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Abstract: Mainstream cloud technologies are challenged by real-time, big data processing requirements or emerging 
applications. This paper surveys recent research efforts on advancing cloud computing virtual 
infrastructures and real-time big data technologies in order to provide dynamically scalable and distributed 
architectures over federated clouds. We examine new methods for developing cloud systems operating in a 
real-time, big data environment that can sense the context of the application environment and can adapt the 
infrastructure accordingly. We describe research topics linked to the challenge of adaptivity such as 
situation awareness, context detection, service-level objectives, and the capability to predict extraordinary 
situations requiring remedying action. We also describe research directions for realising adaptivity in cloud 
computing and we present a conceptual framework that represents research directions and shows inter-
relations. 

1 INTRODUCTION 

Cloud computing and, in particular, the 
Infrastructure-as-a-Service (IaaS) model has become 
the natural habitat for big data driven applications, 
thanks to its unlimited scaling abilities. Big data 
applications challenge cloud computing infrastru-
ctures which have not been designed to cope with 
the velocity and sheer quantity of generated data. 
The challenge is even greater when cloud 
infrastructures are called to deal with the immense 
amount of data that the billions of distributed IoT 
sensors can genera-te. Thus, the cloud computing 
paradigm is being expanded to reach the extreme 
edge of the network, effectively developing so-
called fog infrastructures. 

Mainstream technologies, such as Hadoop, are 
challenged by real-time processing requirements, 
due to their static nature (Burns 2013). While more 
recent and dynamic technologies, such as Storm 
(Apache Storm 2018), have proven to be efficient 
computational platforms for real-time data stream 
analytics, they fail to exploit the relatively new 
decentralized architecture known as federated clouds 
and fog infrastructures. A federated cloud is a hybrid 

cloud that merges the resources available in multiple 
clouds. Federated clouds consist of resource which 
can be private clouds (e.g. in-premises OpenStack 
installation), public IaaSes (e.g. Amazon Web 
Services, Microsoft Azure) or decentralized clouds 
(e.g. fog and edge clouds). Cloud resource 
configuration can be performed using open 
standards and APIs such as OCCI (OCCI, 2018), 
CIMI (CIMI, 2013), TOSCA (OASIS, 2017) or 
proprietary but widely used APIs like Amazon Web 
Services (Amazon, 2018). 

Recent research efforts have focused on 
advancing cloud computing virtual infrastructures 
and real-time big data technologies in order to 
provide dynamically scalable and distributed 
architectures on federated clouds. Various works 
have proposed new methods for developing cloud 
systems operating in a real-time, big data 
environment that can sense the context of the 
application environment and can adapt the 
infrastructure accordingly.  

Adaptivity in big data-driven cloud 
infrastructures manifests primarily in two layers 
(Figure 1): The real-time application adaptivity l 
ayer refers to changes that can be performed in real 
time by application-specific code on end devices.  
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Figure 1: Adaptivity in big data-driven cloud infrastructures. 

The topology adaptivity layer refers to changes that 
can be performed to the processing topology and the 
virtual resources available.  

The challenge of adaptivity is linked to a number 
of research topics that we survey in this paper: 
situation awareness, context detection and the 
capability to predict situations that pose the need for 
adaptation. Our research objective is to investigate 
the related state of the art, and facilitate the work of 
researchers and practitioners through the 
presentation of a conceptual framework. The 
proposed framework aims to identify the tools and 
methods needed for optimizing (i) the resource 
usage for various applications based on specific 
policies and (ii) the quality of service demands of 
specific application ecosystems. 

The remaining of the paper is structured as 
follows: Section 2 provides an overview of the state 
of the art in cloud adaptivity. Section 3 identifies 
challenges for cloud computing technologies and 
related research directions. Section 4 presents a 
meta-management framework for cloud adaptation 
for guiding relevant research & development needed 
to realise big-data driven cloud adaptivity. Section 5 
concludes the paper. 

