
Designing and Implementing Elastically Scalable Services
A State-of-the-art Technology Review

Kiyana Bahadori and Tullio Vardanega
Brain, Mind, Computer Science PhD Course, University of Padova, Italy

Keywords: Service, Service-Oriented Architecture, Microservice Architecture, Cloud Computing, Elastic Scalabiity,
Orchestration.

Abstract: The prospect of fast and affordable on-demand service delivery over the Internet proceeds from the very
notion of Cloud Computing. For service providers, the ability to afford those benefits to the user is contingent
on attaining rapid elasticity in service design and implementation, which is a very open research goal as yet.
With a view to this challenge, this paper draws a trajectory that, starting from a better understanding of the
principal service design features, relates them to the microservice architectural style and its implications on
elastic scalability, most notably dynamic orchestration, and concludes reviewing how well state-of-the-art
technology fares for their implementation.

1 INTRODUCTION

Cloud computing has imposed itself as an attractive
novel operational model for hosting and delivering
IT services over the Internet (Zhang et al., 2010).
Its central tenet of as-a-service provisioning, to the
user (from the application perspective) and to the ser-
vice provider (from the implementation perspective),
meets the technology and economic requirements of
todays acquisition pattern of IT infrastructure (Arm-
brust et al., 2009).

In fact, the promised benefits of cost-effectiveness
favoring pay-as-you-go pricing model, scalability and
reliability, appeal major IT companies to meet their
business objectives in a Cloud environment (An-
drikopoulos et al., 2013)(Buyya et al., 2009)(Khajeh-
Hosseini et al., 2012)(Tran et al., 2011). However,
from the service provider point of view, the cost is
outweighed by economic benefits of elasticity and
transference of risk especially in an occurrence of
over and under-provisioning of resource (Armbrust
et al., 2010). In that context, the goal of service
providers is to design and implement service portfo-
lios capable of satisfying given service level objec-
tives (SLO), in the face of fluctuating user demand,
while keeping operational costs at bay. Elasticity as
the ability to conserve resources at a fine grain with
as fast as possible lead time allows matching resource
to workload much more closely which result in cost
savings for service providers (Armbrust et al., 2010).

To this end, service design and implementation must
both seek and provide for elastic scalability (Herbst
et al., 2013). In this paper, we address challenges re-
lated to that endeavour.
Contribution: This paper first attempt to clarify the
notion of service and its requirements which is much
overloaded and frequently misunderstood. In the
quest for a service-based architecture that can guide
service design, it justifies the adaptation of the mi-
croservice architecture style. Subsequently, we look
into state-of-the-art technology to assist the imple-
mentation of elastic scalability, concentrating on dy-
namic orchestration, which is one particular facet of
that general quality. This work addresses two specific
research questions. (RQ1) What are the design re-
quirements that most relate to elasticity? (RQ2) How
far does state-of-the-art technology help achieve elas-
ticity?

The remainder of this paper is organized as fol-
lows: We briefly explain the notion of service in Sec-
tion 2. Section 3 discusses the design implications of
service orientation. Section 4 shows how container-
ization is the response to the rapid horizontal scala-
bility and relates containers to microservices, high-
lighting how the former provides best fitting support
for the adoption of the later. Section 5 assesses how
state-of-the-art technology solutions cover the needs
for dynamic orchestration. Section 6 draws some con-
clusions.

Bahadori, K. and Vardanega, T.
Designing and Implementing Elastically Scalable Services.
DOI: 10.5220/0006781705570564
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 557-564
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

557



2 UNDERSTANDING THE
NOTION OF SERVICE

The first widespread use of the notion of service, in
relation to software systems, arose as part of the Ser-
vice Oriented Architecture (SOA) initiative. In the
context of SOA, the term service is defined as an in-
dependent logical unit, which provides functionality
for a specific business process and can be composed
with other services to form an application (Erl, 2007).

Another connotation of service emerged in Cloud
Computing as part of the X-as-a-service model,
coined to evoke the manner of contract-based, pay-
as-you-go utility delivering (Fehling et al., 2014).

The union of the two perspectives sets a most am-
bitious goal: building a software application by agile
aggregation of service units in such a way that the ex-
posed capabilities are realized with the least resource
consumption, and then delivered and consumed as
metered utilities with assured quality of service.

