Keywords:

Abstract:

SENSdesc: Connect Sensor Queries and Context

Dorthe Arndt', Pieter Bonte?, Alexander Dejonghe?, Ruben Verborgh!,
Filip De Turck? and Femke Ongenae?
YIDLab, Department of Electronics and Information Systems, Ghent University — imec, Belgium

2IDLab, Department of Information Technology, Ghent University — imec, Belgium

N3, Stream Reasoning, Rule-based Reasoning, Proofs, IoT.

Modern developments confront us with an ever increasing amount of streaming data: different sensors in
environments like hospitals or factories communicate their measurements to other applications. Having this
data at disposal faces us with a new challenge: the data needs to be integrated to existing frameworks. As the
availability of sensors can rapidly change, these need to be flexible enough to easily incorporate new systems
without having to be explicitly configured. Semantic Web applications offer a solution for that enabling
computers to ‘understand’ data. But for them the pure amount of data and different possible queries which can
be performed on it can form an obstacle. This paper tackles this problem: we present a formalism to describe
stream queries in the ontology context in which they might become relevant. These descriptions enable us to
automatically decide based on the actual setting and the problem to be solved which and how sensors should
be monitored further. This helps us to limit the streaming data taken into account for reasoning tasks and
make stream reasoning more performant. We illustrate our approach on a health-care use case where different

sensors are used to measure data on patients and their surrounding in a hospital.

1 INTRODUCTION

With the development of new technologies and the
possibility to rapidly produce and store more and
many different kinds of data, health care systems have
new opportunities: Next to the classical electronic
health records (EHR) of patients, they can use back-
ground data clarifying diseases, their diagnosis and
possible cure, organisational data (e.g. the availability
and competences of staff members in a hospital) but
also data produced by sensors for example to measure
values on patients (e.g. their blood pressure or pulse),
or to control the patient’s ambience in a hospital
(e.g. the illumination or temperature in his room).
To combine these in a meaningful way, Semantic
Web reasoning systems are particularly well suited:
their declarative approach allows the user to explain
concepts represented by the data and to specify how
for example the known EHR and newly measured
values of a patient relate to each other. If the system
knows how to interpret the values of a specified kind
of sensor, it is easy to add and remove new instances
of this type. But as most computer systems, Semantic
Web implementations also have to cope with the

Arndt D., Bonte P, Dejonghe A., Verborgh R., De Turck F. and Ongenae F.
SENSdesc: Connect Sensor Queries and Context.
DOI: 10.5220/0006733106710679

challenges of Big data!: if they have to deal with with
a huge volume and different forms of data (variety),
which can come in a high velocity, for example in data
streams, and in different levels of quality (veracity),
the performance of the systems can be rather poor.

In this paper we aim to tackle this problem: in
a setting where many sensors are present and a re-
quest constantly needs to be answered, our approach
finds the sensors relevant for this specific goal. These
sensors and their results can then be monitored more
closely while others, not relevant for the problem, can
be ignored. By that, the amount of data taken into ac-
count can be reduced. To do so, we developed a spe-
cial format to describe possible sensor queries con-
sisting of three parts: the context in which a sensor
query becomes relevant, the query itself, and the con-
sequence in terms of the ontology used. Together with
the related knowledge the descriptions enable a rea-
soner to produce a formal proof which we use to find
the sensor queries contributing to the goal.

The remainder of this paper is structured as fol-
lows: In Section 2 we illustrate a scenario in which
our application can be used. This serves as a running

Uhttp://www.ibmbigdatahub.com/infographic/four-vs-
big-data

In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (HEALTHINF 2018), pages 671-679

ISBN: 978-989-758-281-3

Copyright (© 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

example throughout the whole paper. In Section 3 we
provide the background knowledge needed to under-
stand our solution. After that, in Section 4 we ex-
plain the details of our implementation including our
new description format and the use of formal proofs
to determine relevant sensor queries. In Section 5 we
discuss the relation of our approach to other research.
We conclude our paper by Section 6.