2 STATE OF THE ART  

Cloud adaptation refers to the process of dynamic 
selecting and configuring the cloud resources (such 
as CPU, memory, storage or networking) that are 
necessary to provide a service with the desired 

quality attributes. (Jennings and Stadler, 2015) point 
out that in cloud-computing there exist different 
types of actors which have different objectives 
pertaining cloud adaptation needs. Cloud providers 
provide services (e.g. cloud infrastructure) to cloud 
users (e.g. DevOps). Cloud users provide services to 
end users (e.g. a web-based application). In IaaS or 
PaaS context, cloud providers agree on certain SLAs 
and Service Level Objectives (SLOs) with cloud 
users.  There are many categories of SLAs (Kyriazis, 
2013). According to the authors, more relevant to 
resource management are the SLOs that are 
quantifiable (like those that are related to 
performance and availability). SLOs sometimes, 
depending on the definition of the SLA, may be 
satisfied up to a certain possible degree, when other 
constraints must be satisfied simultaneously.  

Cloud providers may pursue additional 
objectives that are important for their business such 
as energy use minimization and fault tolerance, in 
some cases in a prioritized manner depending on the 
context (e.g. prioritize low energy use when the total 
workload is not high). Cloud users have SLAs with 
their customers. In order to satisfy them they agree 
SLAs with cloud providers but they may have 
additional objectives (such as minimizing the risk of 
violating SLAs with end users by using multiple 
cloud providers). 

(Jennings and Stadler, 2015) in a recent survey 
of over 250 publications about resource management 
relevant to cloud based infrastructures recognize 
four types of adaptation: “Infrastructure Scaling”, 
“Virtual Machine Migration”, “Virtualization” and 
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“Equipment Power State Adjustment”. Challenges 
that the authors identify include: (i) the way to 
achieve predictable performance when adaptations 
are performed, knowing that the cloud resources are 
shared between different applications; and (ii) the 
way to globally manage different types of resources 
(compute, storage, networking, etc.) in an 
orchestrated way in order to achieve “Global 
Manageability of Cloud Resources”. (Ranjan et 
al.,2015)  summarize the different types of attributes 
(cores, speed, capacity, etc.) that can be configured 
and orchestrated in cloud infrastructure resources 
(CPU, BLOB storage, network, etc.) according to its 
type (IaaS, SaaS, PaaS) and the operations that can 
be applied to each attribute (start, stop, restart, etc.). 
This work not only describes the cloud resources as 
the ontology in (Youseff et al.,2008)  but it attempts 
to identify the way a cloud-based infrastructure can 
be programmed in order to achieve its goals. 

2.1 Adaptation Implementation 

Concerning the actual implementation of adaptation 
actions, proposed approaches broadly fall under two 
categories: Proactive adaptation policies - which 
anticipate unusual situations and take actions in 
order to ensure the correct functioning of the service 
and reactive adaptation policies, which use data 
from the current situation in order to trigger the 
necessary adaptation actions. 

The review paper of (Lorido-Botran et al.,2014) 
identifies and compares five categories of 
approaches for decision making in auto-scaling: 
Threshold-based rules, Reinforcement Learning 
(RL), Queuing theory (QT), Control theory (CT) and 
Time series analysis (TS). (Gandhi et al., 2012) 
identify five similar auto-scaling approach 
categories: Prediction models, Control theoretic 
techniques, Queueing-based models, Black-box and 
Grey-box approaches. Black box models use 
machine learning or statistical methods for decision 
making in order to overcome the problem of 
modelling the cloud application using expert 
knowledge. Grey-box models are hybrid approaches 
that use models in combination with machine 
learning (Gandhi et al., 2012). (Qu et al., 2016) 
support in their review paper that, according to the 
bibliography, resource estimation in horizontal or 
vertical auto-scaling can be performed using Rules, 
Fuzzy-Inference, Application-Profiling, Analytical 
Modelling, Machine Learning or hybrid methods. 
Analytical modelling according to the authors 
includes Queuing Theory and Markov Chains. 
Machine learning includes Reinforcement Learning 

and Regression. Regression is applied in auto-
scaling techniques that use Time-series Analysis or 
Control Theory.  

