 we shortly discuss related fra-
meworks and clarify how our approach differs from
them. Section 3 surveys fundamental notions and pro-
perties of searchable encryption. Section 4 forms the
core of our proposal: it provides a detailed description
of the Searchitect framework, including implementa-
tion details. Finally, we shortly discuss application
use cases and future work in our summary Section 5.

2 RELATED WORK

CryptDB (Popa et al., 2011a), (Popa et al., 2011b), is
a multi-user system that provides an SQL-aware en-
cryption layer on top of SQL databases. To enable
SQL queries over encrypted data, the authors combine
several cryptosystems, each covering a different set
of SQL requirements. In particular, keyword search
is achieved by the word-based SSE scheme of (Song
et al., 2000). However, CryptDB is not under active
development anymore and considered to be broken:
Due to the deterministic character of CryptDB’s en-
cryption (Naveed et al., 2015) were able to recover
more than 60% of patient records from electronic me-
dical databases based on static frequency analysis.

Mylar (Popa et al., 2014a), (Popa et al., 2014b),
is an experimental framework that allows almost se-
amless integration of SSE into web applications that
are built on Meteor (Meteor Development Group Inc.,
2014), a full-stack JavaScript development platform
for web and mobile applications. As an experimental
framework, Mylar is open source and is well docu-
mented, including implementation examples. Howe-
ver, Mylar uses its own multikey SE scheme which is
vulnerable to client-server collusion: (Grubbs et al.,
2016) show that under such a collusion, the server can
perform brute-force dictionary attacks on any past,
present, or future search queries. However, this attack
is disputed by the Mylar research team, (Popa et al.,
2014b).

CloudCryptoSearch (Ferreira and Domingos,
2013) is a less recognized encryption middle-ware
for cloud-based data storage. Though being gene-
ric in its architecture, CloudCryptoSearch comes with
its own SE scheme composed of homomorphic en-
cryption techniques combined with dynamic indexing
mechanisms. The follow-up frameworks IES-CBIR

(Ferreira et al., 2015) and MIE (Ferreira et al., 2017)
concentrate on searchable encryption of images. Ho-
wever, these three frameworks lack rigorous security
proofs of their encryption schemes, as well as a tho-
rough documentation that helps to ease the integration
into software projects.

All above mentioned frameworks follow the ca-
nonical system design, in which searches are served
by the same (cloud) entity that holds the encrypted
data collection. Searchitect’s paradigm is different,
as explained in Section 1, separating the search over
encrypted indexes entirely from the application’s own
way to encrypt and access plaintext documents. This
allows an easy integration of searchable encryption
into environments with restricted access to server-side
source code, for example a cloud backup/storage pro-
gram that only utilizes cloud storages, cf. Section
5. Further, Searchitect is designed to be extensible
in its cryptographic backend, and its web service co-
mes with several logging and measurement features,
cf. Section 4.1. In this way we hope to support de-
velopers with testing and evaluating SSE schemes of
their choice under real-world circumstances.

3 BASICS OF SEARCHABLE
ENCRYPTION

Searchable encryption (SE) is a cryptographic techni-
que that allows to outsource searching over a private
document base to an untrusted proxy in such a way
that as little information as possible is leaked. In its
most restrictive setting a single user, the owner of the
document base, is allowed to write the outsourced
document storage, perform (encrypted) search que-
ries and access requested documents (all of which we
summarize by read). Depending on the access pro-
file of the scheme, defining which entity is allowed
to write and/or read, the scheme uses either symme-
tric or public key primitives, dividing SE in the two
classes

e Searchable Symmetric Encryption (SSE), and

e Public Key Encryption with Keyword Search
(PEKS).

Asin (Bosch et al., 2014), we distinguish between the
basic access profiles

e single writer / single reader (S/S),

e single writer / multiple readers (S/M),

e multiple writer / single reader (M/S), and
e multiple writers / multiple readers (M/M).

