Integration of Hawk for Model Metrics in the MEASURE Platform

Orjuwan Al-Wadeai!, Antonio Garcia-Dominguez', Alessandra Bagnato?, Antonin Abherve?

Keywords:

Abstract:

and Konstantinos Barmpis?

YSARI, School of Engineering and Applied Science, Aston University, Birmingham, U.K.
2Softeam, Research and Development Department, Paris, France
3Department of Computer Science, University of York, York, U.K.

Specialized Information Retrieval, Unified Modeling Language (UML), Model Repositories, Big Data,
Scalable Model Querying.

The MEASURE project aims to integrate metrics across all phases of the software development lifecycle into
a single decision support platform. For the earlier phases, metrics can be derived from models. Industrial use
of model-driven engineering produces large model repositories, and high-performance querying is key to keep
their metrics up to date. This paper presents an integration between the MEASURE metrics platform and the
Hawk model indexing tool. Hawk was improved in several ways, such as adding support for the new Modelio
metamodelling framework, or allowing Hawk servers to be provisioned through configuration files rather than
through its web services. MEASURE and Hawk were then combined successfully to extract metrics from
Modelio models of various domains, and Hawk was able to index and efficiently answer queries about the

2GB collection of models used by Softeam to develop Modelio.

1 INTRODUCTION

Growing global competition and system complexity
in the software industry means that companies need
to meet ever increasing demands without compromi-
sing on quality and delivery times (Shields, 2014).
Many companies have taken to automation and placed
a strong emphasis on nimble iteration in their proces-
ses to address these challenges. However, this auto-
mation and iteration need to be guided by up-to-date
and accurate metrics, and traditional approaches are
not up to the task.

The MEASURE ITEA3 consortium (Softeam
R&D, 2017) aims to cover this gap by developing a
comprehensive set of tools for automated and con-
tinuous measurement over all stages of the software
development lifecycle. It includes the development of
better metrics and ways to analyse the big data pro-
duced by continuous measurements, the validation of
those metrics by the integration of the metrics and
tools into running processes in various industrial part-
ners, and the creation of decision support tools for
project managers through the visualisation of the col-
lected data. As shown in Figure 1, MEASURE re-
volves around a central data collection and analysis

Al-Wadeai, O., Garcia-Dominguez, A., Bagnato, A., Abherve, A. and Barmpis, K.
Integration of Hawk for Model Metrics in the MEASURE Platform.
DOI: 10.5220/0006732207190730

platform (the “MEASURE platform” from now on), a
web application that integrates all other efforts.

Unlike other metric platforms, MEASURE aims
to collect metrics about more than just code, as it co-
vers the entire software lifecycle and not just those
stages related to coding or testing. Particularly, one
of the aims is to collect metrics about models. One
of the MEASURE project partners in particular (Sof-
team Cadextan) is the lead developer of the commer-
cial open-source Modelio (Softeam Cadextan, 2017)
modelling tool. Softeam wanted to integrate metrics
about Modelio business, requirements and design mo-
dels into the MEASURE platform. This would re-
quire a technology that provided high-performance
querying from potentially very large models, as those
seen in the field by Modelio. For instance, it is com-
mon to have millions of elements for models reverse
engineered from large code bases (e.g. for software
modernisation). Distributed teams producing models
concurrently can also create large collections of mo-
del elements as time goes on. Rather than deve-
lop their own from scratch, Softeam decided to reuse
Hawk, a scalable model indexing and querying fra-
mework that had been successfully integrated with
their Constellation product for collaborative model-

719

In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 719-730

ISBN: 978-989-758-283-7

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MOMAJ3N 2018 - Special Session on Model Management And Analytics

3. Specifying
Pl Requirements —
- ~y

2. Business
Modelling

1. Planning - 1. [Re-) planning

9. External
Release,
Maintenance and

2. Evaluation
and Decision

Making
Support

MEASURE

Data Collection
and Analysis
Platform

6. Integration

ectur
5.
Implementation
|

and
Deployment

Figure 1: General approach for the MEASURE ITEA3 project.

ling (Garcia-Dominguez et al., 2016).