2 USE CASE

The use case of this paper is set in a hospital. This
hospital is equipped with a large number of differ-
ent sensors to monitor, among others, the tempera-
ture and light intensity in a room, values related to the
patient’s health, e.g. pulse, blood pressure and body
temperature, and the location of staff members and
patients. We want to enable a computer to use this
data in order to answer requests or to detect critical
situations. These situations do not only depend on
the sensor values themselves, but also on their sur-
rounding: patients, their diseases, settings in the hos-
pital like rooms and locations of the sensors and many
more aspects could influence the decision, whether a
sensor value is normal or alarming. Such surround-
ings can change: patients enter and leave the hospi-
tal, sensors are added or removed. Our system should
thus take the context into account, and easily adapt
to possible changes. We therefore use Semantic Web
technology and describe the data itself and the con-
text of the sensor setting in a machine understandable
way. If the system understands the concept of a light
sensor, it knows how to deal with a new instance of
such a device. Only the new sensor and its surround-
ing need to be described, the concrete use of the sen-
sor, e.g. threshold values, can be deducted from the
knowledge. The ontology we use includes the hospi-
tal and its rooms, the patients and their diseases, and
the descriptions and locations of the different sensors.
We aim to find in the current setting all possible kinds
of problems which could be detected by a sensor.

In our ontology, we call these problems faults.
Such faults could be caused by many reasons like an
alarming sensor value (e.g. the luminance, sound or
temperature in a room is a above or below a critical
threshold), or faulty sensors (e.g. a temperature, lu-
minance or sound sensor does not work properly).
As stated, faults depend on context like patient pro-
files and locations or the general sensor set-up in the
hospital: While a pulse of 110/min might be alarm-
ing for a grown-up, it is totally normal for an infant.
Similarly, whether the light in a room is too bright
depends on who is using the room: a patient suffer-

ing from a concussion is more sensitive to light than
a patient treated for Parkinson. In an empty room the
light intensity does not influence the well-being of the
patients and is therefore irrelevant in our case.

This relevance of context makes the detection of
faults a complex task. While in a small or simple set-
ting where either context is irrelevant or the number of
sensors is small, it is no problem to perform reasoning
on the sensor data whenever a value changes, this is
different for the given situation. Each reasoning task
takes time (depending on its complexity the task can
take seconds on a common computer (Arndt et al.,
2015)) and the performance of computers present in
hospitals is often limited.

We therefore want to find out early in the current
setting (e.g. rooms of patients, patients’ diagnosis):

1. Which sensors are relevant to our request, i.e.
which sensors could detect a fault?

2. Which values are critical for these sensors?

This allows us to monitor only these sensors and
queries, and just perform complex reasoning when
critical values are measured.

3 BACKGROUND

This section introduces the background required to
understand the details of our implementation. In par-
ticular these are: the logic employed, N3 (Berners-
Lee et al., 2008), the notion of proofs in N3, and the
possibility of performing OWL reasoning in N3.

3.1 N3Logic

Invented about a decade ago by Tim Berners-Lee et
al. (Berners-Lee et al., 2008), N3Logic (N3) forms a
superset of RDF (Cyganiak et al., 2014). As in RDF,
simple N3 statements are expressed by triples consist-
ing of URIs, literals and blank nodes (starting with
_:). The latter stand for existentially quantified vari-
ables. The formula

_:x :likes :ice-cream.

means: ‘There exists someone who likes ice cream.
Additionally to these existential variables, N3 sup-
ports universal variables starting with the symbol ?:

?x :likes :ice-cream.

means: ‘Everyone likes ice-cream.” Universal vari-
ables are mostly used in rules, which we state using
curly brackets { } and the implication symbol =>:

{?x a :Child}=>{?x :likes :ice-cream}. (D)

PREFIX : <http://example.org/sensdesc#>
PREFIX r:
<http://www.w3.0rg/2000/10/swap/reason#>

<#lemma3> a r:Inference;

r:gives {:Ben :likes :ice—cream.};
r:evidence (<#lemma2>);

r:rule <#lemmal >.

Listing 1: Example inference step. Formula 3 gets
derived by applying the rule in Formula 1 (lemma 1)
on Formula 2 (lemma 2).

stands for: ‘If x is a child then x likes ice cream.” or
shorter ‘All children like ice-cream.’ The same nota-
tion of curly brackets can be used to cite formulas:

:Ana :knows {:Ben :likes :ice-cream.}.