Rule-based approaches are used in commercial 
auto-scaling systems such as (Amazon AWS Auto-
Scaling service,2018) or (RightScale, 2018). An 
advantage of this approach is that a DevOps user can 
relatively easily create and understand them. In 
(Lorido-Botran et al.,2014) the authors maintain that 
while rule-based approaches are usually reactive, 
they can be combined with queueing theory, or time-
series analysis, in order to respond proactively to 
situations.  

Another approach for adaptation relies on 
Queuing theory, which discusses queues (waiting 
lines) using mathematics. The modelling using 
queues is relevant to cloud applications, because the 
requests to a service can be assumed to follow a 
queue. The result of the modelling is the necessary 
resources to process a workload with a specific size. 
However, as queuing models require a fixed 
architecture in order to be solved, they need to be 
solved every time that an adaptation occurs which is 
computationally expensive. 

A different approach uses Control Theory to 
maintain an output variable (e.g. CPU usage) 
constant, while modifying the resources of the cloud 
infrastructure respectively (e.g. number of 
VM’s/characteristics of a VM). According to the 
review paper by (Lorido-Botran et al.,2014), these 
approaches are fine-tuned either for vertical scaling 
or horizontal scaling, but not for both. 

An alternative method to handle the problem or 
resource adaptation relies on machine learning, and 
more specifically on Reinforcement Learning (RL). 
Using this method, an agent interacts with the 
system and proposes the best adaptation action (from 
the pool of defined actions) based on its experience 
in similar situations. Then, the outcome of the 
adaptation is measured using a cost/reward function, 
and the agent improves its understanding. 
Unfortunately, models following the RL method 
suffer from bad performance during on-line training 
for a long time, require considerable processing 
power, and – being highly specialized – perform 
sub-optimally when the context is changed(Lorido-
Botran et al.,2014) . 

Table 1 summarises the characteristics of the 
aforementioned cloud infrastructure adaptation 
approaches. 
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Table 1: Summary of Cloud Infrastructure Αdaptation Approaches. 

Adaptation 
method 

Policy Type (proactive vs 
reactive) 

Real-time 
model 
adaptation 

Model 
response 
after 
context 
change 

Vertical and 
Horizontal 
Scaling 
Optimization 

Model 
update 
difficulty 

Computational 
complexity 

Reinforcement 
Learning 

Proactive Yes Bad Yes Hard High 

Queueing 
Theory 

Proactive No Bad None Hard High 

Control Theory Reactive No Good Only one 
attribute 
optimized 

Hard Average 

Time Series 
Analysis 
/Prediction 
Models 

Proactive Yes Very 
Good 

None Average Average 

Rule-based 
approaches 

Reactive (Can be combined 
with queuing theory 
methods or prediction 
methods to gain proactivity) 

No Good Yes Average Low 

 

2.2 Application-specific Αdaptivity 

This section presents recent approaches that deal 
with the challenge of adapting applications than run 
on cloud infrastructures (see also Table 2). 
(Cavalcante et al., 2013) developed an autonomous 
adaptation process for cloud-based applications by 
replacing a service by an alternative one that fulfils 
the application needs and describe the adaptation 
process within the Cloud Integrator, a service-
oriented middleware platform for composing, 
executing, and managing services provided by 
different cloud platforms. (Inzinger et al. 2013), 
(Inzinger et al, 2014), proposed a provider-managed, 
model-based adaptation approach for cloud 
computing applications, allowing customers to 
specify application behaviour goals or rules, thus 
actively engaging the application refactoring 
process. There are also recent agent-based efforts 
that try to fuse adaptivity in cloud resources usage. 
For example, (Comi et al.,2015) present an approach 
based on agent cloning, i.e. a mechanism of agent 
reproduction allowing providers to substitute an 
“unsatisfactory” agent acting in a “cloud context” 
with a clone of an existing agent having suitable 
knowledge and good reputation in the multi-cloud 
context. 