Access profiles are interpreted with respect to the
number of involved keys rather than users: A single

293

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

user (S/S) scheme provides a single key for the gene-
ration of search tokens, even if the latter is distributed
among several clients and/or users (with all the as-
sociated consequences for security). A multi-reader
scheme provides several keys for generating search
tokens, one for each user, supplemented by efficient
mechanism for key revokation. Multi-writer schemes
are typically PEKS schemes, distributing ownership
among several users which are allowed to modify the
document base. Searchitect concentrates on symme-
tric schemes, covering the S/S and S/M scenarios, alt-
hough not necessarily restricted to those. However,
and as mentioned in Section 1, Searchitect’s approach
is hybrid. It separates the encrypted search structure
(i.e. the index) from encryption and access mange-
ment of the plaintext database, which is done by the
application utilizing our framework in its own favored
way.

3.1 Common SE Functions

Although some SE schemes such as (Song et al.,
2000), (Shen et al., 2009) or (Boneh et al., 2004) en-
code searchable information into the ciphertext itself,
most of the schemes are index-based. Based on a set
of chosen keywords W = {wy,...,w, }, the document
base D is indexed, either in a forward or backward
manner. Using the owner’s, i.e. writer’s, key, this in-
formation is mapped to an ‘encrypted’ index 7, hiding
information on the keywords in a still searchable way.
Generally, every index-based SE scheme provides at
least the following functionality.

e For initialisation, or setup:

— Keygen(1*): A probabilistic algorithm that, gi-
ven a security parameter A, generates the key
material needed by a user, in symmetric S/S and
S/M schemes a single key k.

— BuildIndex(k, D, W): builds the encrypted in-
dex J over the entire document base D with re-
spect to the keywords in .

e After setup, during operational phase:

— Trapdoor(k,w): Creates an (encrypted) search
query g for a keyword w. This is done locally
on the user’s client, using her key k, and subse-
quently forwarded to the server.

— Search(q,J): The search algorithm for an en-
crypted trapdoor g over the (encrypted) Index
J. This procedure returns encrypted represen-
tations of the matching document identifiers.

Some SE schemes are static, i.e. they do not allow to
modify the encrypted index 7 in an efficient manner.
Such schemes force the owner of the document base

294

to rebuild the encrypted index from scratch after every
change and are therefore impractical for most real-
world applications. Dynamic SE schemes, i.e. those
which allow for an efficient modification of J after
setup, also provide

- Updatelndex(k,op,idp,{w;}): The update
function with respect to a certain scheme-
specific set of operations. For example, op =
add/del adds/removes a document D with iden-
tifier idp and keywords {w;} to/from the en-
crypted index.

3.2 Security of SE Schemes

Informally speaking, an SE scheme is secure if it re-
veals no sensitive information to the untrusted server,
keeping plaintext content of the encrypted documents
and search queries private. However, trading off ef-
ficiency against security almost all practical schemes
leak information to the server: Either the number of
documents matching a query (i.e. the size pattern)
or other partial information on the access pattern (i.e.
the ids of the matching documents) which might be
used to infer the user’s search pattern. Hiding access
and search pattern is a subtle issue. Although there
exist several formal notions to reflect trapdoor, index
and update security, many of them do not capture all
threats that result from the minimal information le-
akage on the above mentioned patterns. Hence the
majority of schemes backed by security proofs are ne-
vertheless vulnerable to file injection attacks (Zhang
et al., 2016), or statistical inference by counting at-
tacks (Naveed et al., 2015),(Cash et al., 2015), or such
attacks which exploit prior knowledge on the user’s
search habit (Liu et al., 2014).

Dynamic schemes are particularly vulnerable to
file injection if they are not forward and backward
secure. Forward security means that previously sent
search token cannot be applied to newly added data,
and backward security prohibits the application of ne-
wly generated search queries to former states of the
document collection. At the time of writing, (Chang
and Mitzenmacher, 2005), (Bost, 2016), (Bost et al.,
2016) and (Stefanov et al., 2014) are the only publis-
hed forward secure schemes, and only (Bost et al.,
2017) supports both forward and backward security.

