
JaCa-MM: A User-centric BDI Multiagent Communication

Framework Applied for Negotiating and Scheduling

Multi-participant Events
A Jason/Cartago Extension Framework for Diary Scheduling Events Permitting a

Hybrid Combination of Multimodal Devices based on a Microservices Architecture

Juan Luis López Herrera and Homero Vladimir Rios Figueroa
Research Center on Artificial Intelliigence, Universidad Veracruzana,

Sebastian Camacho 5. Col. Centro, Xalapa, Veracruz, Mexico

Keywords: Diary Scheduling, Negotiation, Multiplatform Architecture, BDI Multiagent, Multimodal, User Interface,

SOA, Microservices.

Abstract: In this research work, we present a novel BDI (Belief-Desire-Intention) multiagent software architecture for

registering and scheduling multi-participant events under an automatic and semi-automatic negotiating

process in a BDI multiagent context. Interactions between users and software agents are performed using a

user-centric combination of multimodal devices including traditional GUI software for PC or Web, and

modern omnipresent mobile and wearable devices. The communication framework is an extension of the JaCa

(Jason/Cartago) Platform for permitting multimodal interaction between BDI agents and users over an SOA

microservices architecture. Most work on multiagent software is centred on traditional software architectures

and devices like PCs. However, web interfaces and mobile and wearables devices are nearest to users having

sufficient computing resources, including CPU, memory sizes, and multimodal capabilities, for permitting a

richer human-software agent interaction.

1 INTRODUCTION

In this research paper, we present a novel user-centric

multimodal communications framework for BDI

multiagent systems applied in a context of registering

and scheduling multi-participant events under an

automatic and semi-automatic negotiating process.

Currently, there exists many user-centric devices

and technologies that could be used for constructing

and communicating multiagent systems with users in

richer and expressive ways, than used traditionally.

Rich-Content Desktop Applications, Web User

Interfaces, Mobile and Wearables Apps offers diverse

and rich modalities for a user communicating, like

text, images, sounds, text-to-speech, gesture

recognition, speech recognition, pose detection with

depth cameras among others.

In addition to the advances in multimodal devices,

the connectivity technology offers great possibilities

for interconnecting systems and applications on

heterogeneous devices and platforms. In a way,

Service Oriented architecture and the novel

Microservices framework offers almost unlimited

capabilities for link clients and services.

The principal contribution of our research work is

the proposal of JaCa-MM, a hybrid multimodal

framework based on a SOA/Microservices

architecture for communicating users with agents.

This framework permits to building a real-world

multimodal application that is user-centric and

communicating them with a BDI Multiagent Systems

based on standard technologies, facilitating its

adoption. The framework is based on Jason BDI

Agents and CArtAgo for communicating agents with

their environment.

In past several architectures has been proposed

(Santi, 2010); (Minotti et al., 2009); (Ricci, 2014), but

our approach is user-centric in communication

modalities, involved devices and deployment

facilities for reach to real-world applications.

For testing our framework, an application for

automatic meeting negotiation has been developed

318
Herrera, J. and Figueroa, H.
JaCa-MM: A User-centric BDI Multiagent Communication Framework Applied for Negotiating and Scheduling Multi-participant Events - A Jason/Cartago Extension Framework for Diary
Scheduling Events Permitting a Hybrid Combination of Multimodal Devices based on a Microservices Architecture.
DOI: 10.5220/0006751703180330
In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 1, pages 318-330
ISBN: 978-989-758-275-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

and deployed in several multimodal devices running

over the Internet for communicating purposes.

Although the application is of a specific context,

the multimodal communication framework could be

applied to another multiagent system and even

extended for aggregating additional services.

2 BACKGROUND

A multiagent software system is a kind of artificial

intelligence application where autonomous, pro-

active, reactive “intelligent” software pieces interact

between them (social abilities) for reach a common

desired objective, by using some reasoning

capabilities (Wooldridge et al., 1995).

In literature, several types of agents exist.

However, some of the most relevant and used agent

types are BDI; this is the framework used in our

research work, below we describe this framework and

related elements.

2.1 BDI Agents

A BDI agent is a kind of rational or “intelligent” agent

represented as a computational entity with certain

mental attitudes, Beliefs, Desires, and Intentions,

designed for help in the resolution of complex tasks

in dynamical environments (Rao and Georgeff,

1995).

Beliefs express the knowledge of the agent from

its environment, obtained from sensorial inputs and

because of its deliberation processes.

Desires reflect possible environment states that

the agent can reach. The desires are treated as options

of actions that the agent has.

Intentions represent the desires with the which the

agent is committed to performing its actions.

A BDI Agent can be a part of a society of agents,

and like in any society, the agents need to

communicate between them. This communication

process is performed through speech acts (Searle,

1962), a high-level communication expressed as

performative verbs to communicate, delegate or

interrogate to another agent, among others.

Many agent-oriented programming languages

exist, one of the most used, is the combination

Jason/CArtAgo, on which is based our framework

and application.