This means: ‘Ana knows that Ben likes ice-cream.” A
more detailed introduction to the syntax and seman-
tics of N3 can be found in the corresponding specifi-
cation (Berners-Lee and Connolly, 2011).

3.2 Proofsin N3

N3 expressions as introduced above can be given to a
reasoner which then derives new knowledge from that
and provides a proof. A proof is a description of all
the steps performed to come to a conclusion. Given a
set of triples and rules D, and a goal g, i.e. a formula
which should be verified, these steps can be: (1) read-
ing a valid formula, i.e. an axiom from D, this formula
can either be a simple triple or rule, or a conjunction
of these, (2) perform conjunction-elimination, i.e. se-
lect one conjunct from a conjunction, (3) apply a rule
to a set of triples (modus ponens), or (4) perform a
conjunction introduction, i.e. form the conjunction of
two or more proven formulas.

The proofs produced by N3 reasoners are them-
selves given in the N3 format using the vocabulary
of the Semantic Web Application Platform (SWAP)
(Berners-Lee, 2000). Each step mentioned above has
a name: (1) r:Parsingz. is the name for axiomatiz-
ing, (2) r:Extraction stands for conjunction elimi-
nation, (3) r: Inference refers to the modus ponens,
and (4) r:Conjunction to conjunction introduction.
The connection of these steps to their results is ex-
pressed using the predicate r:gives. The valid for-
mulas directly taken into account for the proof steps
r:Extraction, r:Conjunction and r:Inference
are displayed by referring the reasoning step which
lead to them (r:because, r:component, and the pair

2The prefix r refers here and for the remainder of
this paper to the name space http://www.w3.0rg/2000/
10/swap/reason#

PREFIX WA: <...WSNextensionAccio.owl#>
PREFIX SN: <...SSNiot.owl#>
PREFIX owl:<http://www.w3.0rg/2002/07/owl#>

WA: LuminanceAboveThresholdFault
a owl:Class ;
owl:equivalentClass [
a owl: Restriction ;
owl:onProperty SN:hasSymptom;
owl:someValuesFrom
WA: LuminanceAboveThresholdSymptom
].

Listing 2: Axiom using owl:someValuesFrom.

4

r:rule and r:evidence, respectively). In case of
r:Parsing the source is given (using r:source).

As the step r: Inference is particularly important
for our application we consider an example: Listing 1
explains, how the reasoner> applies Rule 1 to the fact:

:Ben a :Child. 2
and comes to the result
:Ben :likes :ice-cream. 3)

In the example, Rule 1 is obtained by a r:Parsing
and r:Extraction (not displayed here) which to-
gether lead to Lemma 1, the rule is thus the result of
this lemma. The same steps performed on another in-
put lead to Lemma 2 which has Formula 2 as a result.
Listing 1 specifies Lemma 3 which is an instance
of the proof step r:Inference (line 4). This lemma
takes the result of Lemma 2 (i.e. Formula 2) as
input triple. This is indicated using the predicate
r:evidence (line 6). It then applies the rule derived
by Lemma 1 (i.e. Rule 1) on it. This relation is ex-
pressed by using the predicate r:rule (line 7). This
leads to (r:gives) Formula 3 as a conclusion (line 5).
A proof contains all such applications of rules
which contributed to the derivation of the goal. Fur-
ther information about the proof calculus can be
found in our previous work (Verborgh et al., 2017).

3.3 OWL and N3

Next to N3 and RDF there is a third format typically
used in the Semantic Web to represent knowledge, the
Web Ontology Language (OWL) (Bock et al., 2012).
This Description-Logic-based format is very strong in
its expressiveness but the tableaux algorithm normally

3 All proofs and proof steps shown in this paper are pro-
duced by the EYE reasoner (Verborgh and De Roo, 2015).

“In this and all the following listings the dots (...) in the
prefix declaration stand for http://IBCNServices.github.io/
Accio-Ontology/.

PREFIX owl:<http://www.w3.0rg/2002/07/owl#>

{?D owl:equivalentClass ?C.
7C owl:someValuesFrom ?Y.
?7C owl:onProperty ?P.

U ?P 7V.

7V oa ?Y.

}=>{?70 a 7D}.