Several qualities are required of services to fit this
bill. In this paper, we briefly review them, to give
directions to service designers. We begin our review
from the need for services to be composable and in-
dependently deployable (Serrano et al., 2011)(Stine,
2015)(Mazmanov et al., 2013).

2.1 Composability and Independent
Deployability

Enterprise IT architectures have to leverage and im-
prove the existing suite of applications to address
changing the business requirements rapidly (Kim
et al., 2016; Humble and Molesky, 2011). Other
than for deprecated silo-ed monoliths (Richardson,
2017), the functionality provided by a single service
is normally insufficient to respond alone to all user
requests. For example, the powering of an online
shopping site rests on a multiplicity of services, rang-
ing displaying, carting, payment processing, monitor-
ing and shipping, which may either be procured from
third-parties or provided by specialized development
units inside the business organization. In other words,
a service normally needs to collaborate with other ser-
vices to pursue a specific business goal, and the fab-
ric of such collaboration may change with the goal.
This collaborative trait requires services to warrant
composability (Serrano et al., 2011), i.e., the ability
to participate, unchanged, in different aggregates as
business demand requires (Tao et al., 2013)(Rao and
Su, 2004). Another essential trait of a service that
helps meet the requirements of elastic scalability is
being independently deployable (desirably, by fully
automated machinery (Lewis and Fowler, 2014)). It

provides an ability for a developer to deploy, update,
test and investigate directly on a particular service
without affecting the rest of the system. Therefore
each service can be scaled independently of other ser-
vices. Moreover, the isolation of each service ad-
dresses the challenge of the technology stack. This,
in fact, is completely different from using monolithic
application where components must be deployed to-
gether. Composability and independent deployability
proceed from service design with the following char-
acteristics.

Explicit Boundaries. A service possesses an inter-
face specification that describes its functionality and
exposes for the use of other services. That inter-
face, separate from the corresponding implementa-
tion, forms the boundary of that service, and con-
tains all that one needs to know to interact with it.
The boundary for a service is defined by means of
a contract (Cibraro et al., 2010). A contract con-
tains a schema and associated service policies (for
style of interaction, persistence, guarantee, etc.), and
is published using different mechanisms, initially via
WSDL (Christensen et al., 2001), and later through
REST API (Masse, 2011) and GRPC (Wang et al.,
1993). The schema defines the structure of the data
message, agnostic to programming languages (hence
intrinsically interoperable), needed to request a spe-
cific service functionality.

Policy-driven Interoperability. W3C’s notion of
web service was the first practical solution to assure
network-based interoperability (David Booth, 2004;
Cohen, 2002). Service policies provide a config-
urable set of semantic stipulations concerning service
expectations or requirements expressed in machine-
readable language.

For example, an online shopping service may re-
quire a security policy enforcing a specific service
level (requiring an ID) and the users who do not com-
ply are not allowed to continue. The security policy
can be used with other related services such as ship-
ping. Augmenting service interfaces with policy stip-
ulations strengthens the assurance of service guaran-
tees across technology boundaries.

Loose Coupling. A well-defined service boundary
goes hand in hand with the self-contained-ness of
the functionality set exposed in its service interface,
and therefore with the degree of loose coupling and
autonomy of its implementation. Loose coupling is
had when you do what your service interface declares
(without incurring chains of dependencies) and do
not place arbitrary constraints on your context of use

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

558



(hence being fit for reuse in multiple compositions)
(Fehling et al., 2014).

Self-containedness. A service interface is self-
contained if its implementation can be independently
managed (for instance, replicated or migrated) and
versioned (so long as in a backward-compatible man-
ner) without affecting the rest of the system (Erl,
2007).

Statelessness. Separation between service execu-
tion and state information enables replication, which
is one of the essential dimensions of scalability (Ab-
bott and Fisher, 2009). Statelessness (Erl, 2007) is the
name that designates this design quality.

3 BREAKING DOWN THE
MONOLITH

Accepted wisdom has it that the journey toward well-
versed service orientation, which fully meets the re-
quirements discussed in section 2, conventionally de-
parts from its farthest opposite: the rightfully depre-
cated monolith (Lewis and Fowler, 2014). The mono-
lith architecture assembles all that the application
needs to offer into one single sticky bundle, which
epitomizes the notion of single point of failure, is un-
able to scale efficiently, and suffers the worst pain of
the dependency hell (Merkel, 2014).