2.1.1 Jason

The Jason agent programming language is a Java

extension for writing agent-oriented software. Jason

is based on AgentSpeak(L), an abstract agent

programming language with basis of logic

programming, with some extensions for developing

practical multiagent systems (Bordini and Hübner,

2005).

In Jason, BDI agents are expressed based on a set

of beliefs and plans. Beliefs set are composite from

belief atoms with a form of a first-order logic

predicate in form p(x) indicating that a subject x

accomplish a property p. A typical Jason program

starts with an initial belief set, and through the

external events and plan execution this belief set are

modified, increasing or decreasing.

Intentions in Jason are represented as instantiated

plans, where a plan consists of a triggering event

(name plan itself), a context represented by a series of

beliefs that must be true for permits the plan

execution begins; additionally, to trigger event and

context, a set of subgoals that the agent must

accomplished conforms the body of plan.

Exists two types of goals: achievement goals and

test goals. A goal is represented by a predicate with a

prefix ‘!’ or ‘?’ respectively. And achievement goal

describes a state of the world that is desired by agent.

A test goal unifies a predicate with an agent belief, is

a type of self-consultation about a determined mental

state.

A triggering event indicates when a plan is started,

for internal porpoises (a sub goal needs to being

achieved) or external for belief updating, resulting

from being in contact with the environment. These

triggering events can increase beliefs (a predicate

with a prefix ‘+’) or decrease beliefs (a predicate with

prefix (‘-’).

Example of beliefs and plans are:

work_weekday(monday).

work_weekday(tuesday).

minimum_activity_minutes(15).

+!scheduleMeeting(DOW, D, M, Y,

DUR,H, MIN, PREF) :

work_weekday(DOW) &

minimum_activity_minutes(MM)

& DUR > MM

 <-

!searchAvailableHours(D, M, Y,

DUR, LAH);

.length(LAH, NAH);

NAH > 0;

.nth(0, LAH, SH);

SH = separate(PREF, H, MIN).

-!scheduleMeeting(DOW, D, M, Y,

DUR,H, MIN, PREF) : true <-

.print("Impossible to scheduling a

JaCa-MM: A User-centric BDI Multiagent Communication Framework Applied for Negotiating and Scheduling Multi-participant Events -
A Jason/Cartago Extension Framework for Diary Scheduling Events Permitting a Hybrid Combination of Multimodal Devices based on a

Microservices Architecture

319

meeting in the requested date"); H=-

1; MIN=-1; PREF=-1.

In this example three beliefs are defined; the beliefs

establish the mental state of the agent to learning that

working days are Monday and Tuesday and the

minimum length of a meeting is 15 minutes.

Additionally, a plan named scheduleMeeting is

defined, its receives day-of-week (DOW), day (D),

month (M) and year (Y) and duration (DUR) for the

meeting and instantiates hour (H), minute (MIN) and

preferences (PREF). The context for enabling the

execution of this plan is that the day of the week was

a working day and that the minimum duration of

meetings is satisfied. The sub goals of this plan are

searchAvailableTime for the day, month and year

received and obtained a list of available times

according to the availability of the agent, expressed

as beliefs. If at least one time is founded, the first is

taken and returned to the caller.

2.1.2 CArtAgo

An agent exists in an environment and must interact

with it. Jason programming language offers

capabilities for modelling and programming agents,

however, doesn’t offer means for interacting with

users and environments for real-world applications.

CArtAgo, Common ARTifact infrastructure for

Agents Open environment (Ricci et al., 2006), is a

framework for programming virtual-environments

for multiagent systems that can be integrated to Jason

for permitting interacting software agents with users,

accessing devices and sharing information or services

from another application through the concept of

artifacts. An artifact is a piece of software expressed

as a Java Class that wraps a set of resources and tools

accessible to agents for interacting with its

environment (Ricci et al., 2011). Artifacts are

grouped in workspaces which could be distributed

across a set of network nodes since it’s developed in

Java; only Java communication is supported. Also,

CArtAgo framework offers GUI capabilities for

developing applications which communicating with

users but limited to Swing Java Applications.

Although the CArtAgo communication abilities are

limited, and only supported by Java Applications, it

is extensible, with the possibilities to increase its

capabilities. In Figure 1 we present a traditional

architecture including Jason agents and a CArtAgo

environment.

Figure 1: Typical Jason/CArtAgo Framework, adapted

from (Ricci et al., 2011).

2.2 SOA and Microservices
Architecture

Microservice architecture is a software design pattern

where a single application is composite of several

small, fine-granularity and loosely coupled

“business” services, each one executing in an

independent deployed process and communicating

between them with lightweight and stateless

mechanisms like HTTP and JSON data format

(Fowler and Lewis, 2017). Given that microservices

are based on web technologies, they are programming

language agnostic and omnipresent, facilitating the

integration of different platforms services and clients.

The commonly used framework for developing

microservices is REST (Representational State

Transfer), which is a communication mechanism

based on HTTP verbs like GET, POST, PUT and

DELETE for request operations to read, add, update

or delete information to services, using JSON or

XML data formats (Richardson, 2017). An example

of microservice architecture is presented in Figure 2.