Listing 3: OWL RL rule for owl: someValuesFrom.’

used to reason on it is rather slow compared to other
mechanisms (Krotzsch, 2012; Arndt et al., 2015).

Our implementation uses OWL ontologies over
which we reason using the rule based logic N3. OWL
has the sub-profiles (Calvanese et al., 2012), OWL
RL, QL and EL. The profile OWL-RL contains all
constructs expressible by simple Datalog (Abiteboul
et al., 1995) rules. This is natively supported by N3
(Arndt et al., 2016). But as N3 also covers existen-
tial rules, i.e. rules with existentially quantified vari-
ables in their conclusion, it also supports OWL con-
structs not present in OWL-RL. An example is the
OWL predicate owl:someValuesFrom for which in
OWL RL only supports the subclass version.

The property restriction owl:someValuesFrom
for a predicate p on a class C means, that each in-
stance of C has at least one value connected to it via
p. The object of owl:someValuesFrom determines
the class to which that connected value belongs. To
illustrate that we display the description of the ex-
ample class WA:LuminanceAboveThresholdFault
in Listing 2. This class covers a special kind of
faults and is defined (using owl:equivalentClass)
as the class of all instances which have a symp-
tom (SN:hasSymptom) being an instance of the class
WA:LuminanceAboveThresholdSymptom. Given

:observationl SN:hasSymptom [

a WA:LuminanceAboveThresholdSymptom]. (4)

the description enables the reasoner to apply the RL
rule in Listing 3 and conclude that

:observationl a
WA:LuminanceAboveThresholdFault. (5)

But the mechanism also needs to work the other
way around. Given an instance of a class with
a owl:someValuesFrom restriction on a property
p like in Formula 5 where :observationl is a
WA:LuminanceAboveThresholdFault, it can be de-
rived that there exists an object of the class indicated

SIn the actual implementation we have extra rules to
handle owl:equivalentClass. We just added its handling
to this rule to make our example self-explaining.

PREFIX owl:<http://www.w3.0rg/2002/07/owl#>

{?x a ?C
7C owl:equivalentClass
[owl:onProperty ?property;
owl:someValuesFrom ?from].
}=>{7x ?property _:e. _:e a ?from.}.

Listing 4: Existential rule for owl:someValuesFrom.

in the class axiom which is connected to that in-
stance via p. In our example, that is an instance of
the class WA:LumincanceAboveThresholdSymptom
connected to our :observationl via the property
SN:hasSymptom. The existential rule displayed in
Listing 4 produces the expected result, it derives For-
mula 4 from Formula 5 and Listing 2. By implement-
ing this and other rules, we extended the set of OWL
concepts supported by our rule based implementation.

4 IMPLEMENTATION

After having explained use case and background
knowledge, we now clarify how we solve the prob-
lem at hand, the identification of sensors and sensor
queries which can be used to detect alarming situ-
ations. The basic idea of our approach is, given a
description of the hospital’s setting, to use existen-
tial rules to describe possible sensor queries and their
meaning in terms of the ontology. We call that for-
mat SENSdesc. Together with a general goal, i.e. a
request to be answered, a reasoner can employ all the
knowledge to produce a proof. If this proof contains
the instantiated version of a sensor query, this occur-
rence indicates that in the given context this query is
relevant and needs to be monitored. We explain the
details of this idea below.

4.1 Description of Context

To be able to use the knowledge about context in a
hospital to determine which sensors need to be ob-
served carefully and for which values, this context
knowledge needs to be described in a machine under-
standable way. In our implementation we use the AC-
CIO ontology® (Ongenae et al., 2014). This OWL DL
ontology makes use of other well established ontolo-
gies e.g. the Semantic Sensor Ontology (Compton M.
et al., 2012), and was designed to represent different
aspects of patient care in a continuous care setting. It
covers all concepts relevant to our use case. A simple

6 Available at: https://github.com/IBCNServices/Accio-
Ontology/tree/gh-pages

PREFIX : <http://example.org#>

PREFIX Ar: <...RoleCompetenceAccio.owl#>
PREFIX Du: <...ontologies/DUL.owl#>
PREFIX SN: <...SSNiot.owl#>

PREFIX WA: <...WSNextensionAccio.owl#>

:bob Du:hasRole [a Ar:PatientRole];
Du: hasLocation :room2l;
WA: lightTreshold 200.