Hawk could not be used as-is, however. The ME-
ASURE platform imposed new requirements for a se-
amless integration, and recent releases of Modelio
had fundamentally changed the way the structure of
the models could be described to Hawk. The overall
practicality and scalability of Hawk for this domain
had to be re-evaluated as well. This paper presents the
work that was conducted to clarify these new require-
ments and re-engineer Hawk for this new application,
and the evaluations that were conducted to validate
Hawk as the model metrics component for the MEA-
SURE platform.

The rest of this paper is organized as follows:
Section 2 provides a background about MEASURE,
Modelio and Hawk. Section 3 summarizes the inte-
gration efforts of Hawk into MEASURE. Section 4
shows our initial validation of the flexibility of this
approach, followed by an evaluation of its scalability.
Section 6 provides some conclusions and future lines
of work.

2 BACKGROUND

This section will introduce some basic concepts re-
quired to understand the rest of the work: the MEA-
SURE platform, the Modelio modelling environment,
and the Hawk model indexing framework.

720

2.1 MEASURE Platform

The MEASURE platform is an open-source web ap-
plication (Abherve et al., 2017) which allows col-
lecting, calculating and visualizing data collected by
executing measures defined according to the Struc-
tured Metrics Meta-Model (SMM) (Object Manage-
ment Group, 2016). A measure is a method for assig-
ning measurements (numerical or symbolic values) to
entities (measurands). An observation applies a set
of measures to a certain scope, obtaining specific me-
asurements of the attributes of interest.

Within the MEASURE platform, this observation
scope is defined through projects defined by the user,
and phases that they may go through. Observations
and their measurements are collected into dashboards
like the one in Figure 2. Particularly, observations are
known as measure instances in the MEASURE plat-
form: they configure the measure itself in some way
and provide a scope of what should be the measurand.
Figure 3 shows the current user interface for mana-
ging measure instances.

There are two types of SMM measures: direct me-
asures that are taken from a measurand through some
process (e.g. lines of code), and derived measures
whose values are computed from others (e.g. a ratio
or a sum). Measures are contributed by users as Java
classes written against the interfaces of the SMM Me-
asure API library (Abherve, 2017), with some additi-
onal XML metadata.

As an example, one of these direct measures im-
plemented in the MEASURE platform is an integra-
tion with the SonarQube code-centric continuous eva-

Integration of Hawk for Model Metrics in the MEASURE Platform

@ Antonin Abherve
6,000 @ Alessandra Bagnato (Softeam, France)
35 @ Arthur Baars

5000

2,000 25

Count
"

3:000

2000

1,000

4&: 2017-08-01 20171001 ¢ 20170401 01
postDate per month postDate per week
Activity on Measure Platform Commit Count Commit By Users
(Last 12 Months) (Last 12 Months) (Last 12 Months)

NS

D oW

s W eo

‘4
e

-

201720401 20170501 2017.07.01 20170801

20170601
postDate Der dav

Figure 2: Screenshot of a sample dashboard in the MEASURE platform.

il Measure Platfo

Measures Instances

Home ' Measures Instances

Project MyProject v +
Measure Instance Based on Measure Scope Executed On Schedule
MyMeasure RandomGenerator MaxRange 100 Msssurs Plafform n‘
MinRange 0
Delta 3
PreviousValue 14
Test Bugs_SonarCube4 5 ServerURL hitpe:is iofapi Flanguages=j n
Password
Login Prazconda@github
Projectkey com.hp.ule. struts2project
Instance12 RandomiGenerator MinRange 0 n
MaxRange 100
Delta 3
PreviousValue 1
Instance2 ClassComplexity URL https://svn. softeam frisvniMEASURE/ [Msasurs pratrom | n
PASSWORD TTMINwWOWNE:
LOGIN |pdadhich