4 SEARCHITECT FRAMEWORK

Searchitect is a complementary infrastructure to pro-
vide search functionality to existing encrypted web-
applications. Operating on indexes only, Searchitect
separates the search functionality entirely from the

Searchitect - A Developer Framework for Hybrid Searchable Encryption (Position Paper)

SE backend
module upload/modify
index,
i search token
SE backend Searchitect
module Gateway 4>‘
(RESTFul) matching

‘ doc ids

(encrypted)
8 User DB

Configuration

Frontend
(HTTP)

i

SE backend
module

Figure 3: The Searchitect server comprises a RESTful gate-
way, which forwards authenticated requests to its backend
searchable encryption modules.

document storage itself, and serves as an abstraction
layer for the index part of arbitrary SE schemes (cf.
Figure 1). Searchitect consists of two main compo-
nents:

e The Searchitect server, offering a RESTful web-
service which handles the search on the outsour-
ced index, and

o the Searchitect client, which is integrated into the
client software on the user’s device, and which
provides the interface for search queries, index se-
tup and modification.

4.1 The Searchitect Server

Searchitect’s webservice, cf. Figure 3, hosts several
customized Searchitect instances, i.e. SE backend
modules comprised of the scheme specific algorithms
and the encrypted indexes. Besides its web-based
configuration frontend it provides a RESTful gateway
for the client-server interaction, which handles client
authentication and forwarding of the client requests to
their respective backend. Configuration and manage-
ment of a Searchitect instance is done by the owner
via the web frontend: An owner might choose to ap-
ply several copies of the same SE backend module
to experiment with load balancing, or select different
SE schemes to compare their performance. Besides
a certain set of pre-defined SE schemes, as described
in Section 4.4, Searchitect allows to use user-specific
SE modules, and provides a simple access manage-
ment (user addition and revocation) both for single
and multi-user schemes. The Searchitect server offers
logging of server/client activities at different levels of
granularity to facilitate administration and evaluation:

e Basic: Reports access from clients, including the
type of operation (search / update) and size of the
encrypted index over time.

Application

——external APl =4+ ————————————

Hlndexerw

o,

SE SE
scheme scheme
2 3

Searchitect
Client Library

P —
B

upload/modify

index,
search token /
SE

scheme
1

custom SE schemes

Figure 4: The Searchitect client serves as an abstraction
layer to the custom cryptographic SE schemes.

e Advanced: Extends the basic log by timing me-
asurements of server side update and search re-
quest, including the communication cost.

e Complete: Supplements the server side measure-
ments by timing measurements collected from the
clients. This mode allows to identify equivalent
requests over separate SE instances to compare
different SE schemes, if desired.

Besides that, the Searchitect server may also be used
for key distribution of various multiuser SSE sche-
mes, see Section 4.3.

4.2 The Searchitect Client

The Searchitect client, as shown in Figure 4, is a thin
abstraction layer between the application and cryp-
tographic SE schemes. It provides a simple generic
API, which covers basic setup, search and edit com-
mands (Table 1), and handles the communication be-
tween the application, its SE plugins, and the Sear-
chitect webservice. While the client undertakes all
non-specific tasks such as user authentication, log-
ging, indexing plaintext documents and caching chan-
ges, the SE plugins are responsible for the actual cryp-
tographic operations. They implement the scheme-
specific algorithms such as BuildIndex, Updatelndex
and Trapdoor, and translate the generic SE com-
mands into appropriate procedures.

The Searchitect client holds a password-locked
master key, which is encrypted in a semantically se-
cure way to prevent offline dictionary attacks. The
master key is used to unlock the actual key material
for the SE scheme(s) and to authenticate at the ser-
ver. When performing a search, the communication
flow is as follows: The application hands over a se-
arch query to the Searchitect client, which utilizes its
chosen backend SE-plugin to transform the query via
Trapdoor into a search token. If already authentica-
ted, the Client sends the search token along with its

295

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

Table 1: API commands of the Searchitect client (draft).

get/setURL() | retrieves or sets the URL of the Searchitect webservice.
setPwd () | sets the user’s client password, which is used to secure locally stored
key material.
setLog () | controls the client’s logging functions, including distribution of collected

log data to the server.

add/rmDoc (), updateDoc ()

pushChanges ()

adds, removes or updates the index locally, by handing over one or more
plaintext documents.
uploads the locally gathered changes to the Searchitect server.

searchIndex (query)

The actual search function. Creates the keyed search token, sends it to
the server and extracts the document identifiers from its response.