Another stream of work focuses on application 
migration approaches. (Gholami et al., 2016) 
published a detailed survey of cloud migration 
approaches. The authors revealed that little work 

exists that provides a means to design situation-
specific approaches with respect to the 
characteristics of a migration project. (Inese et al., 
2015) described methods used for enterprise 
application decomposition in cloud migration 
projects. Their work distinguishes between four 
decomposition phases: fact extraction, pre-
processing, clustering/component classification and 
post-processing. Methods for fact extraction include 
static, dynamic and semantic code analysis as well 
as dynamic SQL analysis. Pre-processing includes 
similarity evaluation, trace compression, rules, 
classification, code cleansing and concept 
assignment. Clustering and component identification 
is typically done with clustering methods as well as 
rules. Finally, post-processing refers to evaluation 
methods using rules, refinement as well as 
optimisation and layer identification. 

A methodological approach for cloud migration 
has been developed by (Jamshidi et al., 2016) based 
on (i) a catalogue of fine-grained service-based 
cloud architecture migration patterns that target 
multi-clouds, (ii) a Situational migration process 
framework to guide pattern selection and 
composition, and (iii) a variability model to structure 
system migration into a coherent framework. The 
proposed migration patterns are based on empirical 
evidence from several migration projects, best 
practice for cloud architectures and a systematic 
literature review of existing research. The 
methodology allows an organization to (i) select 
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appropriate migration patterns, (ii) compose them to 
define a migration plan, and (iii) extend them based 
on the identification of new patterns in new contexts. 

A cloud migration strategy recommender method 
is proposed by (Bonab and Busherian), 2015). The 
main rationale behind this method is to provide easy 
and fast recovery from failed components or 
replacing the required functionality of the legacy 
software with the reliable cloud services. In this 
paper a semi-automated reverse engineering method 
based on the clustering algorithms is proposed to 
recommend the best migration-to-cloud strategy. 
The recommendation is based on four defined 
metrics: the extent of effort required for 
reengineering, maintenance costs, achieved 
availability and the number of cloud services that are 
used. 

(Kwon and Tilevich, 2014) proposed an 
application refactoring approach based on a 
recommender tool that computes the coupling 
metrics for all the classes in a legacy application and 
then displays the classes that are least tightly 
coupled. Accessing the functionality represented by 
these classes from a remote cloud-based service 
should impose only a limited performance penalty 
on the refactored application. The approach 
leverages two recommendation mechanisms: 
profiling and clustering-based recommenders. The 
profiling-based recommender engages a static 
program analysis and runtime monitoring to collect 
program information. By combining the class 
coupling metrics collected through both static 
analysis and runtime monitoring, the 

recommendation algorithm then suggests a subset of 
an application that can be transformed to cloud-
based services. The profiling-based recommender 
sorts application classes based on their execution 
duration and frequencies, so that the programmer 
can know what classes are computation-intensive 
and how frequently they are accessed. (ii) The 
clustering-based recommender clusters classes with 
similar functionality, thus identifying class clusters 
whose functionality can be naturally exposed as a 
cloud-based service. Because the clustering-based 
recommender groups classes based on their 
functionality, the programmer can avoid duplicating 
a functionality in the cloud by selecting candidates 
for cloud-based service from different clusters. 

(Hilton et al., 2014) developed Cloudifyer, a 
touchdevelop IDE plugin which refactors 
touchdevelop scripts in place. First, Cloudifyer 
retrieves the source of the target app as an Abstract 
Syntax Tree (AST) stored in JSON format from the 
touchdevelop script bazaar. It then transforms the 
AST as needed. Once all the transformations are 
performed, Cloudifyer completes the refactoring by 
saving the new AST for the target app. (Vasconcelos 
et al.,2015) presented a novel approach to support 
organizations in automatically adapting existing 
software applications to the cloud. The approach is 
based on the loosely-coupled implementation of 
non-intrusive code transformations, called cloud 
detours, which enable the automatic replacement of 
local services used by an application with similar or 
functionally-related services available in the cloud. 