Instance1 JVMCpulsage n
Instanced JViMemoryUsage n

Fa Ka Ks K Ko Fa Fa Fs Fs Fs Fa§

InstanceAnomaly MMT-Anomalies mmtdbhostname 5220872.84 n
mmtdbportname 27017

InstanceParallelMMT MMT-Parallel-Sessions mmtdbhostname 52208.72.34 n
mmtdbportname 27017

Instar MMT-Network-Response-Time localhost ﬂ
mmtdbportname 27017

instancePackagelmount MMT-Packets-Amount mmtdbportname 2717 n
mmtdbhostname 52208.72.84

InstanceUniquelser MMT-Unique-Users mmtdbhostname localhost n
mmtdbportname 27017

Figure 3: Screenshot of measure instances in the MEASURE platform.

721

MOMAJ3N 2018 - Special Session on Model Management And Analytics

luation platform'. The implementation of the SMM
Measure API interfaces invokes the service of the So-
narQube platform, feeding its information to MEA-
SURE to be combined with other metrics not related
to code.

2.2 Modelio

Modelio (Softeam Cadextan, 2017) is a commer-
cial open-source modelling environment developed
by Softeam. It supports multiple notations (UML,
BPMN, and SysML among others). While Modelio
is developed with the Eclipse Rich-Client platform, it
is not based on the popular Eclipse Modelling Frame-
work (EMF). Instead, it uses its own metamodelling
infrastructure and file format (EXML). The standard
OMG XMI format is only available as an export for-
mat. More details on the EXML format are availa-
ble from our prior work in integrating Hawk and Mo-
delio (Garcia-Dominguez et al., 2016).

One important detail is that while it is open-
source, the exact license changes depending on the
component. The core runtime is under the Apache Li-
cense, but most of the other components are under the
GNU General Public License version 3 (GPLv3). The
incompatibility of the GPLv3 license with other po-
pular open licenses was already an issue in our prior
work: we will need to refer back to this later on.

Other distinguishing features for Modelio are the
availability of a full-fledged scripting environment for
various modeling tasks (e.g. model transformation
or code generation), and the strong support for re-
verse engineering of models from existing codebases.
Scripting has been useful to test its scalability, as it
is quite convenient for generating large synthetic mo-
dels.

2.3 Hawk

As mentioned before, Hawk was selected to pro-
vide model metrics for MEASURE as it had been
successfully integrated with other Modelio-based pro-
ducts from Softeam in the past, delivering the desired
functionality and performance for the Constellation
collaboration tool. This section will provide a high-
level description of some of the details behind Hawk.

Hawk (Barmpis and Kolovos, 2013) is a hetero-
geneous model indexing framework that keeps track
of collections of file-based models and maintains
a NoSQL model-element-level graph database with
their latest versions, in order to provide efficient and
scalable model querying. Hawk is distributed as

Thttps://github.com/ITEA3-Measure/Measures

722

Clients
Model Parsers
Storage Backends
HEET
< -

frerm)

OrientDB SQL Eclipse Workspace

Query Engines

HTTP Locations

Version Control Systems

Figure 4: Component-based architecture of the Hawk mo-
del indexing framework.

open-source software under the Eclipse Public Li-
cense (EPL) 1.0.

2.3.1 Architecture

As shown in Figure 4, Hawk follows a component-
based architecture. These are the most important
component types:

Model Parsers: understand various file formats for
storing models and metamodels (descriptions of
the structure of a set of models). The Ecore XMI
parser understands models created by tools ba-
sed on the Eclipse Modelling Framework, for in-
stance. There was also a model parser component
for Modelio 3.4, which was developed before this
paper (Garcia-Dominguez et al., 2016).