(previously received) access token to the Searchitect
webservice. The server processes the request (again,
using the selected SE backend) and returns the reply
to the client. The client uses its key material to ex-
tract the plaintext list of matching document ids from
the encrypted search reply, handing it over to the ap-
plication. Subquent steps are outside the scope of the
Searchitect framework. E.g., the application might se-
lect some, or all of the document ids to receive either
metadata or the full documents from the cloud storage
and decrypt them with a key that is only known to the
application.

4.3 Security Considerations

To prevent passive eavesdropping and active attacks
on the client-server channel, communication between
the client and the server needs to be secured. We pro-
pose to use Transport Layer Security (TLS) with ser-
ver certificate to establish a secure and authenticated
channel. Subsequent client authentication is done in-
side that secured channel, using a zero-knowlege pro-
tocol such as HMQV (Krawczyk, 2005) and the user’s
master key as client secret. A PKI-free alternative is
to perform a TLS-SRP handshake, (Wu, 1998), using
the user’s password, whitened by the master key, as
SRP’s client credential. Whitening is essential to pre-
vent a curious server from dictionary attacks on the
SRP client verifier.

Symmetric multi-reader schemes require key dis-
tribution. As any other configuration of the Searchi-
tect instance, this can be done via Searchitect’s web
frontend: for instance, the owner’s browser receives
the user’s HMQV public key (or SRP verifier) from
the Searchitect server, and uses this public key to
(EC)-ElGamal-encrypt the symmetric key to be de-
livered. This encrypted key is then returned to the
Searchitect server, which hands it over to the client
when logged in.

One may expand any single user SE scheme to a
multi-user setting, distributing the same trapdoor key
among all users. Once a user is revoked by the ow-

296

ner of the Searchitect instance, the server blocks furt-
her access from that user. As all other client-server
communication remains secure, a revoked user can-
not learn anything about the requests of the others.
Howeyver, such a construction should not be confused
with a real single-writer/multi-reader (S/M) scheme:
it does not prevent a malicious server colluding with a
user, revoked or not, henceforth decrypting the search
token of all others by a dictionary attack.

4.4 Implementation

As can be seen in Figures 3 and 4, the implementation
will consist of at least 4 separate parts:

e The gateway service, which handles client reque-
sts and proxies the search requests to its backends.

e The server backends, implementing one SE
scheme each. They are responsible for actually
storing the search index and acting upon it.

e The client library, acting as a facade for the appli-
cation developers exposing the functionality des-
cribed in Table 1.

e The client backends, which are called by the client
library to create the actual trapdoors for the server.
The SE implementations have to match those of
the server backends.

Our first server and client prototypes will be in Java,
backed by the Clusion Library’s implementation of
a forward-secure variant of Dyn2Lev (Cash et al.,
2014). Extensions to support the schemes from (Bost,
2017) are desirable and translations of the client code
to other languages like C, C++ or Python are plan-
ned thereafter. It should be noted that the modular
construction of Searchitect and the HTTP based com-
munication will allow an interaction between imple-
mentations done in different programming languages
on the server and the client.

To support an easy deployment and testing of the
server part, the microservices architecture will be
provided in a containerized solution using Doc-

Searchitect - A Developer Framework for Hybrid Searchable Encryption (Position Paper)

ker’technology. The source code will be made avai-
lable to the public under an OSI approved open source
license.

S SUMMARY AND OUTLOOK

The main point of Searchitect is to be easily integra-
ted into software products, without requiring a deeper
understanding of the chosen SE schemes by the appli-
cation developer or complex modifications of already
existing programs. Therefore Searchitect focuses on:

1. a comprehesible and easy to use API and docu-
mentation for developers,

2. an expandable framework to new schemes, and

3. an easily deployable and testable solution for pri-
vate and public clouds.