 

Table 2: Summary of Application-level Αdaptivity Approaches. 

Authors Approach Adaptation type Active multi-cloud 
support 

Cavalcante et al. Replacement of a service with a new 
instance fulfilling application needs 

Component 
replacement 

No 

Inzinger et al. Adaptation based on application behavior 
goals or rules 

Satisfaction of goals 
/rules 

No 

Comi et al. Substitution of unsatisfactory agents with 
suitable clones of better-performing 
existing agents 

Component 
replacement 

Yes 

Inese et al. Methods for application decomposition in 
cloud migration projects 

Cloud migration Yes 

Jamshidi et al. Methodological approach for cloud 
migration 

Cloud migration Yes 

Bonab et al. Easy and fast recovery from failed 
components/ replacement of legacy 
components with reliable cloud services 

Cloud migration Yes 

Kwon and Tilevich Application refactoring based on class-
coupling metric 

Processing offloading 
to the Cloud 

No 

Hilton et al. Refactoring of touchdevelop scripts in 
place 

Processing offloading 
to the Cloud 

No 
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3 CHALLENGES AND 
RESEARCH DIRECTIONS 

The majority of existing works in cloud adaptation 
focus on cloud resource selection and configuration 
based on the computing needs of applications but do 
not take into consideration trade-offs between cost, 
speed, efficiency and reliability of adaptations. 
Future research can investigate new ways to manage 
the relations between Big Data processing, cloud 
and edge resources adaptation needs and adaptation 
strategies. Novel data analytics approaches are 
needed for understanding from the past data 
different modes of the cloud infrastructure 
workloads and predicting which can be the next one 
based on the current context of big data applications. 
Factors that influence the workload can be studied 
and new behavioural models can be built from past 
data. These models should be truly data driven and 
built in an unsupervised manner (no a priori labelled 
data should be used).  

Approaches for analysing past data should in a 
way ‘explain’ what the usual behaviour of the 
system is in a high-dimensional space, which can 
dynamically change as incoming data will change. 
Methods should ensure that the models will be 
continuously updated to the new situations, 
resolving the problem of the model drift. Moreover, 
models should be used in real-time in order to check 
what the current parameters of the system indicate 
regarding the workload, i.e. can the current situation 
be classified as “usual” (with the standard set of 
actions), or it is unusual and requires an additional 
processing. 

Moreover, new methods are needed for 
extracting and modelling context features of big data 
applications that pertain cloud resource 
requirements. To this end, works may need to extend 
decision methods (Patiniotakis et al.,2013a), 
(Patiniotakis et al.,2013b) with the necessary 
enhancements and extensions in order to deal with 
the scalability issues involved in the Big Data 
processing application domain. This will enable 
adapting resources allocation and deploying parts of 
the data-intensive applications across the processing 
topology. For example, a new processing resource 
can be recommended based on a predefined but 
dynamically changeable pool of resource 
alternatives that should be configurable according to 
the context of the case. Moreover, the processing 
load of a specific resource can be offloaded to 
another one that maybe closer to the edge of the 
network for efficiency reasons. 

To support adaptation triggering, instead of 
using static threshold-based alerts for an entire class 
of cloud resources as most monitoring systems 
typically use, there is a need to develop new 
triggering methods based on monitoring multiple 
data streams, understanding each individually as 
well as their relationship to each other, resulting in a 
highly sensitive system that can provide early 
recommendations for adaptations to optimise 
performance.  

