
Function References as First Class Citizens in UML Class Modeling

Steffen Heinzl and Vitaliy Schreibmann
University of Applied Sciences Würzburg-Schweinfurt, Sanderheinrichsleitenweg 20, 97074 Würzburg, Germany

Keywords: Functional Modeling, UML, MOF, Modeling.

Abstract: There have been a number of philosophical discussions whether functional programming or object-oriented
programming is the better programming concept. In reality, programmers utilize both concepts and functional
programming concepts improve object-oriented languages. Likewise the modeling of OO languages should
also reflect these concepts in the modeling process. This paper improves the modeling of behavior (usually ex-
pressed through functional programming) in UML class diagrams. In UML class diagrams, behavior modeling
is only achieved by modeling a new class containing the desired function. If several alternatives for a certain
behavior have to be expressed, the modeling complexity increases because we need to introduce an interface
and for each alternative an additional class. Therefore, we propose a new function element that circumvents
these problems and reduces the complexity of the model. Due to the proposed <<Function>> stereotype,
functions in the model can be identified at first glance. The new model is motivated by the strategy pattern and
evaluated against a more complex design pattern. A possible first implementation is presented.

1 INTRODUCTION

Object-oriented programming (OOP) is used to map
objects as well as relations between objects from the
real-world into programming languages. During this
mapping process, developers have repeatedly faced a
number of similar problems. Gamma et al. (Gamma
et al., 1995) collected object-oriented design patterns
that had been used to overcome these recurring prob-
lems. Developers following these design patterns pos-
sess a common vocabulary when talking about these
problems as well as a common way to structure a so-
lution. Some of the patterns (such as the strategy
pattern) are cumbersome due to the lack of expres-
siveness of purely object-oriented languages and their
representation by class diagrams.

For a few years now, all major OOP languages
(Java, C#, C++) (partially) support functional pro-
gramming and allowing developers to mix both pro-
gramming styles. But are purely object-oriented de-
sign patterns still adequate for modeling? Should
modeling languages, such as the Unified Modeling
Language (UML) (Object Modeling Group, 2015),
contain functional concepts?

The contributions of this paper are answers to
these questions by introducing a new UML stereotype
<<Function>> to model function references as first-
class citizens in UML class diagrams. The proposed
function element complements the modelers’ existing

toolkit (consisting of interfaces, classes, enums, etc.).
The evaluation shows that the complexity of modeling
design patterns can also be reduced.

The paper is structured as follows: Section 2
explains—exemplified by the strategy pattern—the
reason for introducing a function element. In the Sec-
tion 3, the function element is specified. Section 4
shows how the function element can reduce modeling
complexity. Section 5 demonstrates a first implemen-
tation of the model in Java and Section 6 presents the
related work. Section 7 concludes our paper and dis-
cusses areas of future work.

2 MOTIVATION

Dijkstra (Dijkstra, 1984) claimed: ”the Romans have
taught us ”Simplex Veri Sigillum” that is: simplicity
is the hallmark of truth [...], but [...] the sore truth
is that complexity sells better”. The strategy pattern
shown in Figure 1 is a good example for overly com-
plex depiction compared to its function.

The strategy pattern consists of a Context that has
an object of a strategy. The Strategy is represented
by an abstract class or interface, and a class hierarchy
subclassing/implementing the abstract class/interface.
ConcreteStrategyA to ConcreteStrategyC encapsulate
different behaviors by providing a single accessible

Heinzl, S. and Schreibmann, V.
Function References as First Class Citizens in UML Class Modeling.
DOI: 10.5220/0006783603350342
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 335-342
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

335

Figure 1: Strategy Pattern.

Figure 2: An example of the strategy pattern taken from an online shop.

method. Most of the times, the pattern is used for
the choice of an algorithm or—in more general—to
capture different alternative behaviors. According to
Gamma et al. (Gamma et al., 1995, pp. 315) the pat-
tern is used to prevent the use of multiple conditionals
to select an algorithm. Instead the algorithms can be
varied independently of the client. New algorithms
can be added by adding a new subclass/implement-
ing class. Modeling the strategies in such a way is
fine if you want to put strong emphasis on the differ-
ent strategies. For example, Figure 2 depicts a sorting
algorithm for an online shop that is able to sort prod-
ucts in an ascending or descending fashion by means
of the products’ prices or popularity.

When modeling a complete online shop, concepts
such as customer, invoice, cart, order, message for-
mats, services, etc. might be more important than
sorting strategies, which might take a large space in
the shop model.

