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Abstract: One of the biggest challenges related to the research and development of autonomous systems is to prove 

the correctness of their autonomy. Nowadays, autonomous and adaptive systems are the roadmap to AI and 

the verification of such systems needs to set boundaries that will provide the highest possible guarantees 

that AI will be safe and sound, so trust can be established in its innocuous operation. In this paper, the 

authors draw upon their work on integrating stabilization science as part of a mechanism for verification of 

adaptive behavior. Stability analysis is studied to find an approach that helps to determine stable states of 

the behavior of an autonomous system. These states are further analyzed to determine behavior trajectories 

and equilibrium orbits. KnowLang, a formal method for knowledge representation and reasoning of 

adaptive systems, is used as a platform for stability analysis of autonomous systems.       

 

1 INTRODUCTION 

In today’s technologies, the terms autonomous and 

adaptive started to progressively underline the new 

trends of research and development of software-

intensive systems. Autonomous systems, such as 

automatic lawn mowers, smart home equipment, 

driverless train systems, or autonomous cars,  

perform their tasks without human intervention. 

Eventually, the most challenging question which 

comes up when following the life cycle of the terms 

“autonomy“ and "adaptation" is the potential to 

construct a system that behaves and operates 

similarly to, or even better than, a human being.  

Obviously, this is the roadmap to AI, and proving 

the correctness of autonomous and adaptive systems 

becomes extremely important. The point is that the 

verification of an autonomous system needs to set 

the boundaries of such AI and provide autonomic 

operations at least in a certain context with highest 

safety guarantees, and finally establish trust in its 

innocuous operation. 

This paper draws upon the authors'  work on a 

special approach to Adaptive Behavior Verification 

(ABV) (Vassev and Hinchey, 2014) where stability 

analysis is performed to identify unstable behavior 

that will eventually require autonomy and adaptation 

to restore the stability of the system.     

2 VERIFICATION OF ADAPTIVE 

BEHAVIOR  

The ABV approach consists of the following parts 

(see Figure 1):  
 

1) a stability analysis capability that identifies 

instabilities given a system model and 

partitions the system model into stable and 

unstable component models;  

2) a state-space reduction capability that 

prunes the state space of an unstable 

component model without loss of critical 

fidelity;  

3) high performance computing (HPC) 

simulations to explore component behavior 

over a wide range of an unstable 

component’s reduced state space and 

produce a statistical verification for the 

component;  

4) a compositional verification capability that 

integrates individual component 

verifications;  
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Figure 1: Adaptive Behavior Verification (Vassev and Hinchey, 2014). 

5) operational monitors to detect and take 

action to correct undesired unstable 

behavior of the system during operation. 
 

This work is based on the principles of stabilization 

science (Arora, 2000). In our approach, stability 

analysis is performed over a model built with the 

KnowLang framework (Vassev and Hinchey, 2015a; 

Vassev and Hinchey, 2015b) (see Section 4) where 

the model is partitioned into system elements 

providing the overall behavior as a collection of 

stable (deterministic) and unstable 

(nondeterministic) components. The stable parts (or 

components) can then be verified with traditional 

verification methods, e.g., model checking. To 

verify the unstable parts we reduce their state space 

first and then use HPC simulation (see Figure 1) and 

testing. Finally, a compositional verification 

approach integrates the verification results of both 

stable and unstable parts by using special behavior 

invariants as approximation of safe states along with 

interaction invariants as interaction states. 

3 STABILITY 

In this work, the term “stable” informally means 

resistant to change in behavior. Stabilization science 

(Arora, 2000) provides a common approach to 

studying system stability where a system behavior is 

linearized around an operating point to determine a 

small-signal linearized model of that operating point. 

The stability of the system is then determined using 

linear system stability analysis criterions such as: 

Circle criterion (Shiriaev et al., 2003), Routh-

Hurwitz criterion (Gantmacher, 1959), Nyquist 

stability criterion (Pippard, 1985), etc.  