Backends: integrate Hawk with different database
technologies. At the moment, two backends are
supported: OrientDB and Neo4j. OrientDB is
preferred by Softeam, since its Apache licensing
is compatible with Hawk’s EPL license without
requiring separate arrangements.

Version Control System Connectors: allow Hawk
to read models in various types of locations. At
the moment, Hawk supports local folders, Subver-
sion or Git VCS, arbitrary HTTP locations, and
Eclipse workspaces.

Query Engines: answer questions written in certain
query languages for any type of model indexed by
Hawk. Three languages are available currently:
the Epsilon Object Language and Epsilon Pat-
tern Languages (Kolovos et al., 2017) can be used
with the Neo4j or OrientDB backends, whereas
the OrientDB SQL-like dialect is only available
for that backend.

2.3.2 Using Hawk

Hawk can be used as a library, as a set of plugins for
the Eclipse IDE, or as a network service. Regardless
of the method, using Hawk generally consists of these
steps:

1. Creating an index with a particular backend in a
certain directory.

2. Registering the relevant metamodels describing
the structure of the models we will index.

3. Registering the locations where our models are
stored (e.g. folders or VCS).

4. Optionally, defining indexed attributes and deri-
ved attributes for faster searching. Indexed attri-
butes make it possible to quickly find model ele-
ments by the value of their attributes. Derived at-
tributes extend certain model element types with
new properties derived from their regular attribu-
tes, and can be used for fast searching and perfor-
ming expensive computations in advance.

5. Waiting for Hawk to index all files mentioned, and
then querying through one of the available engi-
nes. Hawk will detect changes in the model files
and trigger updates as needed.

As a standalone server, Hawk exposes its capa-
bilities through a set of HTTP(S) web services on
top of the Apache Thrift (Apache Software Founda-
tion, 2017) messaging library. Thrift makes it pos-
sible to support multiple messaging formats (proto-
cols in Thrift terminology) in the same API, which
cover different tradeoffs between language compati-
bility (JSON is the most compatible) and performance
(the “tuple” binary format produces the smallest mes-
sages).

3 INTEGRATION OF HAWK
INTO MEASURE

The previous section presented the MEASURE plat-
form, the Modelio modelling tool and the Hawk mo-
del indexing framework separately. This section will
discuss the new requirements that arose from the need
to use Hawk for model metrics in MEASURE, and
how these were met.

3.1 New Requirements

Softeam had prior experience with Hawk from the
MONDO EU project in scalable modelling (Kolovos
et al., 2016), and its high-performance and flexibi-
lity made it the first choice for MEASURE. Since the

Integration of Hawk for Model Metrics in the MEASURE Platform

MONDO project ended in 2016, however, Modelio
had continued to evolve, and MEASURE presented
new challenges. Further talks between Softeam and
the Hawk developers extracted these requirements:

R1. Since Modelio 3.6, metamodels were no longer
embedded in the source code of Modelio, but
instead provided by metamodel descriptor files.
Hawk needed to be able to understand these.

R2. Hawk would need to run as a standalone ser-
vice from the MEASURE platform, unlike in the
Constellation integration where it was used as a
library. This was to keep the MEASURE plat-
form simple and to separate the high resource de-
mands of Hawk from it.

R3. Softeam needed to be able to automatically pro-
vision new Hawk servers in a cloud environ-
ment with standard tools (e.g. Docker, Puppet or
Chef). These tools usually operate by filling in
configuration file templates, rather than invoking
web services.

R4. Model metrics would still be written as queries
in the Epsilon Object Language, much like those
in the Constellation work. Softeam had found
this language simple enough to use during prior
experiments in the MONDO project.

R5. Hawk would need a component that could be de-
ployed as a measure in the MEASURE platform,
reading the SMM-based configuration to invoke
Hawk and relay the results back to the platform.