What is much less understood is the pitfall that
trips most incautious practitioners: ending up build-
ing a distributed monolith formed of ”microliths”,
that is, a collection of single-instance (not scalable)
mono-services (only with a cooler name) that com-
municate over blocking protocols (Steel et al., 2017).

On the solid footsteps of successful adopters such
as Amazon (Kamer, 2011), LinkedIn (Ihde, 2015),
Netflix (Mauro, 2015), the end point of that trans-
formative journey should arguably be the microser-
vice architecture (Dragoni et al., 2016). This is no
easy journey, though. One of the biggest difficulties
in getting there safely is with cutting the right bound-
ary for individual microservices, neither too coarse,
which would be just one tad smaller monolith, nor too
fine-grained, as in a distributed-object system, with
painful service latency and maddeningly complex or-
chestration.

One driving criterion that helps cut the service
boundary right is to focus on the scalability con-
cern. Scalability is the ability to deploy cost-effective
strategies for extending one’s capacity (Weinstock
and Goodenough, 2006). Scalability can be obtained

in two ways: vertical or horizontal. Vertical scaling
(aka scale-up) is the ability to increase, in quantity or
capacity, the resources availed to a single instance of
the service of interest. The extent of this strategy is
evidently upper-bounded by the capacity of the host-
ing server (Varia, 2010; Vaquero et al., 2011). Hor-
izontal scaling (aka scale-out) is the ability to aggre-
gate multiple units, transparently, into a single logical
entity to adapt to different workload profiles (Beau-
mont, 2017). Replication is one central dimension to
this strategy.

In fact, to meet the goals stated earlier, we need
to pursue elastic scalability (aka elasticity), that is,
the combination of strategy and means that allow dy-
namic resource provisioning and releasing, while pre-
serving service continuity, and that are amenable to
full automation (Armbrust et al., 2010).

Speed and precision are the qualifying traits of
elasticity (Herbst et al., 2013). As the number of re-
quests for particular service increases (respectively,
decreases), the speed of resource provisioning (re-
spectively, releasing) should vary in accord with the
speed of demand variation, fully transparent to the
user. The latter quality, which one might call fru-
gality, prevents wastefulness in the ratio of provision-
ing over need, by matching the footprint of resource
deployment to the level of demand as exactly as the
grain of service design allows. It is the balance of
those two qualities that sanctions the goodness of the
service boundary.
Numerous studies (e.g., (Namiot and Sneps-Sneppe,
2014; Balalaie et al., 2016; Balalaie et al., 2015;
Dragoni et al., 2017; Villamizar et al., 2015;
Krylovskiy et al., 2015)) show that adopting the mi-
croservice architecture helps pursue those goals.
To better understanding, we illustrate the methodol-
ogy which monolithic and microservice architecture
uses to handle the scalability in Figure 1.

Figure 1: Scalability in monolithic and microservice archi-
tectures.

Having multiple independent units collaborate in pro-
viding a response to a user request most definitely in-
curs coordination overheads that must be addressed
by orchestration (Venugopal, 2016).

Designing and Implementing Elastically Scalable Services

559



Orchestration can be understood as the automated
management and coordination of complex software
system, constituted of collaborative parts, and their
associated (computing) resources (Venugopal, 2016).
The entry level of of orchestration entails automating
the deployment of the application by means of Con-
tinuous Integration and Continuous Delivery (CI/CD)
solutions such as Chef (Nelson-Smith, 2013), Ansible
(Hall, 2013) and Jenkins (Jenkins, 2017).

Of course, to align with elastic scalability, orches-
tration must be dynamic, that is, able to support the
adjustment of resource provisioning and service de-
ployment required to either follow reactively or (bet-
ter) adapt predictively to fluctuating user demand.

Having multiple independent units collaborate in
providing a response to a user request most definitely
incurs coordination overheads that must be addressed
by orchestration (Venugopal, 2016).