:lightsensorl7
Du: hasLocation :room2l;
a SN:LightSensor.

Listing 5: Instance of a patient with a light sensivity
of 200 who is located in a room with a light sensor.

example of the use of the ontology is given in List-
ing 5. We see specifications about someone named
:bob who is a patient and currently present at a loca-
tion called : room21. In this : room21 there is further-
more a light sensor (:lightsensorl7). We also see
that :bob has a light threshold value of 200 assigned.
Such an assignment can either be derived by reason-
ing (e.g. if Bob has a concussion and all patients with
a concussion have this light threshold value) or it can
be set individually to a patient (e.g. by a doctor). Be-
low, we show how our system uses this knowledge.

4.2 Sensor Queries

Our concept, SENSdesc, describes possible sensor
queries via existential rules of the form

{ pre-condition } =>{ query-description.
post-condition. }
where the three parts are as follows:

Pre-condition: This part specifies the kind of sensor
the description is valid for, the situation in which
the query can be done and additional knowledge
relevant for the query.

Query description: This part specifies how exactly
a query has to look like. Additional parameters
relevant for the query can also be added here.

Post-condition: Here we describe the consequences
of the query-result.

For pre- and post-condition it is crucial to use vocabu-
lary specified in the surrounding ontology. Only with
further background knowledge about the terms and
contexts used, reasoning can take place. We illustrate
the concept of a SENSdesc rule in Listing 6.

The pre-condition (lines 9-14) describes the situ-
ation in which our description is relevant: A patient
has a light threshold defined and there is a light sen-
sor at the same location as the patient. In our example
this is the case for our patient Bob from Listing 5.

PREFIX : <http://example.org#>

PREFIX Ar: <...RoleCompetenceAccio.owl#>
PREFIX Du: <...ontologies/DUL.owl#>
PREFIX SN: <...SSNiot.owl#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX WA: <... WSNextensionAccio.owl#>

{
#pre-condition
?p Du:hasRole [a Ar:PatientRole];
Du: hasLocation ?1;
WA:lightTreshold ?t.
?s Du:hasLocation ?1;
a SN:LightSensor.
}=>{
#query-description
?s :sensorQuery {
?7s :value _:v.
_:v :greaterThan ?t }.
#post-condition
?s sosa:hasObservation _:o.
_:0 SN:hasSymptom [a
WA: LuminanceAboveThresholdSymptom].
}.

Listing 6: Example description. For a patient for
whom a lightThreshold is defined, light sensors at his
location can test whether the light is below this thresh-
old.

The query-description, lines 1619, states which
query has to be performed to the light sensor. The ex-
ample query here tests if the measured value is above
the threshold. Note that sensor and threshold value are
expressed by universal variables taking values from
pre-condition. Both depend on the context data.

The post-condition, lines 21-24, describes the
consequence of a successful sensor query: if the query
triggers, a WA:LuminanceAboveThresholdSymptom
is observed. In the ontology, the observation of this
symptom can—depending on the further context—
have several consequences. Here, via Listing 2, we
can get a WA:LuminanceAboveThresholdFault.

4.3 Goals

As explained in Section 3.2, an N3 reasoner is typi-
cally invoked with a goal. This goal is a logical rule
serving as a filter. If this rule can be applied to the
given input or its logical consequences, the reasoner
provides a formal proof in which the goal is the last
rule applied. As mentioned in Section 2, we want to
know in our example, which faults could be detected
by a sensor using the current data consisting of ontol-
ogy, description of the context and SENSdesc rules to
describe possible sensor queries. To do so, we search
for all instances of the class SN:Fault the reasoner

can detect. The goal for this looks as follows:
{?%x a SN:Fault}=>{?x a SN:Fault}. (6)

Here, antecedence and consequence are the same.
The rule is nevertheless not redundant because it is
marked as a goal. The reasoner looks for cases where
this rule can be applied and provides a proof for them.