These requirements meant that while most of
Hawk could be reused (R2 and R4 could leverage ex-
isting components), it was necessary to rewrite some
components (R1), expand others with new features
(R3) and create a new one (R5). The integrated ar-
chitecture was envisioned as in Figure 5, where the
MEASURE platform would live in one machine, the
Hawk server in another machine, and the modeller’s
Modelio installation in a third machine (the work-
station). The yellow components would be the new
pieces in the puzzle: a version of Hawk with a re-
vised Modelio model parser component, a file-based
Hawk server configuration engine, and a measure im-
plementation based on Hawk queries for the MEA-
SURE platform. The following sections will expand
on the work involved for each of these.

3.2 Metamodel Descriptor Support

Before Modelio 3.6.0, the Modelio metamodels were
embedded in the source code of the tool and were not
customisable by users. Thanks to this, it was possible
to adopt a simple approach in which Hawk was com-
piled against an Apache-licensed library produced by

723

MOMAJ3N 2018 - Special Session on Model Management And Analytics

Measurement Tool (Hawk Server)

Hawk APL

latest Modelio)

New Hawk indexer (supports

Modelio i A

"""" conﬁgures:'

Hawk Server Configuration
Engine

! uses

<<artifact>>
ConfigFile

MEASURE Platform

1

Measure 1

measure Customization

| Hawk Measure Query Libarary |

N I

query Measure 2

measure customization

Hawk Measure Query Libarary |

Figure 5: UML deployment diagram of the integration between Hawk and the MEASURE platform.

Listing 1: Sample contents of a mmversion.dat file

modelio. kernel 1
0.1.00 2
Standard 3
1.0.00 4

Softeam for each release of Modelio. Unfortunately,
this meant that a particular installation of Hawk could
not index models developed with multiple versions of
Modelio, and that supporting a different version re-
quired replacing . jar files manually.

Modelio 3.6.0 made that approach unfeasible:
users could now define their own metamodels through
metamodel descriptor files. We could not expect me-
tamodels to be stable for a release: instead, Hawk had
to understand those descriptions and then use them to
understand models conforming to this structure.

Luckily, this is a very similar approach to what
was done for EMF-based models, whose structure is
described through ECore metamodels. Since it was
not possible to bring any GPLv3 code from Modelio
into Hawk, it was decided to implement a metamodel
parser following a clean-room approach: instead of
looking at the code, the format would be reverse en-
gineered from a sample, with some answers from the
original developers. This is the same approach that
was taken when implementing the original EXML
parser in Hawk (Garcia-Dominguez et al., 2016).

Now that there could be multiple Modelio meta-
models registered at a time in Hawk, it was necessary
to create a centralised registry of metamodels. Meta-
models can be looked up by the name and a version.
Unlike EMF metamodels, where identifiers tend to in-
clude the versions themselves, Modelio metamodels
keep the version separate. This provides a small de-
gree of flexibility: if a model conforms to a version
of a metamodel we don’t have an exact match for, we
use the latest version available.

724

Finding out which version of a metamodel
to use for a specific model file requires some
thought as well. This information is present in a
mmversion.dat file in the project within the user’s
Modelio workspace, and not as part of the model file
or the model element themselves. Listing 1 shows the
typical contents of these files, formed by a sequence
of line pairs with the name of the metamodel (lines 1
and 3) and the version of the metamodel (lines 2 and
4).

3.3 Automated Server Provision

In order to use Hawk effectively in cloud environ-
ments, it should be possible to quickly bring up an
index for a certain location in an automated man-
ner. Most cloud deployment tools expect to be able
to clone an image, make some small changes to the fi-
les and rerun things. Being able to configure Hawk
through files is also much more familiar to server
administrators, and it is easier to teach with typical
copy-and-paste instructions.

To accommodate the scenarios, the Hawk server
was modified so it would look upon startup for confi-
guration files in a predefined folder, and set up new in-
dices for those it does not have a match for. It will not
make any changes to indices for which we do not have
configuration files (since they may have been created
manually through the API), and for now, it will not
update the configuration of existing indices either.