In this work, the mathematical model for stability 

means differential equations used for the simulation 

of a self-adaptive system. In general, we deal with a 

semi-discrete model, which is discrete in space and 

continuous in time. The mathematical model for 

stability is based on the Lyapunov Stability Theory 

(Lyapunov, 1892). Here, the stability of a system is 

modeled for behaviors near to a point of equilibrium 

and where a behavior orbit around that point is 

defined stable if the forward orbit of any point is in a 

small enough neighborhood or it stays in a small 

(but perhaps, larger) neighborhood. In simple terms, 

if a behavior 𝛣𝑥𝑒  determined by a sequence of 

actions that starts out near an equilibrium point 𝑥𝑒 
stays near 𝑥𝑒 forever, then 𝛣𝑥𝑒  is Lyapunov stable 

near 𝑥𝑒.  
The theory behind the stability analysis is based 

on the qualitative theory of differential equations 

and dynamical systems, and deals with asymptotic 

properties of a system and the trajectories describing 

what happens with that system after a long period of 

time. A simple stable behavior 𝛣𝑥𝑒is exhibited by 

equilibrium points (or fixed points) and by periodic 

orbits.  

We adapted the Lyapunov stability theory to 

address the following three questions:  

1) Will a nearby behavior orbit indefinitely 

stay close to an equilibrium orbit?  

2) Will a nearby behavior orbit converge to 

an equilibrium orbit?  

3) Will a nearby behavior orbit depart away 

from an equilibrium orbit?  
 

In the first case, the behavior is called stable, in 

the second case, it is called asymptotically stable, 

and in the third case, the behavior is said to be 

unstable.  

An equilibrium solution 𝑓𝑒 (where all the 

evaluated behaviors are stable) to an autonomous 

system is called: 

 stable if for every small depart from the 

equilibrium orbit 𝜀 > 0, there exists a 𝛿 >
0 such that every solution 𝑓(𝑡) having 

initial conditions within distance 𝛿, i.e., 
‖𝑓(𝑡0) − 𝑓𝑒‖ <  𝛿 of the equilibrium 

remains within distance 𝜀, i.e.,  ‖𝑓(𝑡) −
𝑓𝑒‖ <  𝜀 for all 𝑡 ≥ 𝑡0; 

 asymptotically stable if it is stable and, in 

addition, there exists 𝛿0 > 0  such that 

whenever 𝛿0 > ‖𝑓(𝑡0) − 𝑓𝑒‖ then 𝑓(𝑡) →
𝑓𝑒 as 𝑡 → ∞. 
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In this model stability means that the behavior 

trajectories do not change too much under small 

perturbations, e.g., changes in the environment. In 

this case, we can consider the behavior  

deterministic and verifiable with the methods of 

model checking.  

 

Figure 2: Stable and Unstable Behavior. 

In contrary, when a nearby behavior orbit is 

getting repelled from the given orbit of stability 

(stability point) (see Figure 2), we may consider 

such a behavior unstable and non-deterministic. 

Such a behavior cannot be verified with the 

traditional model checking, but through simulation 

and/or probabilistic model checking. In general, 

unstable behaviors may be perturbing in a trajectory 

asymptotically approaching the stable one or in a 

trajectory getting away from the stability point (see 

Figure 2). There may also be directions for which 

the behavior of the perturbed orbit is more 

complicated. e.g., neither converging nor escaping 

completely. 

Various criteria have been developed to prove 

stability or instability of a behavior orbit (or 

trajectory). Under favorable circumstances, the 

question may be reduced to a well-studied problem 

involving eigenvalues of matrices. A more general 

method involves Lyapunov functions. In practice, 

any one of a number of different stability criteria are 

applied. 

One of the key ideas in stability theory, and 

pursued in this approach, is that the qualitative 

behavior of a behavior orbit under perturbations can 

be analyzed using the linearization of the system 

near the equilibrium point. In particular, at each 

equilibrium of a self-adaptive system with an n-

dimensional phase space, there is a certain 𝑛 × 𝑛 

matrix 𝐴 whose eigenvalues characterize the 

behavior of the nearby points (Hartman–Grobman 

theorem) (Arrowsmith and Place, 1992). More 

precisely, if all eigenvalues are negative real 

numbers or complex numbers with negative real 

parts then the point is a stable equilibrium point 

(Lyapunov stability) and the nearby points converge 

to it at an exponential rate form a zone of 

asymptotical stability. If none of the eigenvalues are 

purely imaginary (or zero) then the attracting and 

repelling directions are related to the eigenspaces of 

the matrix 𝐴 with eigenvalues whose real part is 

negative and, respectively, positive, i.e., 

corresponding to unstable behavior. 