4 ADAPTATION  
META-MANAGEMENT 
FRAMEWORK 

This section describes our proposal for a meta-
management framework for big data-driven cloud 
adaptation. This refers to a conceptual layer on top 
of the existing cloud infrastructure management 
layers aiming to provide support for dynamic 
adaptation of the cloud infrastructure based on 
dynamically changing, big data application 
computing needs. The optimal selection of cloud 
resources is the primary objective of the meta-
management framework, which should support 
decisions making for the number and kind of 
resources, the location of the resources and the level 
of virtualization. The so-called decision enablers are 
described next. 

4.1 Adaptivity Decision 

4.1.1 Scale Up - Scale Down 

The first function of the proposed framework is to 
scale the cloud application service up and down, 
depending on the workload, using a suitable 
deployment platform (virtual machines or 
containers). This scaling can be implemented 
horizontally or vertically (Michael et al., 2007). 
Horizontal scaling is defined as the ability of a cloud 
service to spawn more (limit existing) VM instances 
running the same application. Vertical scaling is 
defined as the process of increasing (decreasing) the 
specifications of the VM or container hosting the 
application at runtime. If an application can use both 
types of scaling, then we say that it can use hybrid 
scaling. 

(Dutta et al.,2012) claim that vertical scaling can 
offer lower cost adaptations, most appropriate when 
the range of the intensiveness of the application 
workload is relatively small. Besides, horizontal 
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scaling can allow for much higher throughput albeit 
possibly at higher cost. (Fang et al., 2012) describe 
vertical scaling as a methodology most appropriate 
for regular adaptations to workload, whereas 
horizontal scaling is more appropriate in cases of 
sharp workload changes.  

However, not all applications support vertical 
scaling and horizontal scaling. For example, 
applications relying on the JVM should restart 
before being able to modify the heap allotted to a 
java program. Also, applications not using external 
load-balancing frameworks will not benefit from the 
additional instances spawned. The above mentioned 
special characteristics of each mode of adaptation 
indicate that research is required by application 
developers in order to formulate the correct criteria 
to trigger adaptations. A relevant survey, which 
examines many scaling techniques used by 
dedicated software (auto-scaling) has been compiled 
by (Qu et al., 2016) 

4.1.2 Migrate & Re-position 

The second function of the framework is live service 
migration. Live migration is the transfer of a service 
to another processing resource, without user-
noticeable service interruption. Not only does it 
enable maintenance operations to be conducted 
without the interruption of the service, but it also 
permits the reconfiguration of the service under 
unexpected workloads, and can be used as a 
preparation step for efficient vertical scaling. Several 
published studies examine live migration as a means 
to consolidate resources or handle increasing 
workloads (Bryant et al., 2011), (Hermenier et al., 
2009), (Nguyen et al, 2013). It must be noted 
however that live migration degrades the 
performance of all virtualized entities running on 
both the physical machine offloading the 
VM/container, and the physical machine onloading 
the VM/container (Koto et al, 2012). 

4.1.3 Application-specific Adaptation 
Actions 

A third function of the framework is related to 
supporting the class of adaptation actions that 
consider the internal structure of the application.The 
framework should expose to the DevOp  the 
capability to dynamically modify hardware 
resources  with application-level logic. For example, 
in a grid computing cluster, the DevOp can specify 
that when a “multicore processing” job arrives, all 
processing nodes should request at least 8 cpu cores.  

This flexibility provides one more means for the 
DevOp to ensure proper quality of service. 

4.2 Enabling Capabilities 

To support technically decision making with respect 
to cloud adaptivity, the framework puts forwards 
certain enabling capabilities. In a real-world setting, 
each capability described below reflects a software 
component that can range in implementation from a 
simple process in a virtual machine to a distributed 
multi-cloud processing architecture. The enabling 
capabilities are depicted in Figure 2. 

 

Figure 2: Adaptation meta-management framework. 

4.2.1 Workload Prediction 

The meta-management framework should have the 
capability, given an appropriate model and method, 
recent monitoring information and workload 
evolution over time, to predict the workload that 
may be experienced by the cloud infrastructure in 
the near future. In addition, it should be able to 
predict possible failures because of the overuse of 
certain processing nodes, thus enhancing the 
reliability of the processing topology and 
minimizing any chances for down time incidents.    