Orchestration can be understood as the automated
management and coordination of complex software
system, constituted of collaborative parts, and their
associated (computing) resources (Venugopal, 2016).
The entry level of of orchestration entails automating
the deployment of the application by means of Con-
tinuous Integration and Continuous Delivery (CI/CD)
solutions such as Chef (Nelson-Smith, 2013), Ansible
(Hall, 2013) and Jenkins (Jenkins, 2017).

Of course, to align with elastic scalability, orches-
tration must be dynamic, that is, able to support the
adjustment of resource provisioning and service de-
ployment required to either follow reactively or (bet-
ter) adapt predictively to fluctuating user demand.

4 RAPID SERVICE SCALING
USING CONTAINERIZATION

Virtualization is the fundamental techonology that
utilize resources by creating virtual logical partition
from a shared pool of resources to meet principle
of elastic scalability for service (Armbrust et al.,
2009)(Zhang et al., 2010). To this end, hypervised
virtualization has been a major enabler for Cloud
computing. Its primary bounty includes isolation
(which it assures) and self-sufficiency, that is, no ex-
ternal dependency and perfect loose coupling (which
it allows for), both being much desired qualities for
service-oriented applications. In addition to, or per-
haps as a reflection of, being too resource-costly, how-
ever, classic hypervised virtualization technology is
fundamentally unable to respond to the rapidity re-
quirements put forward by elastic horizontal scal-
ing (Pahl and Xiong, 2013).

Container-based virtualization, which originates

from the Linux Container project (LXC), is much bet-
ter apt at the scaling, while still assuring excellent iso-
lation (Pahl and Xiong, 2013). The container uses
the kernel of the host operating system to run mul-
tiple root file systems. The name ”container” desig-
nates each such root file system (Docker, 2017) and
holds the code and libraries that constitute the con-
tained application, while sharing the host operating
system with all other entities that run on it. This shar-
ing is a blessing but also a weakness; the latter be-
cause it requires the application to actually run on the
host OS, renouncing interoperability. Containers use
namespaces to cater for isolation among processes
and cgroups to limit and control resources usage in
individual process.

Because of their leaner nature, containers con-
sume less resources (so that one single host can ac-
commodate many containers) and are lighter and eas-
ier to house and transport, faster to deploy, boot and
shut down than virtual machines (Dua et al., 2014). It
is not surprising therefore that containers were found
to be up to 10 times faster to bootstrap than virtual
machines (Felter et al., 2015).

Docker is an open-source container technology
based on the LXC technique, which is built around
a container engine (Docker, 2017). A Docker con-
tainer is composed of two parts: a pile of images
and one container. Images are a collection of dif-
ferent read-only file systems stacked on top of each
other using the Advanced multi-layered Unification
File-system (AuFS), which implements union mount-
ing that allows separate file systems or directories
to be overlaid into a single coherent file system.
A container is the writable image that sits on the
top layer of the said image stack. A microser-
vice architecture is a collection of multiple inde-
pendent deployable services written in a variety of
language and frameworks, which communicate with
high-level, application-independent protocols (Lewis
and Fowler, 2014)(Newman, 2015). Each service
needs to be provided with its required resources in a
fast, reliable and cost-effective way, and then needs to
be run, upgraded and replaced independently. These
requirements speak of containers (Pahl, 2015). There
are two approaches to deploying application using
containers: one-to-one and one-to-many (Richardson,
2016). The classification criterion is the number of
services housed in the container, which defines its
granularity. The one app (service) per container ap-
proach allows each individual service to run on a ded-
icated container, so that one container hosts only one
service and each service is packaged as a container
image. This solution eases horizontal scaling, pro-
vides fast build/rebuild of the container, and allows

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

560



the same container to be reused for multiple different
purposes in the same system. The major downside of
this approach is that it may yield a large number of
containers, and thus considerable overhead for inter-
action and management. The one-to-many solution,
where each container houses multiple services, ad-
dresses this very concern, without however answering
the question of which services to gather into which
container.

5 REVIEWING TECHNOLOGY
SUPPORT FOR DYNAMIC
ORCHESTRATION

The complementary specification in the direction of
designing and implementing elastic scalability for the
definition of dynamic orchestration we discussed in
Section 4 requires the technology solutions to sup-
port efficient resource allocation and coordination.
The scheduler is an essential component of an ideal
dynamic orchestration solution, as it is the entity in
charge of generating a dynamic execution plan that
responds to changes in user demand.