4 KnowLang 

KnowLang (Vassev and Hinchey, 2015a; Vassev 

and Hinchey, 2015b; Vassev and Hinchey, 2015c) is 

a framework for KR&R that aims at efficient and 

comprehensive knowledge structuring and 

awareness (Vassev and Hinchey, 2012) based on 

logical and statistical reasoning. Knowledge 

specified with KnowLang takes the form of a 

Knowledge Base (KB) that outlines a Knowledge 

Representation (KR) context. A key feature of 

KnowLang is a formal language with a multi-tier 

knowledge specification model (see Figure 3) 

allowing integration of ontologies together with 

rules and Bayesian networks (Neapolitan, 2013).  

 

Figure 3: KnowLang Specification Model. 

The language aims at efficient and comprehensive 

knowledge structuring and awareness. It helps us 

tackle (Vassev and Hinchey, 2015b): 1) explicit 

representation of domain concepts and relationships; 

2) explicit representation of particular and general 

factual knowledge, in terms of predicates, names, 

connectives, quantifiers and identity; and 3) 

uncertain knowledge in which additive probabilities 

are used to represent degrees of belief. Other 

remarkable features are related to knowledge 

cleaning (allowing for efficient reasoning) and 

knowledge representation for autonomic behavior.  
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KnowLang employs special knowledge 

structures and a reasoning mechanism for modeling 

autonomic self-adaptive behavior (Vassev and 

Hinchey, 2015a; Vassev and Hinchey, 2015b). Such 

a behavior can be expressed via KnowLang policies, 

events, actions, situations and relations between 

policies and situations (see Definitions 1 through 

10). Policies (𝛱) are at the core of autonomic 

behavior. A policy 𝜋 has a goal (𝑔), policy situations 

(𝑆𝑖𝜋), policy-situation relations (𝑅𝜋), and policy 

conditions (𝑁𝜋) mapped to policy actions (𝐴𝜋) 

where the evaluation of 𝑁𝜋 may eventually (with 

some degree of probability) imply the evaluation of 

actions (denoted 𝑁𝜋 
[𝑍]
→ 𝐴𝜋) (see Definition 6). A 

condition (𝑛) is a Boolean expression over an 

ontology (see Definition 2), e.g., the occurrence of a 

certain event. Policy situations 𝑆𝑖𝜋 are situations 

(see Definition 7) that may trigger (or imply) a 

policy 𝜋, in compliance with the policy-situations 

relations 𝑅𝜋 (denoted by 𝑆𝑖𝜋 
[𝑅𝜋]
→  𝜋), thus implying 

the evaluation of the policy conditions 𝑁𝜋 (denoted 

by 𝜋 → 𝑁𝜋)(see Definition 6). Therefore, the 

optional policy-situation relations (𝑅𝜋) justify the 

relationships between a policy and the associated 

situations (see Definition 10).  
 

𝛱 ∶= {𝜋0, 𝜋1, … . , 𝜋𝑚},𝑚 ≥ 0   (policies)             (1) 

 𝐴𝜋 ⊂ 𝐴              (𝐴𝜋 −
𝑝𝑜𝑙𝑖𝑐𝑦 𝑎𝑐𝑡𝑖𝑜𝑛𝑠;  𝐴 − 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠) 

 𝑆𝑖𝜋 ⊂ 𝑆𝑖  (𝑆𝑖𝜋 − 𝑝𝑜𝑙𝑖𝑐𝑦 𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠) 
 𝑅𝜋 ⊂ 𝑅  (𝑅𝜋 − 𝑝𝑜𝑙𝑖𝑐𝑦 − 𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠) 
 

𝑛 ∶= 𝑏𝑒(𝑂) (Boolean expression over ontology )    (2) 