Figure 2: Microservice architecture.

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

320

Microservices architecture which is based on

Domain Driven Design is a specialization of the

Service Oriented Architecture, SOA, design pattern,

used for developing Internet-based applications since

several years ago. In SOA, an application is

composed from a set of related services, having an

infrastructure in common and deployed at the same

time and normally in the same server infrastructure.

In other hand, microservices are loose coupling and

independent one from others, even when developed,

tested and deployed in different time and

infrastructure.

Microservices architecture has permitted to

develop applications running in a high variety of

client technologies like desktop PC applications, web

applications like mobile and wearable apps. This

independence of services and clients is possible

through the definition of a well-known API over

industry-standard protocols like HTTP.

Using a service-based architecture, given that

many kinds of devices could access and share

information, the architecture empowers and

facilitates the use of different input and output

modalities of communication by using standard and

well-proved mechanisms, improving the user

experience.

2.3 User-centric Multimodal
Framework

A multimodal interface is characterized by the use of

multiple (simultaneously or separately) human

sensory modalities supporting combined input/output

modes (Sebillo et al., 2009). Multimodal interfaces

facilitate multimodal interactions between users and

applications, enriching communication process. Most

devices have multiple modalities for input and output,

in special mobile and wearable devices, and those

possibilities could empower the communication of

software agent system and users, by permitting a

communication style used traditionally between

humans through several channels for input and output

like voice, gestures, text, images, etc.; like so

omnipresence obtained from the presence of devices

and telecommunication technologies like Internet.

Traditionally, the development of multimodal

applications represents a hard and difficult

programming and architecting task due to the

complexity of mastering each modality technology

augmented by the programming task for developing

too many types of computational devices (Dahl,

2013).

For help in this challenging work, the W3C

proposes a framework for designing multimodal-

applications through the Multimodal Architecture

and Interfaces (MMI) specification where a set of

components and the typical interaction patterns

between them are identified and standardized.

Together with standardized communication by

passing messages using a standard data format

defined in the Extensible Multimodal Annotation

(EMMA). In figure 3, we present a schematic view

and an example of MMI architecture.

Figure 3: Schematic view of MMI Framework adapted from

(Wikipedia contributors, 2017).

2.3.1 Modality Component

Modality Component encapsulates input/output

capabilities for different device types, including:

▪ User input. Keyboard, mouse, gestures,

touchscreen, audio, video, photograph, deep

sensors, pose detectors, QR codes, and barcodes,

etc.

▪ Sensor input. GPS, temperature, medical sensors,

etc.

▪ Biometric input. Speech verification, fingerprint

reader, face recognition, etc.

▪ Output. Text, graphics, video, audio, paper print,

vibration, text-to-speech, etc.

Each component can be associated with a single

device for input or output or could be even more

complex through the association with several devices

or modalities for integrating them and provide a

unique stream of data, for example, synchronize voice

JaCa-MM: A User-centric BDI Multiagent Communication Framework Applied for Negotiating and Scheduling Multi-participant Events -
A Jason/Cartago Extension Framework for Diary Scheduling Events Permitting a Hybrid Combination of Multimodal Devices based on a

Microservices Architecture

321

inputs with face recognition for user intents

recognition.

Even more, a modality component could

incorporate in a recursive form, a complete

multimodal processing for example speech

recognition plus a natural language processing

offering a text output from the recognized audio

speech.

2.3.2 Interaction Manager

The interaction manager is responsible for

coordinating the communication between the

application and the user. It has the only component

that can interact with modality components through

life-cycle events with EMMA annotations. For

helping in its job, a Data Component could exist

providing information specifically for the integration

process.

2.3.3 Data Component

The Data Component is an optional part of the

architecture, if it exists, then it has the mission to

provide all the necessary information to the

Interaction Manager for doing its job. Examples of

that information could be user identification,

modalities preferences, user context (location,

language, sex, title, etc.), among others.

2.3.4 Event Transport Layer

The Event Transport Layer is the responsible for

managing message events between the Modality

Components and the Interaction Manager. Normally,

the messages exist in a request/response pairs.

The communication is based on Life-Cycle

Events originated from the Interaction Manager or a

Modality Component. Two kinds of events exist,

generic controls or modality specifics. A generic

control-event is like start, pause, resume or stop

transfer request, and the response is the acknowledge

of the request. A modality-specific event is used to set

the configuration of a transfer and the response

obtained from a determined modality like voice,

video, text, location, etc.