The scheduler must generate dynamic statistics on
the state of the resources that it manages, to compute
the best possible service-resource mapping, using ei-
ther reactive or proactive strategies.

Reactive approaches respond to demand fluctu-
ation when predictions are not available. Exam-
ples of this solution appear in most commercial solu-
tions such as RightScale (RightScale, 2017) and AWS
(Amazon, 2017).

Proactive approaches use predicted demand to al-
locate resources before they are needed (Gong et al.,
2010; Nguyen et al., 2013; Dawoud et al., 2011). In
using proactive approaches, the accuracy of demand
prediction and provisioning is obviously critical to
saving costs with utility computing (Tsai et al., 2010).

A modern scheduler should provide support for
the following features:

• Affinity / Anti-affinity, to implement restrictions
that enforce given entities to always be adjacent
or separate to one another. An affinity rule simply
means the ability to ensure that certain workload
or virtual server always runs on the same host.
Anti-affinity works in the opposite way, with the
same impact as Affinity.

• Taint and toleration, to mark a particular (log-
ical/physical) computing node as un-schedulable
so that no container will be scheduled on it other
than those that explicitly tolerate the taint. This
requirement can also be used to keep away a node

with a particular specification (e.g., a physical re-
source) from the others and dedicate it to given
workload. It also allows rolling application up-
grades of a cluster with almost no downtime.

• Custom schedulers, to delegate responsibility for
scheduling an arbitrary subset of hosts to the user,
alongside with the default scheduler.

To examine how current state-of-the-art technol-
ogy meets the requirements for elasticity, we look in
Kubernetes (Kubernetes, 2017)(Brewer, 2015), Open-
Shift (OpenShift, 2017), DockerSwarm (Docker,
2017), as the most widely used solutions for the dy-
namic orchestration.

Kubernetes. One of the first open source orchestra-
tion platform written in Google’s Go programming
language. Its architecture is based on a set of mas-
ter and worker (Minion) nodes. Within each node,
there are groups of containers called pods, which
share resource and are deployed together. Pods play
a significant role in placing workload across a clus-
ter of nodes. Kubernetes uses architectural descrip-
tions, written in JSON or YAML, to describe the de-
sired state of services, which it feeds to the master
node. The master node devolves all dynamic orches-
tration tasks onto worker nodes. Kubernetes provides
Required and Preferred rules. Required rules need
to be met before a pod can be scheduled. Preferred
rules do not guarantee enforcement. Kubernetes also
uses a replication controller with a reactive approach
to instantiate pods as required.

Kubernetes provides pods and nodes with affinity
/anti-affinity attributes. It defines rules as a set of la-
bels for pods, which determines how nodes schedule
them. Anti-affinity rules use negative operators.

Kubernetes marks nodes to avoid them to be
scheduled. The Kubectl command creates a taint
on nodes marks them un-schedulable by any pod that
does not have a toleration for taint with the corre-
sponding key-value.

Kuberenes at v1.6 supports customs schedulers in
a way that allows users to provide a name for their
custom scheduler and ignore the default one. Cus-
tom strategies are completely custom, meaning that
the user must write an ad-hoc plugin to use them.

OpenShift. A dynamic orchestration platform built
on top of Kubernetes, hence it inherits the capabil-
ities of its ancestor. By default, its container plat-
form scheduler is responsible for the placement of
new pods onto nodes within the cluster. It reads data
from the pod and tries to select the most appropriate
node, based on its configuration policies. It does not

Designing and Implementing Elastically Scalable Services

561



modify the pod, and simply creates a binding for the
pod that ties it to the particular node.

Docker Swarm. It is a native orchestration tool
for the Docker Engine, which supports deploying
and running multi-container applications on different
hosts. The term swarm refers to the cluster of phys-
ical/virtual machines (Docker engines), called nodes,
where services are deployed. Its architecture uses one
master and multiple worker nodes.

The key concepts in it are services and tasks. Ser-
vice designates the tasks that need to execute on the
worker nodes, as specified in the tasks’ desired state.
Tasks represent atomic scheduling units of work as-
sociated to a specific container. Docker Swarm uses
a declarative description, called Compose file, written
in YAML to describe services.