4.4 Making Use of Proofs

Having the goal, the different SENSdesc descriptions
including the one from above, the OWL ontology and
the N3 rules to perform OWL reasoning as described
in Section 3.3 at our disposal, we can start an N3 rea-
soner and produce a proof. This proof enables us to
find the sensors and the concrete sensor queries rele-
vant to our problem. We illustrate that idea on our ex-
ample. Additionally to the axioms mentioned above,
our ontology also contains the triple:

WA:LuminanceAboveThresholdFault
rdfs:subClassOf SN:Fault. (7)

This indicates that every instance of the class
WA:LuminanceAboveThresholdFault is also an in-
stance of the class SN:Fault. Using the data dis-
played in this paper and the goal in Formula 6 the rea-
soning process produces the proof in Listing 7. From
the different proof steps (lemmas) composing the
proof, there is one particularly interesting: Lemma 4
(lines 27-38) describes the application of our SENS-
desc rule (r: Inference) leading to:
:lightsensorl7 :sensorQuery {

:lightsensorl7 :value _:sk_0.

_:sk_0 :greaterThan 200 }.
:lightsensorl7 sosa:hasObservation _:sk_1.
_:sk_1 SN:hasSymptom _:sk_2.
_:sk_2 a WA:LuminanceAboveThresholdSymptom.

These triples contain a concrete sensor query to the
sensor :lightsensorl7: if the value of this sensor
is greater than 200 we need to add the observation
of a WA:LuminanceAboveThresholdSymptonm to the
knowledge. We thus know from the the proof that in
our current setting this particular sensor is important
and needs to be monitored with the indicated value.

This technique of looking for inference steps ap-
plying SENSdesc rules can be generalised: If we
additionally had another sensor in another room
where another patient with a defined light threshold
value was located, this sensor with the corresponding
threshold value would also appear in the proof while
light sensors located in rooms with no patients or with
patients without a defined luminance threshold value
will not be listed. In that way we find the sensors and
queries relevant to our particular problem.

S RELATED WORK

The approach presented in this paper is influenced
by other research: In previous work, we developed
a format to describe RESTful API calls via existen-
tial rules in N3, RESTdesc.” Just as in SENSdesc, we
used existential rules consisting of three parts, pre-
condition, call-description, and post-condition to de-
scribe possible events, in this case possible API calls.
To make plans towards a goal, proofs containing in-
stantiated descriptions of API calls were employed.
We explain this idea in our previous paper (Verborgh
et al., 2017). In this sense this paper can be seen as
an extension of RESTdesc, which was developed for
API calls, to sensor queries. Both formats, RESTdesc
and SENSdesc can be combined in an environment
where APIs and sensors are present.

The use case required to perform OWL reasoning
in a rule-based logic. The idea to do so is not new and
has been implemented in several systems. Classically,
rule-based systems support the OWL RL profile. Ex-
amples are RDFox (Nenov et al., 2015) and OWLIM
(Bishop et al., 2011) or the implementation of OWL
RL rules in Prolog (Almendros-Jiménez, 2011). But
also the other profiles have been implemented using
rules: Krotsch discusses the implementation of OWL
EL (Krotzsch, 2011). The support for OWL QL in
OWLIM is implemented using rules (Bishop and Bo-
janov, 2011). In our case the rules had to be in N3,
their implementation is based on our previous work
on OWL RL (Arndt et al., 2015; Arndt et al., 2016).

Finally, we discuss the connection between our
work and Semantic Web stream processing and rea-
soning. A complete overview of this topic can be
found in (Dell’ Aglio et al., 2017). RDF stream pro-
cessing systems are classically divided into two cat-
egories: Complex Event Processing systems (CEP)
and Data Stream Management Systems (DSMS).
While the former normally have timestamped triples
and the detection of patterns within these as subject,
the latter focus on the data produced in fixed time pe-
riods, so called windows. An overview of systems
can be found at (Margara et al., 2014). To query
on streams, several languages have been developed,
e.g. C-SPARQL, CEQLS and SPARQL;c.m- Re-
cent research aims to unify them into the language
RSP-QL (Dell’ Aglio et al., 2015). Our approach is
independent of these languages since reasoning only
happens on top of query results whose consequences
are defined in the SENSdesc descriptions. In that as-
pect it also differs from ontology based data access
(OBDA) on streams such as e.g. (Bienvenu et al.,
2014). OBDA takes sensor queries as input which are

"http://restdesc.org/

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX SN: <http://IBCNServices.github.io/Accio-OntologySSNiot.owl#>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX WA: <http://IBCNServices.github.io/Accio-OntologyWSNextensionAccio.owl#>
PREFIX : <http://example.org#>

PREFIX r: <http://www.w3.0rg/2000/10/swap/reason#>

[] a r:Proof, r:Conjunction;
r:component <#lemmal >;
r:gives { _:sk_1 a SN:Fault. }.