The semantics of the communication process is

maintained using EMMA annotations. An example of

an event response is the following:

<mmi:mmi

xmlns:mmi=http://www.w3.org/2008/04/mmi

-arch version="1.0"

xmlns:emma="http://www.w3.org/2003/04/e

mma">

<mmi:doneNotification

mmi:source="userResponseToConfirmation"

mmi:target="requestResponseFromUser"

mmi:context="meetingNegotiation"

mmi:status="success"

mmi:requestID="123456" >

<mmi:data>

<emma:emma version="1.0">

 <emma:interpretation

 id=“int1”

 emma:confidence=".80”

 emma:medium=“acoustic"

 emma:mode=“voice"

 emma:function="confirmation">

 <response>accepted</response>

 <meeting>

 <date>10/10/2017</date>

 <start>10:30</start>

 <duration>45 minutes</duration>

 </meeting>

 </emma:interpretation>

</emma:emma>

</mmi:data>

</mmi:doneNotification>

</mmi:mmi>

2.3.5 Application and Runtime Framework

The application is the final target and origin of the

multimodal interaction; it could be a traditional

desktop software, a web application, a

mobile/wearable app or a multiagent software.

An application exists in an environment and

requires a set of infrastructure services like

communications, session management, user

authentication, among others. These components are

announced in the framework but not defined,

permitting adapting it to any infrastructure or

application needs. For example, a CArtAgo artifact

could communicate with an Interaction Manager for

multimodal interaction with agents over a

microservices infrastructure for communicating with

several device and application types.

2.4 Related Work

This research work, combines multimodal interaction

with a Jason/CArtAgo multiagent system over a

SOA/microservices design framework. Several

works tackle some of these aspects in the past,

however, we couldn’t find work with exactly same

objective and for this reason, we say, this is a novelty

approach. We present an architecture and an

application sample that uses this proposed

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

322

architecture. Some of the related works used even as

a basis for our framework and are mentioned below.

Several CArtAgo extensions have been proposed

in the past for combining multiagent systems to

mobile platforms. Examples of these proposals are

like the port to Android Operating System described

in (Santi, 2010), and for running over platforms like

Web (Minotti et al., 2009) or working with SOAP

Web Services (Ricci, 2014), which was the original

form of SOA Applications, unfortunately, the support

of these projects were stopped years ago, we think

that a modern microservices architecture letting to a

multiagent system reach different devices and

platforms without port the platform itself.

In the subject of multimodal multiagent system

architectures, approaches like (Dulva et al., 2011),

(Griol et al., 2013) and (Sokolova et al., 2015) has

been presented for specific multiagent systems.

3 MULTIMODAL MULTIAGENT

COMMUNICATION

FRAMEWORK

In this section, we describe our multimodal

multiagent framework based on a microservices

architecture. Our approach is an extension of the

Jason/CArtAgo programming platform. In Figure 4

we present it graphically.

The framework is composed of four layers:

Intelligent Multiagent System Layer, Agent

Environment Layer, SOA/Microservices Layer and

Multimodal Device Layer, which are described

below.

3.1 Multimodal Device Layer

The human-computer interaction is performed in the

multimodal device layer, processing every input from

any of the supported modalities, interpreting data,

encapsulating both, the event and interpreted data into

an EMMA annotation and delivering it through the

SOA/Microservices Layer to the respective agent.

Given that a Jason agent doesn’t understand EMMA,

a CArtAgo artifact, in the Agent Environment Layer,

translate the multimodal message to an and/or belief

and sends to an agent.

When the agent needs communicate or

questioning something to the user, it throws an event

to its environment artifact. This artifact delivers to the

network the request using a PUSH notification

service for reach the respective user device, the

message is interpreted, and the convenient output

modalities are selected and used for communicating

with the user. More details on PUSH notifications in

section 3.2.

Table 1: Input / Output Interactions between a user and the

multiagent system.

Action Description Type

Querying Meetings

Perform a query of the

registered meetings of the user

to the agent associated with the

user.

(GET verb)

Input

Registering

Meeting

Request the register of a new

meeting with the appropriate

data (possible dates, duration,

users invited, attached files).

(POST Verb)

Input

Updating Meeting

Modify data associated with a

registered meeting.

(PUT Verb)

Input

Deleting Meeting

Request the removing of a

meeting registered by the user.

(DELETE Verb)

Input

Notification

Action Result

The agent communicates to the

user the result of a requested

action.

(POST Verb)

Output

Request

Confirmation

The agent request to the user the

confirmation of a meeting. The

confirmation is necessary when

the automatic negotiation

between agents fails to find a

time, and manual registration is

required.

(GET Verb)

Output

Table 2: Devices and supported modalities.

User Interface Modality Type

Desktop

Application &

Web Application

Computer

Typing and pointing

Voice
Input

Text & Image

Sounds

Text to Speech

Output

Mobile device

Finger touch and gestures

Voice
Input

Text & Image

Sounds

Vibration

Text to Speech

Output

Smart watch

(Wearable)

Finger touch and gestures

Voice
Input

Text & images

Vibration
Output

Any multimodal device HTTP-speak-capable

could be a client of the platform. This generalization

is possible by using a SOA/Microservices

architecture. Almost every device has the possibility

of connecting to the Internet and the web, and only

that is required for using in our framework. Internet

of the Things (IoT) advanced so much in this way,

permitting integrating a high variety of technologies.