While it is possible to predict the workloads of 
long-running tasks based on the seasonality in their 
historical workloads, it is difficult to do so for tasks 
which do not have such recurring workload patterns. 
Novel workload prediction approaches should be 
developed that take the statistical properties of a 
pool of tasks to help predict the workload patterns of 
new tasks. Efficient machine learning methods can 
process high-dimensional data and can be applied 
directly to memory, disk bandwidth, and network 
bandwidth demand predictions. Both machine 
learning and statistical methods can leverage readily 
existing tools, such as (TensorFlow, 2018), (Keras, 
2018) or (R, 2018). 
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Workload prediction methods should be capable 
of  

• Receiving, pre-processing and storing the 
data relevant for workload prediction (for 
example: CPU usage, RAM usage, network 
and disk i/o, etc.). 

• Understanding and modelling the types of 
the workloads based on the provided data 
(infrastructure, applications). 

• Predicting the workload of the underlying 
cloud infrastructure. 

• Enabling refinement process (self-
adaptation). 

4.2.2 Situation Detection 

Situation Detection capabilities should detect 
situations that might lead to resources adaptation or 
data-intensive application reconfiguration or 
redeployment. Situation Detection should receive as 
inputs the context of edge devices & cloud 
resources, the current workload (e.g. current 
throughput, volume) as well as workload predictions 
(e.g. predicted throughput, volume) and should 
generate as outputs the detected situation and its 
associated context conditions. Novel situation 
detection methods are needed that go beyond the 
state of the art by enabling smart situations detection 
based on event subscriptions, workload predictions 
capable of coping with the dynamicity of Big Data. 
Scalable, high-performance complex event 
processing engines (e.g (Siddhi, 2018)) can be used 
to implement the functionalities described above.  

Situation Detection methods should be capable 
of:  

• • Detecting situations during the usage of 
the Cloud Application that might indicate 
the necessity for adaptation under certain 
context conditions. For example, if a server 
node is indicated to have high CPU usage 
levels, then a situation requiring immediate 
action is reflected (because the service 
might start dropping requests). In the case 
described above, the detected situation is 
that a server machine is under severe load. 

• • Triggering adaptation of the processing 
topology. 

• • Guiding the deployment of application 
fragments. 

4.2.3 Context Analysis 

Efficient analysis of the status of cloud resources 
including edge devices should correlate between 

cloud and edge related attributes, types of jobs 
running and “observed” QoS variations which 
constitute the context about the current status of 
cloud and edge devices. For example, context may 
refer to the task execution time on an edge device or 
an estimate of the remaining battery lifetime for 
edge device where it is applicable. The main element 
necessary for context analysis is monitoring data, 
such as real-time QoS variations, cloud resource 
metrics and edge device state parameters – for 
example battery, location and network . This data 
will be transmitted by a special agent, present on all 
cloud resources and edge devices. Finally this data 
should be processed (e.g using machine learning and 
/or other statistical techniques) in order to identify 
the context of each resource/device and generate 
meaningful correlations between the monitored 
variables. Tools such as (Apache Kafka, 2018) can 
be used to manipulate high-volume streams of 
monitoring data. 

Context Analysis should: 
• Collect monitoring data from cloud 

resources and edge devices and infer 
context. 

• Relate current context to the processing 
capacity of a device, e.g. expected 
execution time, battery level. 

4.2.4 Adaptation Recommenders 

We distinguish between two broad types of 
recommendations the framework should deliver: 
Recommendations for adaptations of the 
applications running on the cloud infrastructure and 
recommendations for cloud resource adaptations.  