The strategy pattern has been selected as an ex-
ample because each strategy consists of a straightfor-
ward class encapsulating only behavior without state.
Behavior can usually also be encapsulated in a single
method in a separate encapsulating object. Most lan-
guages provide function references that also can en-
capsulate an anonymous method, a so-called lambda
expression. In Java, for example, function refer-
ences are introduced by a FunctionalInterface named
Function<T,R>. T stands for the type of the argu-
ment passed to the function and R stands for the re-
turn type of the function. C# provides a similar so-

lution. Function references in C# are introduced by a
so-called Delegate named Func<T,TResult>. Simi-
larly, T is the type of the incoming argument, TResult
the type of the outgoing result.

UML class diagrams are limited to only classes.
Stereotypes are necessary to distinguish between
classes, abstract classes, interfaces, etc. Anonymous
methods, functional interfaces, functional references,
and delegates are all terms relating to the realization
of lambda expressions in OOP languages. But UML
class diagrams do not support this concept out-of-the-
box. Therefore, we propose to define a stereotype
<<Function>> to model behavior instead of using the
<<interface>> stereotype (and subclassing as in the
strategy pattern). Beside classes, interfaces, etc. we
now have a new model element named function in our
toolkit. With the <<Function>> stereotype shown in
Figure 3 we can model the types and return types the
function reference is able to work with. Furthermore,
the element in Figure 3 contains a function reference
attribute to a function (i.e. the UML class with the
stereotype <<Function>>).

Figure 3: Function stereotype with one function reference.

The function element acts a container to save
a function reference that is able to work with the

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

336

Figure 4: Function stereotype example with one function
reference.

Figure 5: Function stereotype with several function refer-
ences.

type Parameter and return type Result given in the
stereotype. Figure 4 shows an example function from
our online shop which contains a function reference
taking a list of products and returning a sorted prod-
ucts list.

We can also group function references as shown
in Figure 5. The stereotype specifies that all func-
tion references work with the parameter and result
type specified by the stereotype. That means the
stereotype forces all Function objects to be of type
Function<Parameter,Result>.

After all this effort, we can now take a look again
at the strategy pattern in Figure 6, this time expressed
with a function. The context has an aggregation to
SortStrategies. This aggregation means—depending
on the multiplicity—that the Context can have be-
tween 0 and n function references with the type de-
fined in the stereotype. Usually this attribute is filled
with the Functions attributes listed inside the function
by holding a direct reference (i.e. concreteStrategyA).

3 SPECIFICATION OF THE
FUNCTION ELEMENT

In UML, we apply stereotypes to ”transform” classes
to either interfaces, abstract classes, enums, or others.
Our approach utilizes this mechanism to introduce the
function element. Until now, it has not been possible
to directly associate function references with other el-
ements in class diagrams. With the function, it is pos-
sible to treat function references as first class citizens
in class diagrams.

3.1 Function Element

In the following, we specify the function and its se-
mantics.

In Figure 7, a general representation of the func-
tion is shown. The function has a name (Function-

Name), a stereotype with parameter and result type,
and several attributes with a type specified by the
stereotype. The following sections discuss the com-
ponents of function in detail:

Name: The name serves—as usual—as a good
description for the element in order to provide a clear
understanding of the reality captured in the model.

Stereotype: Our stereotype is named Function
and enables the modeler to distinguish between func-
tion and normal classes. Furthermore, the Function
stereotype can be parameterized to specify the object
types that all its function references take as parameter
and return types. In case the stereotype is not param-
eterized, the attributes (i.e. function references) must
indicate the parameter and the return type themselves.

Attributes: The attributes of a function are static
in nature because they are known at coding time. As a
consequence, the attributes are all non-modifiable and
therefore read-only. The attributes are by default pub-
lic and the readOnly property can be omitted. Also,
the type of the attribute can be omitted if it is already
specified by the stereotype. Such a specification is
depicted in Figure 8. Non function references are
not allowed. In case a state is needed across several
function references, a normal class should be used for
modeling.

The parameters have a polymorphic character.
That means that either the type of the parameter itself
or of a subclass can be used.

If several arguments are to be passed to the func-
tion reference, they should be encapsulated in a single
object. Alternatively, it would also be possible to use
a parameter list and interpret the last parameter as the
return type. As a remark: Common programming lan-
guages such as C# and Java have decided against this
approach and work instead with a single parameter
type and a single return type.