𝑁𝜋 ∶= {𝑛0, 𝑛1, … . , 𝑛𝑘}, 𝑘 ≥ 0  (𝑝𝑜𝑙𝑖𝑐𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)   (3)  

𝑠 ∶= 𝑏𝑒(𝑂)  (state )                (4) 

𝑔 ∶= 〈⟹ 𝑠′〉|〈𝑠 ⟹ 𝑠′〉 (goal)                         (5) 

𝜋 ∶= < 𝑔, 𝑆𝑖𝜋, [𝑅𝜋], 𝑁𝜋, 𝐴𝜋, 𝑚𝑎𝑝(𝑁𝜋,  𝐴𝜋, [𝑍]) >(policy)   (6) 

 𝑁𝜋 
[𝑍]
→ 𝐴𝜋           

 (𝑁𝜋 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑒 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝐴𝜋) 

 𝑆𝑖𝜋 
[𝑅𝜋]
→  𝜋 → 𝑁𝜋       (𝑆𝑖𝜋 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝜋) 

 

𝑆𝑖 ∶= {𝑠𝑖0, 𝑠𝑖1,… . , 𝑠𝑖𝑛}, 𝑛 ≥ 0  (situations)              (7) 

𝑠𝑖 ∶=< 𝑠, 𝐴𝑠𝑖
⟵, [𝐸𝑠𝑖

⟵],  𝐴𝑠𝑖 >  (situation)              (8)

 𝐴𝑠𝑖
⟵ ⊂ 𝐴∗   (𝐴𝑠𝑖

⟵ − 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑜𝑛𝑠) 
(𝐴∗ − 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐴) 

 𝐴𝑠𝑖 ⊂ 𝐴     (𝐴𝑠𝑖 − 𝑝𝑜𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠) 
 Е𝑠𝑖

⟵ ⊂ Е∗ (Е𝑠𝑖
⟵ − 𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠) 

(𝐸∗ − 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐸) 
 

𝑅 ∶= {𝑟0, 𝑟1, … . , 𝑟𝑛}, 𝑛 ≥ 0   (relations)              (9) 

𝑟 ∶=< 𝜋, [𝑟𝑛], [𝑍], 𝑠𝑖 >  (relation)                           (10) 

 𝑠𝑖 ∈ 𝑆𝑖, 𝜋 ∈ 𝛱, 𝑠𝑖
[𝑍]
→ 𝜋    

 

Note that in order to allow for self-adaptive 

behavior, relations must be specified to connect 

policies with situations over an optional probability 

distribution (Z) where a policy might be related to 

multiple situations and vice versa. Probability 

distribution (Z) is provided to support probabilistic 

reasoning and to help the reasoner to choose the 

most probable situation-policy "pair". Thus, we may 

specify a few relations connecting a specific 

situation to different policies to be undertaken when 

the system is in that particular situation and the 

probability distribution over these relations 

(involving the same situation) should help the 

reasoner decide which policy to choose (denoted by 

si
[Z]
→ π) (see Definition 10). Hence, the presence of 

probabilistic beliefs (Z) in both mappings and policy 

relations justifies the probability of policy execution, 

which may vary with time. 

Ideally, KnowLang policies are specified to 

handle specific situations, which may trigger the 

application of policies. A policy exhibits a behavior 

via actions generated in the environment or in the 

system itself. Specific conditions determine which 

specific actions (among the actions associated with 

that policy (see Definition 6) shall be executed. 

These conditions are often generic and may differ 

from the situations triggering the policy. Thus, the 

behavior not only depends on the specific situations 

a policy is specified to handle, but also depends on 

additional conditions. Such conditions might be 

organized in a way allowing for synchronization of 

different situations on the same policy. When a 

policy is applied, it checks what particular 

conditions Nπ are met and performs the mapped 

actions Aπ (map(Nπ,  Aπ, [Z])) (see Definition 6). 

An optional probability distribution Z may 

additionally restrict the action execution. Although 

specified initially, the probability distribution at both 

mapping and relation levels is recomputed after the 

execution of any involved action. The re-

computation is based on the consequences of the 

action execution, which allows for reinforcement 

learning. 