The swarm manager is responsible for scheduling
the task (container) to worker nodes (hosts). Docker
Swarm places a set of filters on nodes and containers
to support the first two requirements mentioned ear-
lier. Node filters constraint and health operate on
Docker hosts to select a subset of nodes for schedul-
ing. The node filter containerslots with a number
value is used to prevent launching containers above a
given threshold on the node.

Docker Swarm offers three strategies, called
spread, binpack, random, to manage cluster as-
signment according to need. Under the spread strat-
egy (which is the default one), it computes ranking
according to the nodes available CPU and RAM, at-
tempting to balance load across nodes. The binpack
strategy attempts to fill up the most used hosts, leav-
ing spare capacity in less used ones. The random
strategy (which is primarily intended for debugging)
assigns computation randomly among the nodes that
can schedule it.

As mentioned earlier, scheduler is an essential
component to achieve optimal provisioning that re-
sponse to changes in user demand.

Concentrating on the scheduler to achieve opti-
mal provisioning in the mentioned technologies, we
observe that all are using predictive approaches to
achieve elasticity. As, using resources have boot-
times that vary, depending on the application, from
a couple of minutes to even 30-40 minutes to load all
the components needed. Even in the container world,
spawning a new large-image container on a new node
while the network is under stress, will easily take 5
to 10 minutes. The same holds for shut-down times.
Therefore, the longer the boot time will result in con-
suming more resource and less efficiency. So, the
more important it becomes to be proactive and pro-
vide required resources in advance to achieve effec-

tive elasticity. This justifies investigating proactive al-
gorithms in place / along with reactive ones to achieve
effective elasticity.

6 CONCLUSIONS

The technology exploration that we have made in this
paper shows that there continues to be a gap between
what state-of-the-art solutions have to offer in the way
of support for elastic scalability and the full range of
requirements that such a need entails. Accordingly,
proactive approaches to resource scheduling are the
most acute need that is not supported as yet other
than in early research prototypes. To this end, our
future research goal is to design, implement and com-
paratively evaluate experimental proactive resource
allocation algorithms, which Cloud service provider
could employ to achieve rapid elasticity and leverage
it for a more proficient use of DevOps.

REFERENCES

Abbott, M. L. and Fisher, M. T. (2009). The Art of Scalabil-
ity: Scalable Web Architecture, Processes, and Orga-
nizations for the Modern Enterprise. Addison-Wesley
Professional, 1st edition.

Amazon (2017). Amazon Web Service. https://aws.amazon.
com/.

Andrikopoulos, V., Binz, T., Leymann, F., and Strauch, S.
(2013). How to adapt applications for the cloud envi-
ronment. Computing, 95(6):493–535.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. Commun. ACM, 53(4):50–58.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., Lee, G., Patterson, D. A.,
Rabkin, A., Stoica, I., et al. (2009). Above the clouds:
A berkeley view of cloud computing. Technical re-
port, Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2015). Mi-
grating to cloud-native architectures using microser-
vices: an experience report. In European Conference
on Service-Oriented and Cloud Computing, pages
201–215. Springer.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016). Mi-
croservices architecture enables devops: migration to
a cloud-native architecture. IEEE Software, 33(3):42–
52.

Beaumont, D. (2017). How to explain verti-
cal and horizontal scaling in the cloud.
https://www.ibm.com/blogs/cloud-computing/2014/
04/explain-vertical-horizontal-scaling-cloud/.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

562



Brewer, E. A. (2015). Kubernetes and the path to cloud
native. In Proceedings of the Sixth ACM Symposium
on Cloud Computing, SoCC ’15, pages 167–167, New
York, NY, USA. ACM.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation com-
puter systems, 25(6):599–616.

Christensen, E., Curbera, F., Meredith, G., and Weer-
awarana, S. (2001). Web Service Description Lan-
guage (WSDL) 1.1 W3C Note. Technical report,
World Wide Web Consortium (W3C).

Cibraro, P., Claeys, K., Cozzolino, F., and Grabner, J.
(2010). Professional WCF 4: Windows communica-
tion foundation with. NET 4. John Wiley & Sons.

Cohen, F. (2002). Understanding web service interoperabil-
ity. IBM Technical Library.

David Booth, Hewlett-Packard, H. H. F. M. E. N. I. M. C.
C. F. D. O. (11 February2004). Web services architec-
ture, w3c working group note.