JaCa-MM: A User-centric BDI Multiagent Communication Framework Applied for Negotiating and Scheduling Multi-participant Events -
A Jason/Cartago Extension Framework for Diary Scheduling Events Permitting a Hybrid Combination of Multimodal Devices based on a

Microservices Architecture

323

In Table 1, we are presenting all the actions that a

user could perform in the application and the possible

outputs requirements by the agents for which a user

must respond.

The Table 2 summarizes the user

interfaces/devices and modalities supported by our

framework.

3.1.1 Input Processing

For every user interface and device supported in our

framework, we rely on native multimodal SDK, in

Table 3 we summarized the used technologies and

used APIs.

Table 3: Input modalities and technologies applied.

User Interface Modality Type

Desktop

Application

.NET WPF

Application

Typing and

pointing

Windows Mouse and

Keyboard Support (.NET API)

Voice Microsoft Speech API

Web

Application

Typing and

pointing
HTML/CSS/JavaScript

Voice
HTML 5 Speech Recognition

API

Mobile device

Finger touch

and gestures

Android SDK/ iOS Cocoa

SDK

Voice Android/iOS TTS

Smart watch

(Wearable)

Finger touch

and gestures
Android Wear SDK

Voice Android Wear SDK

The process starts when an event input has been

received from the user, in one of the supported

modalities. The raw input data is processed into the

corresponding Modality Component, and when is

complete, it sends through the Event Transport Layer

to the Interaction Manager and the information

obtained is encapsulated into an EMMA annotation.

In each Modality Component, processing is

performed depending on the input and the device, for

example, using the native or the appropriate libraries,

a speech recognition process could be performed, but

only the recognized text is the output of such

Modality Component and sent to the following

components.

When received for the Interaction Manager, the

event and the associated data are analysed, and if they

are significant to the application, then are encoded

used the EMMA Proxy and sent to the appropriate

Microservice using the respective client module.

The client module packs the EMMA annotation

into a RESTful message in JSON format and sending

to the server using the adequate HTTP verb (GET,

POST, PUT or DELETE). The selection of the verb

depends on the required actions, for example, a GET

verb is used when a request of information is

required, a POST request for register new meetings or

file attachment, a PUT for updating data and

DELETE for remove a previous meeting.

In all platforms, a Data Component helps in the

interpretation, encoding and correct routing of the

event. This data component, store facts like user

identity, device state, registered meetings,

information for locating servers and user preferences

of communication modalities.

3.1.2 Output Processing

When an agent has something to saying or to

questioning to a user, then a PUSH notification is sent

and received in the corresponding device for its

processing. When a PUSH notification is received for

in the client application, a GET request is made to the

respective service for recover the complete output

information; each notification is sent with two values,

the type of event and a communication ID. This ID is

used to obtain the data from a Service about the

communication event needs.

The information of the event is encoded into an

EMMA annotation by the proxy and is sent to the

Interaction Manager for selecting the appropriate

output modalities.

With the help of the Data Component, the

Interaction Manager determines the preferences of

the user, like language, gender, preferred sounds, etc.,

and prepares the communication data. This data is

sent to the corresponding Modality Component for

showing it to the user and if it’s necessary, ask him a

question according to the necessities of the agent,

then, receive the input from the user and send back to

the agent using the process described in the previous

subsection. Like the input processing, the output is

performed by the native capabilities of the platform

and device. Use of text, images, sounds or any other

resource depends on the device. Some complex

output process like Text-To-Speech is used when

available in the corresponding device.

3.2 SOA/Microservices Layer

The SOA/Microservices Layer presents a middleware

component in the overall framework; its function is

connecting the multiagent system with all the

multimodal user interfaces and devices supported by

the application.

Three different components belong to this layer:

Services Proxy, Microservices, and a PUSH

notifications service.

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

324

Figure 4: JaCa-MM Framework.

3.2.1 Services Proxy

The services proxy is a routing component used to
connect devices with microservices. This component
receives a request sent by a user interface/device or
by an artifact belonging to the Agent Environment
Layer.

Its work is deciding which action is required,
receives a set of parameters according to the action
and routing it to the respective service. This layer
encodes and decodes data in JSON format, calling the
services using a RESTful invocation and passing the
data for the adequate processing.

When a REST architecture is used, and API is
defined, the API implementation is a set of

Microservices and this component are in charge to

call that API, for this, is considered a client. All

communications are made using HTTP protocol with

the appropriate verbs like defined in Table 1.

3.2.2 Microservices

The Microservices are the heart of the middleware

layer, its represent the actions that a user can request

form an agent, and the indications that an agent can

communicate to and user through a device and its UI.

The microservices layer is language agnostic, in

this implementation Java EE 7 running on a glassfish

server was used, but practically any modern Web

Platform could be used for implementing them. This

benefit of being independent of language and

platform is due to be based on standards. HTTP is a

standard protocol, REST is based on it and gives a

semantic context for each one of the verbs supported

by HTTP. In another hand, JSON is the most used

data representation language used nowadays, is clear

and easy to implement and interpreting and most

languages and platforms support it.