3.2 Multiplicity and Relations

An element can be related to a number of functions
in the same ways it can be related to other objects. In
Figure 9, an instance of Context holds exactly n func-
tion references specified in our function. The main
difference to normal classes is that not n objects of
FunctionName are held by the Context instance but
n attributes (i.e. function references) inside of Func-
tionName. All known multiplicities from UML can be
utilized with the multiplicity of n representing several
function references.

Function References as First Class Citizens in UML Class Modeling

337

Figure 6: Strategy pattern expressed with the new Function.

Figure 7: Specification of the function.

Figure 8: Specification of the Function without Explicitly
Showing Defaults.

3.3 Abstraction

The Function<Parameter,Result> (or shorter:
Function<P,R>) provides a good abstraction for dif-
ferent languages. Therefore, the knowledge of lan-
guage specific types is not necessary in the model.

We provide two examples how the abstraction
matches types from the underlying languages: The
following mapping can be used to map our abstrac-
tion to Java types from the standard library:

• Function<P, void> matches Consumer<P>
• Function<void, R> matches Supplier<R>
• Function<P,R> matches Function<P,R>
• Function<void,void> matches Runnable

The following mapping can be used for C#:

• Function<P, void> matches Action<P>
• Function<void, R> matches Func<R>
• Function<P,R> matches Func<P,R>
• Function<void,void> matches Action

3.4 MOF Extension

Our proposed approach can be realized by an exten-
sion of the EMOF model from the Meta Object Facil-
ity (MOF) Specification (Object Management Group
(OMG), 2016, p. 27). We added the new function
element on the same level as the class element using
a similar extension mechanism that has already been
shown by Min et al. (Min et al., 2011). The reason
is that a function element in the UML model does not
share all properties and behavioral aspects of a class,
i.e. for example the list of operations. In addition, we
can extend the function element independently from

the class element (e.g. for the definition of stereotypes
and subelements). We decided to keep the extension
of MOF (as shown in Figure 10) to a minimum and
extend it further in future work.

4 EVALUATION

As an evaluation for our approach, we take a look at
three different examples and verify the application of
the newly introduced function.

4.1 Visitor Pattern

We selected the rather complex visitor pattern from
(Gamma et al., 1995, pp. 334) (depicted in Figure 11)
to analyse how well our modeling approach is suited
to simplify the modeling.

We start modeling by adding different function
references to a function element. The small excerpt
in Figure 12 already shows a number of problems:

The Element and its subclasses accept a vis-
itor with the accept method. The problem is
that the Element in our modeling has to accept
function references of different parameters and re-
sult types (see Figure 12). We have to use
a type, such as Function<Element, void> in-
stead of Function<ConcreteElementA, void> or
Function<ConcreteElementB, void>. In a pro-
gramm, this distinction is usually done during run-
time using polymorphism and late binding. The prob-
lem lies in the access to generic types during run-
time, which is not provided by all widespread object-
oriented languages. For example in Java, type erasure
is applied to generic types during compilation. This
point must be embraced in an implementation of the
model as discussed in Section 5 and shown in Figure
13.

The accept method in the Element interface and
the ConcreteElement classes are replaced by the
standard method for executing a Function, and hence
need not be modeled explicitly. The two visitor func-
tion references offered can work on all subclasses of
Element. The complexity of the model is reduced
compared to (Gamma et al., 1995, pp. 334).

The visitor pattern is usually used to visit an object
structure. Between the visits of single elements of the

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

338

Figure 9: Example of multiplicity with function element.

Figure 10: Simplified depiction of the MOF extension with
a function element.

structure, the visitor is also able to save state. Saving
state is problematic in the functional approach but can
be achieved by passing the state as an argument from
function invocation to function invocation.

4.2 ”Simple” Visitor

The proposed function element can also be used for
simpler and more often used behavioral modeling.
Figure 14 shows one way to instantiate a thread in
Java. The constructor of the Thread class accepts
a ”visitor” that implements the interface Runnable
and executes the Runnable’s run method in its own
run method. Figure 15 illustrate the same situa-
tion but modeled with a function. A Java Runnable
has exactly one method (the run method), which
takes and returns no arguments perfectly matching
Function<void, void>. This model is elementary
and appears more often in software compared to the
full visitor pattern. Since Function<void, void>
can automatically mapped to Runnable, we do not—
in contrast to the first model—explicitly need to show
the interface in the model.

4.3 Strategy Pattern

To end our evaluation, let us point to the Motivation
section where the less complex model of the strategy
pattern (see Figure 6) was contrasted to the original
model. This example has shown very well how mod-
eling was made less complex.