<#lemmal> a r:Inference;
r:gives { _:sk_1 a SN:Fault. };
r:evidence (<#lemma2>);
r:rule <#lemma5>.

<#lemma2> a r:Inference;
r:gives { _:sk_1 a SN:Fault.};
r:evidence (<#lemma3> <#lemma7>);
r:rule <#lemma8>.

<#lemma3> a r:Inference;
r:gives { _:sk_1 a WA:LuminanceAboveThresholdFault.};
r:evidence (<#lemma4> <#lemma6>);
r:rule <#lemma9 >.

<#lemma4> a r:Inference;
r:gives {
:lightsensorl17 :sensorQuery {
:lightsensorl7 :value _:sk_O.
_:sk_0 :greaterThan 200
i)
:lightsensorl7 sosa:hasObservation _:sk_1.
_:sk_1 SN:hasSymptom _:sk_2.
_:sk_2 a WA: LuminanceAboveThresholdSymptom .
3
r:evidence (<#lemmalO>);
r:rule <#lemmall>.

<#lemmaS5> a r:Extraction;

r:because [a r:Parsing; r:source <Formula6 >].
<#lemma6> a r:Extraction;

r:because [a r:Parsing; r:source <Listing2 >].
<#lemma7> a r:Extraction;

r:because [a r:Parsing; r:source <Formula7 >].
<#lemma8> a r:Extraction;

r:because [a r:Parsing; r:source <owl_subclass_rule.n3>].
<#lemma9> a r:Extraction;

r:because [a r:Parsing; r:source <Listing3 >].
<#lemmalO> a r:Extraction;

r:because [a r:Parsing; r:source <Listing5 >].
<#lemmall> a r:Extraction;

r:because [a r:Parsing; r:source <Listing6 >].

Listing 7: (Simplified) Example proof for the goal displayed in Formula 6 taking into account the data from Listings
2-6 and an additional rule to handle owl:subclassOf. Lemma 4 includes an instatiated version of the SENSdesc
description.

rewritten based on ontology knowledge to easier sen-
sor queries to perform on the stream. In our approach,
we do not have a sensor query on top of ontology and
streams, we have a simple goal, which can not directly
contain informations about streams and or windows.
This kind of information can only be expressed in the
query description part of our SENSdesc rules.

6 CONCLUSION AND FUTURE
WORK

In this paper we presented a new format to describe
possible sensor queries and explained how it can be
used together with formal proofs to determine in a
setting where many sensors are available, which sen-
sors and which queries are relevant to keep track of
user defined goals. Once these sensors are known,
they can be carefully monitored and—in case they de-
tect the situations they are looking for—new reason-
ing can be triggered. This strategy saves us from hav-
ing performance problems due to constant reasoning
on the output of all available sensors.

In the future we plan to improve the description of
sensor queries in SENSdesc. Integrating existing for-
mats for stream querying like RSP-QL make it easier
to detect and execute the sensor queries in a proof.
Furthermore, we plan to test our implementation in
bigger settings and contexts where more sensors are
available. Only by this, we can be sure that the per-
formance of our approach does not suffer from the
inclusion of expensive concepts like existential rules.

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V., editors (1995). Foun-
dations of Databases: The Logical Level. Addison-
Wesley.

Almendros-Jiménez, J. M. (2011). A Prolog library for
OWL RL. In Proceedings of the 4th International
Workshop on Logic in Databases, LID ’11, pages 49—
56. ACM.

Arndt, D., De Meester, B., Bonte, P.,, Schaballie, J.,
Bhatti, J., Dereuddre, W., Verborgh, R., Ongenae,
F., De Turck, E., Van de Walle, R., and Mannens,
E. (2015). Ontology reasoning using rules in an
eHealth context. In Proceedings of the 9th Interna-
tional RuleML Symposium.