Five services were defined for this application:

Oncoming Meeting, Negotiate Meeting, Register

Meeting, Files, and Users.

The Oncoming Meeting Services is responsible

for querying the Registered Meetings Database. This

service is invocated both the users and the agents. The

user for query and take decisions and establish

remainders for the oncoming meetings. The agents

use this information to aggregate these registered

events as beliefs in its mental state at the starting

point, and those beliefs are used principally for the

process of automatic negotiation between agents. The

database of meetings incorporates a Meeting ID, a

Name, a Start Date, a Start Time, an End Date, an End

Time and the Invited Users.

The Negotiate Meeting Service is invocated from

a user from the multimodal device for requesting to

his agent to start the negotiation of a meeting in a

range of dates, with a subject and a list of requested

users. The negotiation process only involves the

agents of the users requested for the meeting. This

service communicates with a CArtAgo Environment

Artifact to send the appropriate event to the agent and

throws the negotiating process between agents.

JaCa-MM: A User-centric BDI Multiagent Communication Framework Applied for Negotiating and Scheduling Multi-participant Events -
A Jason/Cartago Extension Framework for Diary Scheduling Events Permitting a Hybrid Combination of Multimodal Devices based on a

Microservices Architecture

325

When a meeting has been agreed between agents

or in the worst case, by the users themselves, the

Register Meeting Service store in the database the

new agreed meeting and send PUSH notifications for

confirming the new event to the participants. This

Service is invocated for the agent through the

Environment Artifact when the negotiation has been

concluded.

A meeting request can include files like word

processing documents, spreadsheets or presentation

files, the File Service is the responsible for storing

and recovering that files when a new meeting is

registered or when some of the previous registered are

modified. Through the user interface a user can

request the attached documents, and they are sent to

this service.

The User Service permits authenticate a user,

store preferences of each one and maintains

information for linking users, devices and agents

through the framework.

3.2.3 PUSH Notification Service

In this framework, we assume that agents, its

environment artifacts, and microservices reside on

well-known servers. And given this assumption is

easy for user devices locating the microservices

servers and these find and communicate with agents

and artifacts.

However, when an agent needs to communicate

with the user devices, specifically with non-always

connected devices, like Web applications, Mobiles,

and Wearables, only the Microservices Layer is not

sufficient. For this reason, another component is

necessary, the PUSH Notification Service.

A PUSH Notification service is a kind of server

software that can feed notifications to devices and

web applications, even when not always connected.

For doing its job, when an App is installed on the

device, this is registered in the PUSH platform, and

an ID Token is assigned for it when is necessary to

contact the device, the platform could do it through a

resident mini-server installed on the device and the

appropriate ID Token.

This mini-client is installed as a service when the

App is installed on mobile and wearable devices and

is requested to the user to subscribe it when he enters

for the first time to a web application.

These notifications are not necessary in a context

of a Desktop Platform, given an Application could

always be connected to the server.

This layer is the most commonly used in

commercial applications on mobile, wearable and

web applications nowadays.

3.3 Agent Environment Layer

The Agent Environment Layer is a set of Java Classes

compatible with CArtAgo framework specification.

A BDI Agent like Jason Agents works with mental

attitudes like Beliefs, Desires and Intentions, Beliefs

and Plans in Jason. In other hand user interfaces on

devices maintains and understand multimodal

communication events and EMMA data which are

routed to Microservices for reach to the Agents.

The principal job of this layer is to create a virtual

environment for the agents and through it,

communicating with real-world environments.

It must receive events from agents and translate

them to requests for the appropriate microservice for

routing event and data to the user.

In another hand when a user requires for an action

from the agents, or respond to a previous information

questioning, the EMMA annotated data must be

translated to events and register or remove beliefs in

the mental state of the agents.

For doing its translate job an EMMA -

(Event/Beliefs) Encoder/Decoder is incorporated into

the artifact. For actions required from a user, the

translation is an event for trigger plan execution on

Agents. When data is proportionated from the user, a

Beliefs Update is necessary, for add or remove beliefs

of an agent. When the action is required by the agent,

event and beliefs are encoded into an EMMA

annotation and sent to the device through a PUSH

notification.

Given the middleware nature of these

components, they must understand two different

domains, the agent domain based on beliefs, plans

and goals, and the microservice domain, based on

API utilization through REST requests.

3.4 Intelligent Multiagent System
Layer

This layer is the one which encapsulates the

“Intelligent” behaviour of the framework. It

represents the Multiagent System, the reason for

design and construction of the overall architecture.

An Intelligent Multiagent System in our

framework is compositing of BDI Agents; this layer

is composed of Jason Agents that communicate

between them using Speech Acts. Each Agent has a

mental state, based on attitudes like Beliefs, Desires,

and Intentions.

In this framework, each user has assigned an

Agent who is listening for requests of actions like:

▪ Sending the oncoming meetings of a certain

period.

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

326

▪ Negotiate a new meeting between a group of other

agents associated with the users requested to the

meeting.