States and goals drive the specification of any 

system modeled with KnowLang. States are used to 

specify goals (see Definition 5) and situations (see 

Definition 8), which on other side are used to 

specify policies (see Definition 6) often intended to 

provide self-adaptive behavior. The following is an 

example of a Boolean expression defining a state in 

KnowLang. 

 
STATE ArrivedOnTime {  

carSafety.eCars.CONCEPT_TREES.Journey.STATES.Arrived 
AND   
(carSafety.eCars.CONCEPT_TREES.JourneyTime <=  

carSafety.eCars.CONCEPT_TREES.Journey.PROPS.journeyTime)}   

As shown, the logical expression above needs to 

be evaluated as true in order to consider the 

ArrivedOnTime state as active.  
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5 STABILITY POINTS WITH 

KnowLang 

In this work, stability analysis works on states, 

goals, situations, and policies to determine behavior 

trajectories under perturbations in the execution 

environment. Here, the first task is to determine the    

stable equilibrium points (representing Lyapunov 

stability) and then the nearby points forming zones 

of asymptotical stability (see Section 3). The 

following elements are considered to be equilibrium 

points of stability in KnowLang specifications:  

1) departing states (or expression of states) 

used in goal definitions; 

2) arriving states (or expression of states) 

used in goal definitions (achieved goals); 

3) policies handling situations to support goal 

achievement.    
 

Note that policies are originally intended to 

handle situations that are considered to be critical for 

achieving a goal. Because these policies are part of 

the expected (deterministic) behavior, we consider 

as stable points both the execution of the policies' 

actions and handled situations. Here, the 

asymptotical stability Λ of an autonomous system 

modeled with KnowLang is a set of areas of 

asymptotical stability (see Definition 11). Here, each 

area of asymptotical stability is determined by zones 

defined by (see Definition 12): 

 the goal through its goal states (zone ϖg - 

see Definition 13) ; 

 the goal-supporting policies through the 

execution of their actions (zones Θπ - see 

definitions 14 and 15) ; 

 the critical situations (through their 

associated states) addressing that area of 

asymptotical  stability, because they are 

deterministic (zones ΘSi - see definitions 16 

and 17).  
 

Λ ∶= {𝜆0, 𝜆1, … . , 𝜆𝑚},𝑚 ≥ 0   (asymptotical stability) (11) 

λ ∶=< ϖg, Θπ, Θ𝑆𝑖 >            (area of asymptotical stability) (12) 

ϖg ∶=< 𝑔(𝑠 ⟹ 𝑠′) >       (zone of goal stability) (13) 

Θπ ∶= {ϖ0𝜋, ϖ1𝜋, … . ,ϖ𝑚𝜋}, 𝑚 ≥ 0    (zones of policy stab.)  (14) 

ϖπ ∶=< Π(𝑔, Aπ, 𝑆𝑖) >  (zone of policy stability) (15) 

ΘSi ∶= {ϖ0𝑆𝑖 , ϖ1𝑆𝑖 , … . ,ϖ𝑚𝑆𝑖},𝑚 ≥ 0 (zones of situat. stab.)  (16) 

ϖSi ∶=< 𝑆𝑖(𝑠) >            (zone of situation stability) (17) 
 

Here, the areas of asymptotical stability Λ are 

determined by the defined goals through their 

departing and arriving states. Note that in each area 

the zone of goal stability (see Definition 13) is 

determined by a specific goal 𝑔 and the zones of 

policy stability Θπ (see Definition 14) are basically 

formed by policies ϖπ supporting that goal (see 

Definition 15). Finally, the zones of situation 

stability ΘSi are formed by situations associated with 

the policies forming the zones of policy stability. In 

this stability model, Λ defines a space of 

asymptotical stability and the continuous in time 

system is considered stable if at any time its 

behavior stays in that space or in a close proximity 

to that space. Here, if we consider that the system 

behavior 𝐵 is determined by a sequence of actions 𝐴 

that starts out in the space of asymptotical stability Λ 

and stays in that space (or in a close proximity) 

forever, then 𝛣Λ is Lyapunov stable near Λ.  