Dawoud, W., Takouna, I., and Meinel, C. (2011). Elas-
tic vm for cloud resources provisioning optimization.
Advances in Computing and Communications, pages
431–445.

Docker (2017). What is docker. https://www.docker.com/
what-docker.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. (2016). Mi-
croservices: yesterday, today, and tomorrow. arXiv
preprint arXiv:1606.04036.

Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M.,
Mustafin, R., and Safina, L. (2017). Microservices:
How to make your application scale. arXiv preprint
arXiv:1702.07149.

Dua, R., Raja, A. R., and Kakadia, D. (2014). Virtualization
vs containerization to support paas. In Cloud Engi-
neering (IC2E), 2014 IEEE International Conference
on, pages 610–614. IEEE.

Erl, T. (2007). Soa: principles of service design. Prentice
Hall Press.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., and
Arbitter, P. (2014). Cloud computing patterns: funda-
mentals to design, build, and manage cloud applica-
tions. Springer Science & Business Media.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015).
An updated performance comparison of virtual ma-
chines and linux containers. In Performance Analysis
of Systems and Software (ISPASS), 2015 IEEE Inter-
national Symposium On, pages 171–172. IEEE.

Gong, Z., Gu, X., and Wilkes, J. (2010). Press: Predictive
elastic resource scaling for cloud systems. In Network
and Service Management (CNSM), 2010 International
Conference on, pages 9–16. Ieee.

Hall, D. (2013). Ansible Configuration Management. Packt
Publishing.

Herbst, N. R., Kounev, S., and Reussner, R. (2013). Elastic-
ity in cloud computing: What it is, and what it is not.
In Proceedings of the 10th International Conference
on Autonomic Computing (ICAC 13), pages 23–27.

Humble, J. and Molesky, J. (2011). Why enterprises must
adopt devops to enable continuous delivery. Cutter IT
Journal, 24(8):6.

Ihde, S. (2015). InfoQ — From a Monolith
to Microservices + REST: the Evolution of
LinkedIn’s Service Architecture. [Online].
http://www.infoq.com/presentations/linkedin-
microservices-urn/.

Jenkins (2017). Jenkins. https://jenkins.io/.
Kamer, S. (2011). GIGAOM, The Biggest Thing

Amazon Got Right: The Platform. [Online].
https://gigaom.com/2011/10/12/419-the-biggest-
thing-amazon-got-right-the-platform/.

Khajeh-Hosseini, A., Greenwood, D., Smith, J. W., and
Sommerville, I. (2012). The cloud adoption toolkit:
supporting cloud adoption decisions in the enterprise.
Software: Practice and Experience, 42(4):447–465.

Kim, G., Debois, P., Willis, J., and Humble, J. (2016).
The DevOps Handbook: How to Create World-Class
Agility, Reliability, and Security in Technology Orga-
nizations. IT Revolution Press.

Krylovskiy, A., Jahn, M., and Patti, E. (2015). Designing
a smart city internet of things platform with microser-
vice architecture. In Future Internet of Things and
Cloud (FiCloud), 2015 3rd International Conference
on, pages 25–30. IEEE.

Kubernetes (2017). Kubernetes. https://kubernetes.io/docs/
tutorials/kubernetes-basics/.

Lewis, J. and Fowler, M. (2014). Microservices: a definition
of this new architectural term. Mars.

Masse, M. (2011). REST API Design Rulebook: Design-
ing Consistent RESTful Web Service Interfaces. ”
O’Reilly Media, Inc.”.

Mauro, T. (2015). Nginx — Adopting Microservices at
Netflix: Lessons for Architectural Design.[Online].
https://www.nginx.com/blog/microservices-at-
netflix-architectural-best-practices/.

Mazmanov, D., Curescu, C., Olsson, H., Ton, A., and
Kempf, J. (2013). Handling performance sensitive na-
tive cloud applications with distributed cloud comput-
ing and sla management. In Proceedings of the 2013
IEEE/ACM 6th International Conference on Utility
and Cloud Computing, UCC ’13, pages 470–475,
Washington, DC, USA. IEEE Computer Society.

Merkel, D. (2014). Docker: lightweight linux containers for
consistent development and deployment. Linux Jour-
nal, 2014(239):2.