Our first steps will be, as already discussed in more
detail in Section 4.4, the development of the gateway
service and a dummy SE scheme for testing purpo-
ses. Subsequently, we will implement the entire ser-
ver and client architecture, as well as a fully functio-
nal SE scheme in order to provide a proof-of-concept
for evaluation. Searchitect’s approach is generic, and
so is its scope of application. However, due to its hy-
brid design, the typical use cases we are considering
are:

e cloud backup programs, allowing the restoration
of a single file,

e cloud storage programs, allowing retrieval of a
specific file on devices with a constrained network
connection,

e mail user agents, allowing searching for a specific
message while keeping the e-mails encrypted on
the IMAP server,

o stacked filesystem encryption tools, also allowing
retrieval of a specific file on devices with a con-
strained network connection.

We once more emphasize the experimental cha-
racter of our framework. As searchable encryption is
a very active field of research, Searchitect (as any ot-
her SE framework) should be used in prototype soft-
ware projects only.

ACKNOWLEDGEMENTS

Part of our work on the Searchitect project is funded
by Netidee® (Internet Privatstiftung Austria), grant

Zhttps://www.docker.com
3https://www.netidee.at

no. 2099.

M netidee

OPEN INNOVATIONS

REFERENCES

Asghar, S. C. M. R., Galbraith, S. D., and Russello, G.
(2017). Secure and practical searchable encryption:
A position paper. In Australasian Conference on In-
formation Security and Privacy (ACISP 2017), LNCS
10342, pages 266 — 281. Springer Verlag.

Boneh, D., Crescenzo, G. D., Ostrovsky, R., and Persiano,
G. (2004). Public key encryption with keyword se-
arch. In EUROCRYPT 2004, LNCS 3027, pages 506
— 522. Springer Verlag.

Bosch, C., Hartel, P., Jonker, W., and Peter, A. (2014). A
survey of provably secure searchable encryption. In
ACM Computing Surveys, 47(2), pages 18:1-18:51.
ACM.

Bost, R. (2016). Xo¢og — Forward secure searchable en-
cryption. In 23rd ACM Conference on Computer
and Communications Security (CCS’16), pages 1143
—1154. ACM.

Bost, R. (2017). Open symmetric searchable encryption.
https://github.com/OpenSSE.

Bost, R., Fouque, P--A., and Pointcheval, D. (2016). Veri-
fiable dynamic symmetric searchable encryption op-
timality and forward security. In 23rd ACM Con-
ference on Computer and Communications Security
(CCS’16), pages 1143 — 1154. ACM.

Bost, R., Minaud, B., and Ohrimenko, O. (2017). Forward
and backward private searchable encryption from con-
strained cryptographic primitives. In 24rd ACM Con-
ference on Computer and Communications Security
(CCS’17), pages 1465 — 1482. ACM.

Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. (2015).
Leakage-abuse attacks against searchable encryption.
In 22rd ACM Conference on Computer and Commu-
nications Security (CCS’15), pages 668 — 679. ACM.

Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H.,
Rou, M.-C., and Steiner, M. (2014). Dynamic sear-
chable encryption in very-large databases: Data struc-
tures and implementation. In Network and Distributed
System Security (NDSS) Symposium 2014, pages 1 —
16. Internet Society.

Chang, Y.-C. and Mitzenmacher, M. (2005). Searchable
symmetric encryption: Improved definitions and ef-
ficient constructions. In Proceedings of the Third
International Conference on Applied Cryptography
and Network Security (ACNS’05), pages 7442 — 455.
Springer Verlag.

Cision PR Newswire (2017). Equifax announces cyber-
security incident involving consumer information.
Sep. 07, 2017. https://www.prnewswire.com/news-
releases/equifax-announces-cybersecurity-incident-
involving-consumer-information-300515960.html.

297

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

Encrypted Systems Lab (2017). Clusion v0.2.0.
https://github.com/encryptedsystems/Clusion.

Ferreira, B. and Domingos, H. (2013). Searching private
data in a cloud encrypted domain. In Proceedings of
the 10th Conference on Open Research Areas in Infor-
mation Retrieval (OAIR’13), pages 165 — 172. Centre
de Hautes Etudes Interantionales D’Informatique Do-
cumentaire (CID).

Ferreira, B., Leitao, J., and Domingos, H. (2017). Mul-
timodal indexable encryption for mobile cloud-based
applications. In 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,
pages 213 — 224. IEEE.