An example of a configuration file is shown in Lis-
ting 2. Lines 1-2 mention that the OrientDB backend
should be used, and provide a name for the instance.
Line 3 mentions the minimum and maximum delays
in milliseconds for repository polling (0 means it is di-
sabled). Lines 4-8 specify which components should
be enabled. Lines 9—12 register the metamodels des-

Listing 2: Sample contents of a server config file.

1 <hawk backend="...OrientDatabase”

2 name="instance_36">

3 <delay max="0" min="0"/>

4 <plugins>

5 <plugin

6 name="...ModelioGraphChangeListener”/>...
7 </plugins>

8 <metamodels>

9

<metamodel uri=""" location=".../mm36.xml”/>
10 </metamodels>

11 <derivedAttributes>...</derived Attributes >

12 <indexedAttributes>

13 <indexedAttribute attributeName="Name”
14 metamodelUri="modelio://...”
15 typeName="Class”/>

16 </indexedAttributes>
17 <repositories>

18 <repository frozen="false”

19 location="file:///.../ArchiChocolate/”

20 pass=""" type="...LocalFolder” user=""/>
21 </repositories>

22 </hawk>

cribing the structure of the models to be indexed. Line
13 would be used to registered derived attributes, and
lines 14-18 register an indexed attribute for quickly
finding classes by name. Finally, lines 19-23 mention
where the models are stored.

3.4 Hawk-based Measures

In order to create direct measures on models using
Hawk for the MEASURE platform, a new implemen-
tation of the SMM Measure API (§2.1) interfaces was
developed: the Hawk Query measure library (HawkM
from now on) (Al-wadeai, 2017).

HawkM can be used in two ways:

e As a regular component for MEASURE, which
takes in a configuration file with the server details
and the EOL query to be run, and relays back to
the MEASURE platform.

e As a library for developing more advanced me-
trics, which require orchestrating multiple EOL
queries or automatically generating the EOL
source altogether.

HawkM has provisions for the fact that the Epsi-
lon Object Language is dynamically typed, and the-
refore it is not clearly known what will be the return
type of the query in the configuration file. The Hawk
server will provide a response with the EOL native
type and the raw value, and HawkM will map it into
the MEASURE platform API’s type system. HawkM
will also timestamp the moment when the measure-
ment was taken.

Integration of Hawk for Model Metrics in the MEASURE Platform

InterfaceA O

I Ciassr | [classc | ClassA
I . | +0) p1: string)

%

ClassD ClassE

+0 pl: string) + 0 i p1: string)

i

ClassB

+ Operation(in p1- string)

(a) Relations between interfaces and classes.

% | ComponentD
ClassF

& | componentA

Componentd
ClassA
ClassB
| =y —— ClassD
= | ComponentC ClaseE
ComponentD ComponentE

& | ComponentE

= | ComponentB

ComponentC

(b) Division of classes across components.

Figure 6: UML class diagrams for the example Modelio
project used to develop MEASURE queries.

4 EVALUATION

The work in the previous section allowed Hawk to be-
come another piece of the MEASURE platform. This
section will study whether this integration can imple-
ment the model measures required by the MEASURE
ITEA3 project, and whether it can scale to models in
the large sizes expected by its industrial case studies.

4.1 Flexibility

After completing the work in Section 3, several case
studies were run to validate if Hawk could accommo-
date the wider variety of models in Modelio 3.6, and
run the desired queries.