▪ Registering the agreed meeting in the accorded

date and time.

▪ Update the information of a registered meeting

and communicating to another agent for notifying

to their respective users.

▪ Delete a registered meeting and communicating to

another agent for notifying to their respective

users.

An Agent starts loading the user-assigned preferences

(sex, title, name, start working time, end working

time, in-week working days, resting days) and the

oncoming meetings of the current date and the next

15 days; this information is registered as the original

beliefs of the agent.

In addition to beliefs, each agent has a set of plans

which describe how to reach to the state of the world

desired, described as a set of goals to execute. These

plans are executed from a request of the user, received

by the corresponding artifact in the Environment

Layer or by a requesting from another agent.

The communication between agents is performed

by sending and processing speech acts. In Table 4 we

summarize the speech acts and associated plan used

for communicating the agents between each other and

with the Environment Layer.

In Figure 5 we present the negotiating and register

meetings actions in a UML Sequence Diagram with

the respective plans and speech acts.

JaCa-MM: A User-centric BDI Multiagent Communication Framework Applied for Negotiating and Scheduling Multi-participant Events -
A Jason/Cartago Extension Framework for Diary Scheduling Events Permitting a Hybrid Combination of Multimodal Devices based on a

Microservices Architecture

327

Table 4: Speech acts used in agent communication.

Speech act / Plan Description

negotiateMeeting

(Plan) Start the process of

negotiating a meeting with all the

requested participants. First obtains

the available times in a period from

the other agents, and proceed to

deliberate for finding a common time

for meeting

requestAvailableTime

(Speech Act) The negotiating agent

request from the others agents the list

of available time sufficient for the

requested meeting

findCommonTime

(Plan) Process the available times

from participants in a specific date

for finding one in common

scheduleMeeting

(Speech Act) Register a meeting and

communicate it to another agent for

doing the same

commonTimeToAll

(Plan) A deliberation process starts

to determine if a selected time is

common to all participants and

proceed to registration

loadOnComingMeetings
(Plan) Loads the oncoming meetings

from a database through an artifact

searchAvailableTime

(Plan) Performs a search for a

common time in the list of available

times from all participants, if one is

founded, it is corroborated by the

participants for confirming it. If no

common time founded, an

interrogation process starts with the

users from candidate times and if all

agreed, the meeting is confirmed.

Figure 5: Sequence Diagram of Meeting Negotiation Process.

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

328

4 RESULTS

The proposed framework was implemented and

tested in twenty-four meeting negotiating process,

previously the user preferences and some artificial

meetings were registering to try the negotiating

process with success and failures. Eight users tested

the application in the four platforms mentioned in

section 3.1. Each user submits three meetings in a

random way, deciding date, duration and participants

of each event. When the process of submitting

meeting began, all request could be negotiated

automatically by the agents, conform more meetings

were registered, the automatic procedure failed, and

the questioning-users process was necessary to

operate. In Figure 6 we present the statistics of the test

of negotiating-process.

With respect to the input modalities, as it was

predictable the use of mouse and keyboard on the

Desktop and Web Application was the most precise

of all the implemented modalities. In all platforms

speech recognition was enabled, obtaining a high-

performance recognition on PC with a Desktop

Application, in second place was the Web Interface,

a lower precision in mobile device (smartphone and

tablet) and the worst was in the wearable (smart

watch).

Figure 6: Statistics obtained from the testing process of the

application. a) The number and percent of meetings

according the negotiation type; b) Shows the negotiation

type, blue for automatic and red for manual for each

meeting; c) The number and percent of meetings according

to the preferred modality by each user; d) Show the

preferred modality for each meeting.

However, the users expressed that they could

submit meetings or respond to agent question better

on mobile and wearable devices with Internet

connection, although the input precision was not

optimal. Although voice recognition fails many

times, the finger gesture recognition works very well.

In their opinions, a well-designed user interface using

the multimodal capabilities was adequate for doing

this task.

5 CONCLUSIONS

According to our implementation experience and the

test with real users and their opinions, we could

affirm that the use of multimodal user interfaces over

different devices enriches the user-agent

communication and for that reason, the utility of a

multiagent system. Implementing a system over

several platforms is a challenging task. However, a

well-designed architecture combining an “intelligent”

multiagent system, with the existing resources in

user-experience design, device-capabilities and

modern communication technologies like

SOA/Microservices Architecture, offers great

benefits for researchers by delivering software to

solve real-world problems to real-world users. These

benefits are mutual; the users obtain “Intelligent”

Applications to solve their tasks, and by another hand,

then researchers obtaining benefits for testing

“intelligent” algorithms on real-world scenarios.

Mobile and wearable devices still must improve

on certain multimodal recognition capabilities,

however, the possibilities to be everywhere give them

great benefits and opportunities to deploy multiagent

input and output extensions.

The SOA/Microservices architecture was the glue

between “non-intelligent” multimodal applications

and the layer of “intelligent” multiagent system. This

architecture permits the deployment of solutions over

networks like the Internet and reaching practically

any user in any modern device.