Ferreira, B., Rodrigues, J., Leitao, J., and Domingos, H.
(2015). Privacy-preserving content-based image re-
trieval in the cloud. In IEEE 34th Symposium on Reli-
able Distributed Systems, pages 11 — 20. IEEE.

Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., and
Shmatikov, V. (2016). Breaking web applications built
on top of encrypted data. In 23rd ACM Conference on
Computer and Communications Security (CCS’16),
pages 1353 — 1364. ACM.

Kamara, S. and Moataz, T. (2017). Boolean searcha-
ble symmetric encryption with worst-case sub-linear
complexity. In EUROCRYPT 2017, Part III, LNCS
10212, pages 94 — 124. IACR.

Krawczyk, H. (2005). Hmqv: A high-performance secure
diffie-hellman protocol. In Advances in Cryptology —
CRYPTO 2005, LNCS 3621, pages 546 — 566. Sprin-
ger.

Liu, C., Zhu, L., Wang, M., and Tan, Y.-A. (2014). Search
pattern leakage in searchable encryption: Attacks and
new construction. Information Sciences, 265:176 —
188.

Meteor Development Group Inc. (2014). Me-
teor: The fastest way to build javascript apps.
https://www.meteor.com.

Naveed, M., Kamara, S., and Wright, C. V. (2015). In-
ference attacks on property-preserving encrypted da-
tabases. In 22rd ACM Conference on Computer and
Communications Security (CCS’15), pages 644 — 655.
ACM.

New York Times (2016). Yahoo says 1 billion user accounts
were hacked. Dec. 14, 2016. https://www.nytimes.
com/2016/12/14/technology/yahoo-hack.html.

Popa, R., Redfield, C., Zeldovich, N., and Balakrishnan, H.
(2011a). CryptDB: Protecting confidentiality with en-
crypted query processing. In Twenty-Third ACM Sym-
posium on Operating Systems Principles (SOSP’11).
ACM.

Popa, R., Stark, E., Helfer, J., Valdez, S., Zeldovich, N.,
Kaashoek, M., and Balakrishnan, H. (2014a). Buil-
ding web applications on top of encrypted data using
Mylar. In 11th USENIX Conference on Networked Sy-
stems Design and Implementation (NSDI’14), pages
157 — 172. USENIX Association.

Popa, R. A., Redfield, C., Tu, S., Balakrishnan, H., Kaas-
hoek, F., Madden, S., Zeldovich, N., and Burrow, A.
(2011b). CryptDB. https://css.csail.mit. edu/cryptdb.

298

Popa, R. A., Stark, E., Valdez, S., Helfer, J., Zeldovich, N.,
Kaashoek, F., and Balakrishnan, H. (2014b). Mylar
research platform. https://css.csail.mit.edu/mylar/.

Shen, E., Shi, E., and Waters, B. (2009). Predicate privacy
in encryption systems. In Sixth IACR Thery of Cryp-
tography Conference (TCC 2009), LNCS 5444, pages
457 — 473. Springer Verlag.

Song, D. X., Wagner, D., and Perrig, A. (2000). Practical
techniques for searches on encrypted data. In 2000
IEEE Symposium on Security and Privacy (SP’00),
pages 44 — 55. IEEE.

Stefanov, E., Papamanthou, C., and Shi, E. (2014). Practical
dynamic searchable encryption with small leakage.
In Network and Distributed System Security (NDSS)
Symposium 2014. Internet Society.

The Guardian (2015). Massive anthem health insu-
rance hack exposes millions of customers’ details.
Feb. 05, 2015. https://www.theguardian.com/us-
news/2015/feb/05/millions-of-customers-health-
insurance-details-stolen-in-anthem-hack-attack.

Wu, T. (1998). The secure remote password protocol. In
Proceedings of the 1998 Internet Society Symposium
on Network and Distributed Systems Security, pages
97 - 111.

Zhang, Y., Katz, J., and Papamanthou, C. (2016). All your
queries are belong to us: The power of file-injection
attacks on searchable encryption. In 25th USENIX
Security Symposium (USENIX 16), pages 707 — 720.
USENIX.