5 IMPLEMENTATION

In the Evaluation section, we spotted the problem
that in Java generic types are erased by the compiler
and are not available at runtime. We could achieve
the desired behavior by broadening the interface
through changing the accept method’s signature to
accept(Function<ConcreteElementA, void>,
Function<ConcreteElementB, void>). The
problem with this approach, however, is that each
time a new ConcreteElement is defined, we have to
change the interface by adding another parameter to
the accept method.

Mario Fusco has shown an implementation of the
visitor pattern using functional programming in Java
(Fusco, 2016d). His work inspired our implementa-
tion in Java that can be used to implement the sug-
gested function element. For each function element
in the model, we create a class with function refer-
ences. Figure 18 shows an example for two different
sort strategies. As a function reference, we use our
class UMLFunc as shown in Figure 19 that implements
the function interface.

The UMLFunc circumvents the problem that Java
cannot access the generic type at runtime, allow-
ing the registration of class-behavior pairs. Allowed
classes are mapped to a behavior that should occur
when the UMLFunc is executed on an object of that
class. The standard execution method of a function in
Java is the apply method. This method must be over-
riden to apply different functions based on the class
name by looking into the map. We see one weak-
ness of this implementation: We do not support true
polymorphism. We register the implementation class
of our list instead of the List or Collection interface
and cannot distinguish between lists of different types
(e.g. list of prices, list of customers).

For the visitor pattern, we need a UMLFunc for
each different visitor. With the register method
we specify a class (ConcreteElement1, ConcreteEle-
ment2, ...) with the corresponding behavior (e.g. a
lambda expression calculation the area of a mathe-
matical figure). So instead of carrying the name of
each class in the method’s name (e.g. visitConcre-
teElementA and visitConcreteElementB), the class is
a parameter to the register method.

Function References as First Class Citizens in UML Class Modeling

339

Figure 11: Depiction of the visitor pattern from the book (Gamma et al., 1995).

Figure 12: Excerpt of visitor pattern with function.

6 RELATED WORK

The aim of our work was to provide a modeling of
function references for OOP languages which have
been extended by functional programming concepts.

There are a few people, such as Mario Fusco
(Fusco, 2016a) (Fusco, 2016b) (Fusco, 2016c)
(Fusco, 2016d), who dealt with the topic of combin-
ing object-oriented programming design patterns with
functional programming concepts that were brought
into the OOP languages excessively. This shows
nicely how complex examples of OOP work together
with the functional programming concepts. He did,
however, only address improvements when it comes
to writing code but not for the modeling.

UML (Object Modeling Group, 2015) has a lot
of capabilites. If we had to model the function ele-
ment with current UML (version 2.5), we could use
the abstract class/interface approach as shown for the
strategy example in Figure 2. But the goal was to
provide a more prominent modeling of function ref-
erences, making them first class citizens in modeling.
So we try to use normal UML model the newly in-
troduced semantics as similarly as possible. First, we
take a normal class with attributes. For every function

reference, you have to specify the types it adheres to.
The attributes have to be {readOnly} and public as
shown in Figure 16, otherwise they could be overwrit-
ten during the course of a program execution. From a
modeling perspective we can avoid several drawback
with our approach:
1. With default UML parameter and result of the

function references are not seen at first sight.
However, including the parameter and result types
in the stereotype enables a more prominently
modeling.

2. With default UML it is harder to understand that
the actual intention of the modeling is the encap-
sulation of behavior.

3. Usually, in order to model functional references,
you have to take the actual type of the implemen-
tation. The function used in the stereotype ab-
stracts from that. In Java, the name of the con-
tainer for function references is also Function, but
neither parameter nor result type could be void.
Other types are needed to achieve this behavior
and in C#, you would need to use Func. If function
was a first class element in UML as we propse,
tool support should easily achieve the mapping to
different programming languages.
Our function element in UML simplifies the mod-

eling of dynamic systems, such as mobile agents.
Bosse (Bosse, 2016) defined a system of mobile
agents in an Internet of Things environment with
JavaScript as a programming language. An agent was
modeled with an Activity-Transition Graph (ATG)
(Bosse, 2016, Figure 2) which consist of a class

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

340

Figure 13: Modeling of visitor pattern with our function element.

Figure 14: ”Simple” version of the visitor in the Java run-
time library (default).

Figure 15: ”Simple” version of the visitor in the Java run-
time library (with function).

Figure 16: Modeling sorting function element with our
UML meta-model.

Figure 17: Modeling sorting function element with our
UML meta-model (alternative).

model and activity transition graph. We suggest to ap-
ply our extension of UML and model the class model
separately as shown in Figure 20. Our modeling ap-
proach would benefit the source code generation be-
cause we are close to the original EMOF.