REFERENCES

Rao, A. S., Georgeff M. P., 1995, BDI Agents: From

Theory to Practice, Proceedings of the 1st International

Conference on Multiagent Systems. AAAI.

Searle J. R., 1962. Meaning and speech acts, The

philosophical Review, 71(4): 423-432.

Bordini R.H., Hübner J.F., 2005, BDI Agent Programming

in Agent Speak Using Jason. In: Toni F., Torroni P.

(eds) Computational Logic in Multi-Agent Systems.

CLIMA 2005. Lecture Notes in Computer Science, vol

3900. Springer, Berlin, Heidelberg.

Wooldridge M., Jennings N. R., et al., (1995). Intelligent

1 3 5 7 9 11 13 15 17 19 21 23

b) Negotiation Process by

Submitted Meeting

Automatic Manual

Automatic

15
62%

Manual

9
38%

a) Number of Meetings by

Negotiation Type

Automatic Manual

1 3 5 7 9 11 13 15 17 19 21 23

d) Preferred Input Modality by User

in Registration Meetings

Keyboard/Mouse Finger Gesture Speech Recognition

Keyboard/

Mouse
10

42%

Finger

Gesture
9

37%

Speech

Recognit ion
5

21%

c) Number of Meetings by

Preferred Input Modality

Keyboard/Mouse Finger Gesture Speech Recognition

JaCa-MM: A User-centric BDI Multiagent Communication Framework Applied for Negotiating and Scheduling Multi-participant Events -
A Jason/Cartago Extension Framework for Diary Scheduling Events Permitting a Hybrid Combination of Multimodal Devices based on a

Microservices Architecture

329

agents: Theory and practice. Knowledge engineering

review, 10(2):115–152.

Ricci A., Viroli M., and Omicini A., 2006, Construenda est

cartago: Toward an infrastructure for artifacts in MAS.

Cybernetics and systems, 2:569–574.

Ricci A., Piunti M. and Viroli M., 2011, Environment

programming in multi-agent systems: an artifact-based

perspective. Autonomous Agents and Multi-Agent

Systems, 23(2):158–192.

Fowler M. and Lewis J., 2017, Microservices a definition

of this new architectural term. URL:

http://martinfowler.com/articles/microservices.html,

Last accessed: Feb 2017.

Richardson, C., 2017, Microservice architecture pattern.

microservices.io. Retrieved 2017-03-19.

Sebillo M., Vitiello G. and De Marsico M., 2009,

Multimodal Interfaces, Encyclopedia of Database

Systems, pp 1838-1843, doi 10.1007/978-0-387-39940-

9_880.

Dahl D. A., 2013, The W3C Multimodal Architecture and

Interfaces Standard. J. on Multimodal Interfaces,

Volume 7, Issue 3, November 2013 (published online

April 13, 2013. ISSN: 1783-7677 (Print) 1783-8738

(Online).

Wikipedia contributors, 2017, Multimodal Architecture and

Interfaces, Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/w/index.php?title=Multimodal

_Architecture_and_Interfaces&oldid=800595600

(accessed November 6, 2017).

Santi A., 2010. JaCa-Android, http://jaca-android.

sourceforge.net/.

Minotti M., Piancastelli G., Ricci A., 2009. An Agent-

Based Programming Model for Developing Client-Side

Concurrent Web 2.0 Applications, 5th International

Conference on Web Information Systems and

Technologies (WEBIST 2009), 23-26 March 2009.

Ricci A., 2014. cartago-ws, https://sourceforge.net/

projects/cartagows/.

Dulva H. M., Tadj C., Ramdane-Cherif A., and Levy N.,

2011. A Multi-Agent based Multimodal System

Adaptive to the User’s Interaction Context, Multi-

Agent Systems - Modeling, Interactions, Simulations

and Case Studies, Dr. Faisal Alkhateeb (Ed.), InTech,

DOI: 10.5772/14692. Available from:

https://www.intechopen.com/books/multi-agent-

systems-modeling-interactions-simulations-and-case-

studies/a-multi-agent-based-multimodal-system-

adaptive-to-the-user-s-interaction-context.

Griol D., García J., Molina J. M., 2013, A multi-agent

architecture to combine heterogeneous inputs in

multimodal interaction systems, Conferencia de la

Asociación Española para la Inteligencia Artificial,

Multiconferencia CAEPIA 2013: 17-20 sep 2013.

Madrid: Agentes y Sistemas Multi-Agente: de la Teoría

a la Práctica (ASMas). (pp. 1513-1522), ISBN: 978-84-

695-8348-7.

Sokolova M.V., Fernández-Caballero A., López M.T.,

Martínez-Rodrigo A., Zangróniz R., Pastor J.M., 2015,

A Distributed Architecture for Multimodal Emotion

Identification. In: Bajo J. et al. (eds) Trends in Practical

Applications of Agents, Multi-Agent Systems and

Sustainability. Advances in Intelligent Systems and

Computing, vol 372. Springer, Cham.

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

330