Namiot, D. and Sneps-Sneppe, M. (2014). On micro-
services architecture. International Journal of Open
Information Technologies, 2(9):24–27.

Nelson-Smith, S. (2013). Chef: The Definitive Guide.
O’Reilly Media, Inc.

Newman, S. (2015). Building microservices: designing
fine-grained systems. ” O’Reilly Media, Inc.”.

Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes,
J. (2013). Agile: Elastic distributed resource scaling
for infrastructure-as-a-service. In ICAC, volume 13,
pages 69–82.

OpenShift (2017). Container Application Platform by the
Open Source Leader. https://www.openshift.com/.

Designing and Implementing Elastically Scalable Services

563



Pahl, C. (2015). Containerization and the paas cloud. IEEE
Cloud Computing, 2(3):24–31.

Pahl, C. and Xiong, H. (2013). Migration to paas clouds-
migration process and architectural concerns. In
Maintenance and Evolution of Service-Oriented and
Cloud-Based Systems (MESOCA), 2013 IEEE 7th In-
ternational Symposium on the, pages 86–91. IEEE.

Rao, J. and Su, X. (2004). A survey of automated web
service composition methods. In SWSWPC, volume
3387, pages 43–54. Springer.

Richardson, C. (2017). Monolithic architecture.
http://microservices.io/patterns/monolithic.html.

Richardson, C. (February 10, 2016). Choos-
ing a Microservices Deployment Strat-
egy. https://www.nginx.com/blog/deploying-
microservices/.

RightScale (2017). RightScale. https://www.
rightscale.com/.

Serrano, M., Shi, L., Foghlú, M. Ó., and Donnelly, W.
(2011). Cloud services composition support by us-
ing semantic annotation and linked data. In Inter-
national Joint Conference on Knowledge Discovery,
Knowledge Engineering, and Knowledge Manage-
ment, pages 278–293. Springer.

Steel, E., Berube, Y., Bonér, J., Britton, K., and Coatta,
T. (2017). Hootsuite: In pursuit of reactive systems.
ACM Queue, 15(3):60.

Stine, M. (2015). Migrating to cloud-native application ar-
chitectures.

Tao, F., LaiLi, Y., Xu, L., and Zhang, L. (2013). Fc-
paco-rm: a parallel method for service composi-
tion optimal-selection in cloud manufacturing sys-
tem. IEEE Transactions on Industrial Informatics,
9(4):2023–2033.

Tran, V., Keung, J., Liu, A., and Fekete, A. (2011). Applica-
tion migration to cloud: a taxonomy of critical factors.
In Proceedings of the 2nd international workshop on
software engineering for cloud computing, pages 22–
28. ACM.

Tsai, W.-T., Sun, X., and Balasooriya, J. (2010). Service-
oriented cloud computing architecture. In Information
Technology: New Generations (ITNG), 2010 Seventh
International Conference on, pages 684–689. IEEE.

Vaquero, L. M., Rodero-Merino, L., and Buyya, R. (2011).
Dynamically scaling applications in the cloud. ACM
SIGCOMM Computer Communication Re, 41(1):45–
52.

Varia, J. (2010). Architecting for the cloud: Best practices.
Amazon Web Services, 1:1–21.

Venugopal, S. (2016). Cloud orchestration technolo-
gies,ibm. https://www.ibm.com/developerworks/
cloud/library/cl-cloud-orchestration-technologies-
trs/index.html.

Villamizar, M., Garcés, O., Castro, H., Verano, M., Sala-
manca, L., Casallas, R., and Gil, S. (2015). Evaluating
the monolithic and the microservice architecture pat-
tern to deploy web applications in the cloud. In Com-
puting Colombian Conference (10CCC), 2015 10th,
pages 583–590. IEEE.

Wang, X., Zhao, H., and Zhu, J. (1993). Grpc: A communi-
cation cooperation mechanism in distributed systems.
SIGOPS Oper. Syst. Rev., 27(3):75–86.

Weinstock, C. B. and Goodenough, J. B. (2006). On system
scalability. Technical report, CARNEGIE-MELLON
UNIV PITTSBURGH PA SOFTWARE ENGINEER-
ING INST.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: state-of-the-art and research challenges. Jour-
nal of internet services and applications, 1(1):7–18.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

564