7 CONCLUSION AND FUTURE
WORK

In the last decade, lambda expressions and function
references have become part of major OO languages,
such as Java and C#. The modeling of these con-
cepts has not evolved in the same way. This paper
has shown how to extend UML class diagrams by a
function element. The specification of the function el-
ement has been presented and evaluated. The evalua-
tion has shown that behavioral modeling is made eas-
ier, thus making—at least in the cases of the strategy
and visitor pattern—the modeling of design patterns
less complex.

In the future, we evaluate benefits of our design
in the area of Fog/Edge computing. As described by
Hao et al. (Hao et al., 2017), tasks can move from
device to device because of user movement or per-
formance issues. Their suggested workflow approach
could benefit from functional programming and prob-
ably from our modeling approach, too.

Function References as First Class Citizens in UML Class Modeling

341

p u b l i c c l a s s S o r t S t r a t e g i e s {
p u b l i c f i n a l UMLFunc<L i s t<P r i c e > , L i s t<P r i c e>> p r i c e s A s c = new UMLFunc<>();
p u b l i c f i n a l UMLFunc<L i s t<P r i c e > , L i s t<P r i c e>> p r i c e s D e s c = new UMLFunc<>();

p u b l i c S o r t S t r a t e g i e s () {
p r i c e s A s c . r e g i s t e r (A r r a y L i s t . c l a s s , l −> l a m b d a e x p r e s s i o n) ;
p r i c e s D e s c . r e g i s t e r (A r r a y L i s t . c l a s s , l −> l a m b d a e x p r e s s i o n) ;

}
}

Figure 18: Realization of the strategy pattern in Java for function element.

p u b l i c c l a s s UMLFunc<T , R> implements Func t ion<Objec t , R> {
p r i v a t e f i n a l Map<Class <?>, Func t i on> func t ionMap = new HashMap<>();

p u b l i c <T2 ex tends T> void r e g i s t e r (C las s<T2> c l a z z , Func t i on<T2 , R> f u n c t i o n) {
func t ionMap . p u t (c l a z z , f u n c t i o n) ;

}

p u b l i c R a p p l y (O b j e c t o) {
Func t ion<Objec t , R> f u n c t i o n = func t ionMap . g e t (o . g e t C l a s s ()) ;
re turn f u n c t i o n != n u l l ? f u n c t i o n . a p p l y (o) : n u l l ;

}
}

Figure 19: Possible Java implementation of the function element.

Figure 20: Application of new Function element based on
(Bosse, 2016).

REFERENCES

Bosse, S. (2016). Mobile multi-agent systems for the
internet-of-things and clouds using the javascript
agent machine platform and machine learning as a ser-
vice. In 2016 IEEE 4th International Conference on
Future Internet of Things and Cloud (FiCloud), pages
244–253.

Dijkstra, E. (1984). The threats to computer science. EWD
898 (Delivered at the ACM 1984 South Central Re-
gional Conference, November 16–18, Austin, Texas.).

Fusco, M. (2016a). Gang of Four Pat-
terns in a Functional Light: Part 1.
https://www.voxxed.com/2016/04/gang-four-
patterns-functional-light-part-1/.

Fusco, M. (2016b). Gang of Four Pat-
terns in a Functional Light: Part 2.

https://www.voxxed.com/2016/05/gang-four-
patterns-functional-light-part-2/.

Fusco, M. (2016c). Gang of Four Pat-
terns in a Functional Light: Part 3.
https://www.voxxed.com/2016/05/gang-four-
patterns-functional-light-part-3/.

Fusco, M. (2016d). Gang of Four Pat-
terns in a Functional Light: Part 4.
https://www.voxxed.com/2016/05/gang-four-
patterns-functional-light-part-4/.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Hao, Z., Novak, E., Yi, S., and Li, Q. (2017). Challenges
and software architecture for fog computing. IEEE
Internet Computing, 21(2):44–53.

Min, B.-K., Ko, M., Seo, Y., Kuk, S., and Kim, H. S. (2011).
A UML metamodel for smart device application mod-
eling based on Windows Phone 7 platform. In TEN-
CON 2011 - 2011 IEEE Region 10 Conference, pages
201–205.

Object Management Group (OMG) (2016). OMG Meta Ob-
ject Facility (MOF) Core 2.5.1 Specification. OMG
Document Number formal/2016-11-01.

Object Modeling Group (2015). OMG Uni-
fied Modeling Language Version 2.5.
http://www.omg.org/spec/UML/2.5/.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

342