 The first type of recommenders should produce, 
for example, the appropriate partitioning of cloud 
applications into smaller parts that can be efficiently 
deployed over cloud / edge resources. They should 
also associate applications and application parts with 
placement constraints and optimization preferences. 
For example, they could advise that application part 
1 must run on a VM with RAM > 4 GB, application 
part 2 may run on any edge device, or that all parts 
should be placed under the same availability zone. 
Input may be the available VM flavours & edge 
devices as well as the qualitative, quantitative 
preferences of the DevOp or application developer 
in order to formulate the optimization function. 
Outputs may be a recommended partitioning of the 
application along with a recommended deployment 
serialized in a TOSCA-based specification (without 
specific VM and edge instances). The 
recommendations should take into consideration 

Challenges and Research Directions in Big Data-driven Cloud Adaptivity

197



constraints such as security constraints or other 
quantitative or qualitative constraints, e.g. cost, 
response time, data sanitization support etc.  

The recommendations will be forwarded to the 
second type of recommenders, which will then use 
them to reactively (or proactively in case the 
situation detected involves workload predictions) 
find an optimal cloud resource reconfiguration. The 
proposed reconfiguration will include the changes 
on the used cloud resources, the used edge devices, 
and the placement of applications or application 
parts. 

Inputs may be the current processing topology 
and placement, the detected situations along with the 
respective context of the used and the available edge 
devices. Output can be the adaptation 
recommendation to reconfigure the processing 
topology, e.g., to introduce new processing nodes, 
replicate nodes for failover purposes, remove 
redundant or underused processing nodes. 
Recommendations will entail how to alter the 
processing topology on cloud resources, e.g., to 
reconfigure additional VMs that host existing 
processing nodes, spawn VMs to new physical 
machines to deal with failover, start new containers 
or deploy on additional hosts in a cluster. The 
recommendation may be the product of any suitable 
decision technique. In the example provided before, 
a possible adaptation recommendation could be the 
instantiation of a new server instance, and a load-
balancing service to alleviate the high CPU load.  

Finally, recommendations will include shifting 
processing effort to/from resources at the extreme 
edge of the network, if necessary. 

5 CONCLUSIONS 

In this paper, we investigated challenges, research 
efforts and research directions related to the 
adaptation of next-generation cloud infrastructures 
to support the advanced processing needs of big data 
applications. We introduced the related challenges: 
situation awareness, context detection, adaptivity 
and the capability to predict situations adaptation. 
To the best of our knowledge, there is currently no 
approach that goes beyond cloud resource selection 
and allocation towards recommending cloud and 
edge resource adaptations based on the dynamically 
changing processing needs, taking under 
consideration trade-offs between cost, speed, 
efficiency and reliability of adaptations. Our work 
provides directions to researchers for investigating 
new ways to manage the relations between Big Data 

processing, cloud and edge resources adaptation 
needs and adaptation strategies. 

The proposed framework aims to provide a 
blueprint for extending the state of the art through a 
novel data analytics approaches for understanding 
from the past data different modes of the workloads 
and predicting which can be the next one based on 
the current situation. Moreover, the framework 
emphasises the need for situation-awareness 
capabilities, which can be supported using event 
processing technologies.  

With respect to adaptation recommendations, we 
plan to research and develop two recommenders that 
will issue recommendations with respect to adapting 
resources allocation in real-time and deploying parts 
of the data-intensive applications across the 
processing topology. For example, a new processing 
node can be recommended based on a predefined but 
dynamically changeable pool of alternatives that 
should be configurable according to the context of 
the case. Moreover, the processing load of a specific 
node can be recommended to be offloaded to 
another one that maybe closer to the edge of the 
network for efficiency reasons. For developing these 
recommenders, we propose methods for run-time 
evaluation of adaptation actions based on situations 
detected from the big-data processing and the 
current usage context. To support predictive 
behaviour, instead of using the same threshold-based 
alerts for an entire class of cloud resources as most 
monitoring systems use, we propose the 
development of systems that will be monitoring 
multiple data streams, understanding each 
individually as well as their relationship to each 
other, resulting in a highly sensitive system that can 
provide early recommendations for adaptations to 
optimise performance. 
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