Arndt, D., De Meester, B., Bonte, P., Schaballie, J.,
Bhatti, J., Dereuddre, W., Verborgh, R., Ongenae, F.,
De Turck, F., Van de Walle, R., and Mannens, E.
(2016). Improving OWL RL reasoning in N3 by using
specialized rules. In Ontology Engineering: 12th Int.
Experiences and Directions Workshop on OWL.

Berners-Lee, T. (2000). Semantic Web Application Plat-
form. http://www.w3.0rg/2000/10/swap/.

Berners-Lee, T. and Connolly, D. (2011). Notation3 (N3):
A readable RDF syntax. W3C Team Submission.
http://www.w3.org/TeamSubmission/n3/.

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., and
Hendler, J. (2008). N3Logic: A logical framework for
the World Wide Web. Theory and Practice of Logic
Programming, 8(3):249-269.

Bienvenu, M., Cate, B. T., Lutz, C., and Wolter, F. (2014).
Ontology-based data access: A study through dis-
junctive Datalog, CSP, and MMSNP. ACM Trans.
Database Syst.

Bishop, B. and Bojanov, S. (2011). Implementing OWL 2
RL and OWL 2 QL rule-sets for OWLIM. In OWLED.

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, 1., Tashev,
Z., and Velkov, R. (2011). OWLIM: A family of scal-
able semantic repositories. Semantic Web, 2(1):33-42.

Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks,
L., Ruttenberg, A., Sattler, U., and Smith, M. (2012).
Owl 2 Web Ontology Language. W3C Recommenda-
tion. http://www.w3.org/TR/owl2-syntax/.

Calvanese, D., Carroll, J., Di Giacomo, G., Hendler, J., Her-
man, I., Parsia, B., Patel-Schneider, P. F., Ruttenberg,
A., Sattler, U., and Schneider, M. (2012). Owl 2 Web
Ontology Language Profiles (second edition). w3C
Recommendation. www.w3.org/TR/owl2-profiles/.

Compton M. et al. (2012). The SSN ontology of the W3C
semantic sensor network incubator group. Web Se-
mantics: Science, Services and Agents on the World
Wide Web, 17.

Cyganiak, R., Wood, D., and Lanthaler, M. (2014).
RDF 1.1: concepts and abstract syntax.
http://www.w3.0rg/TR/2014/REC-rdf11-concepts-
20140225/.

Dell’ Aglio, D., Calbimonte, J.-P., Della Valle, E., and Cor-
cho, O. (2015). Towards a Unified Language for RDF
Stream Query Processing.

Dell’ Aglio, D., Valle, E. D., van Harmelen, F., and Bern-
stein, A. (2017). Stream reasoning: a survey and out-
look: A summary of ten years of research and a vision
for the next decade. Data Science Journal, 1.

Krotzsch, M. (2011). Efficient rule-based inferencing for
OWL EL. In Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence.

Krotzsch, M. (2012). OWL 2 profiles: An introduction to
lightweight ontology languages. In Proceedings of the
8th Reasoning Web International Summer School.

Margara, A., Urbani, J., van Harmelen, F., and Bal, H.
(2014). Streaming the Web: reasoning over dynamic
data. Journal of Web Semantics.

Nenov, Y., Piro, R., Motik, B., Horrocks, 1., Wu, Z., and
Banerjee, J. (2015). RDFox: a highly-scalable RDF
store. In Proc. International Semantic Web Confer-
ence.

Ongenae, F., Duysburgh, P., Sulmon, N., Verstraete, M.,
Bleumers, L., De Zutter, S., Verstichel, S., Ackaert,
A., Jacobs, A., and De Turck, F. (2014). An ontology
co-design method for the co-creation of a continuous
care ontology. Applied Ontology, 9(1):27-64.

Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels,
G., Steiner, T., and Gabarré Vallés, J. (2017). The
pragmatic proof: Hypermedia API composition and
execution. Theory and Practice of Logic Program-
ming, 17(1):1-48.

Verborgh, R. and De Roo, J. (2015). Drawing conclu-
sions from Linked Data on the Web. IEEE Software,
32(5):23-27.