 

Figure 4: KnowLang Asymptotical Stability.  

Figure 4 demonstrate a Lyapunov stable 

behavior determined by a sequence of actions that 

form the state trajectory 𝐴�̃�. As shown, the 

exemplar space of asymptotical stability is formed 

by six areas of asymptotical stability (each driven by 

a distinct system goal 𝑔). Figure 5 depicts a possible 

area of asymptotical stability λ driven by a goal 𝑔 

that defines the zone of goal stability ϖg (a trajectory 

from a departing state to an arriving state), a zone of 

policy stability Θπ presented as a set of policy 

trajectories each determined by a sequence of policy 

actions, and a zone of situation stability presented as 

a set of situation states.  
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Figure 5: KnowLang Area of Asymptotical Stability.  

Note that when a state trajectory 𝐴�̃� goes 

through an area of asymptotical stability (see Figure 

4), the presented behavior is considered stable if at 

any time it stays in one of the zones of asymptotical 

stability or stays in a close proximity to one of those 

zones. Here, the definitions for stability can be 

adapted to the KnowLang specifics as following: 

An equilibrium solution 𝑓𝜆 (where all the 

evaluated behaviors are stable) to an autonomous 

system modeled with KnowLang is called: 

 stable if for every small depart 𝜀 > 0 from 

the space of stability Λ, there exists a 𝛿 >
0 such that every solution 𝑓(𝑡) having 

initial conditions within distance 𝛿, i.e., 

‖𝑓(𝑡0) − 𝑓𝜆‖ <  𝛿 of the equilibrium 

remains within distance 𝜀, i.e.,  ‖𝑓(𝑡) −

𝑓𝜆𝑒‖ <  𝜀 for all 𝑡 ≥ 𝑡0; 

 asymptotically stable if it is stable and, in 

addition, there exists 𝛿0 > 0  such that 

whenever 𝛿0 > ‖𝑓(𝑡0) − 𝑓𝜆‖ then 𝑓(𝑡) →
𝑓𝜆 as 𝑡 → ∞. 

 

Here, one of the challenges in this solution that 

we still need to overcome is to determine the 

trajectory from a departing point to an arriving point 

(e.g., state transitions in goals). Further, we need to 

determine the borderline distances from stable states 

and deviations from stable trajectories 𝜀, 𝛿, and 𝛿0. 
In this case, we need to break the state expressions 

down to atomic Boolean sub-expressions and 

determine sub-expressions that may vary in 

expression components without changing the overall 

expression evaluation.  

Moreover, state-reduction techniques need to be 

developed to target the partitioning of the Boolean 

state expressions into sub-state expressions to 

determine parts that are irrelevant to the final result 

(TRUE or FALSE) and therefore can be  excluded 

from the expression (replaced by TRUE or FALSE). 

Finally, a methodology for impact analysis to 

exclude low-impact partitions need to be developed, 

so the state space can be reduced.    

6 CONCLUSION 

An autonomous system is loaded with AI and 

operates in a potentially nondeterministic 

environment. Therefore, the verification of such 

systems needs to set boundaries that will provide the 

highest possible guarantees that the autonomy 

behavior will be safe and sound, so trust can be 

established in its innocuous operation. In this paper, 

we have presented our work on stability analysis for 

systems modeled with KnowLang. In this approach, 

a space of asymptotical stability is determined by 

analyzing the system goals along with the associated 

supportive policies and involved situations. The 

stable states and trajectories of action executions and 

state transitions form zones of asymptotical stability. 

Zones driven by a single system goal are grouped 

into areas of asymptotical stability and then these 

areas form a space of asymptotical stability. Here, if 

a system behavior determined by a sequence of 

actions that starts out in the space of asymptotical 

stability and stays in that space (or in a close 

proximity) forever, then that behavior is Lyapunov 

stable near that space of asymptotical stability.  

Future work is considered with further 

development of this approach in terms of stability 

analysis automation, state trajectory definition and 

deviation borderlines. Moreover, state-reduction 

techniques need to be developed along with state 

impact analysis. 
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