4.1.1 MEASURE Queries

The first test was done by creating a sample Mo-
delio 3.6 project with various containment and inher-
itance/implementation relationships (as shown in Fi-
gure 6). The Hawk server was configured to index
this sample project, using the OrientDB backend and
the Modelio-specific model and metamodel parsing
components. The Modelio 3.6 metamodel descriptor
(part of the open source source code release) was par-
sed successfully by Hawk: this sample project requi-

725

MOMAJ3N 2018 - Special Session on Model Management And Analytics

Listing 3: Excerpt of the EOL source code for the “Number
of overridden methods” query.

var nOverriden = 0;
for (myClass in Class.all) {
nOverriden += getNOverridden(myClass);

}

1
2
3
4
5 return nOverridden;
6
7 operation getNOverriden(myClass) {
8
var ops = getAllOpsOfSubTypesOf(myClass);

10 opsNames.addAll(ops.Name);
11 for (myop in myClass.OwnedOp) {

=]

12 if (opsNames.includes(myop.Name)) {

13 var sameName

14 = ops.select(t|t.Name = myop.Name);
15 if (sameName.size > 0) {

16 var sameNameReturn = /x ... %/,

17 var sameNameReturnArgs = /x ... */;
18 if (sameNameReturnArgs.size > 0) {
19 nOverridden = nOverridden + 1;
20 1)

21 return nOverridden;

22}

red the “Infrastructure” 2.0.00, “Standard” 2.0.00 and
“modelio.kernel” 1.0.00 fragments in particular.

After indexing these models, a subset of the me-
trics requested by the MEASURE industrial partners
was selected for implementation (as shown in Ta-
ble 1). These metrics were defined and prioritised
along with their required metadata and measurement
tools. The goal was to have basic metrics that could
be recombined into higher-level indicators. The table
shows examples for the two ways of implementing
queries:

e Deploying the generic measure implemented in
Section 3.4 directly, specifying an EOL expres-
sion in the “query” part of its configuration. This
does not require any Java coding, but it does re-
quire knowing the structure of the models to be
queried quite well. This is good for advanced
users or very specialised queries. The first two
queries were like this.

e Writing Java code on top of the generic measure,
which provides the EOL query to be run. This
can be useful to distribute “canned” queries about
known metrics for known metamodels to users
that may not know how to write EOL code. The
other queries were written in this way. The last
two queries in particular were written to generate
EOL queries on the fly for a specific component,
whose name was given during deployment.

As an example of how a query looks like in EOL,
Listing 3 shows an excerpt of the “Number of over-
ridden methods” query. EOL is a very flexible lan-

726

Executed Measure

Instance Nams overridden methods test

Based on Measure MumberZiCwvermriddenhethodsinARCIasses

Scope serverlrl : hitp:if1326ade1. ngrok.ioithrifthawkiuple
usemame
password :

nstanceMams - instance_1

CQueryEngine
tandard2 000

querylanguage : org.hawk. epsian.

defaultlamespaces : modelio:Modek
filePatterns :
ne! tributes : true
ained : true

Inputs
Execution Success
Results -

2

Executed in : 1512 ms

Figure 7: Query report from MEASURE platform.

Listing 4: Example query on Archimate models for retrie-
ving the top 5 most related concepts.

return Concept.all.collect(c | Sequence{
¢, c.closure(c2|c2.relatedTo.to).size
}).sortBy(c | —c.second).collect(c | Sequence{
c.first.getTypeName() + * ° + c.first. Name,
c.second}).subList(0,5);

D AW -

guage, and it is possible to write complex queries that
check if a method has been overridden within the pro-
per subtypes of a class. Particularly, here we check
if across the subtypes, there is at least one operation
with the same name, return type and argument types.

The measure containing this query as part of its
Java code was then deployed within the MEASURE
platform, producing a report upon execution as shown
in Figure 7. The execution time in this case was slig-
htly higher than one would expect, but mostly it was
due to the fact that MEASURE was on temporary in-
frastructure, while querying a server running off a lap-
top on a different country altogether. As we will see
later, queries run faster given the right infrastructure.

4.1.2 Archimate Models

The second case study used to evaluate the flexibility
of this integration was a set of sample models develo-
ped with the new support in Modelio 3.6 for creating
enterprise architecture models written in the Archi-
mate notation and metamodel. Specifically, the model
shown in Figure 8 was indexed. This type of model
combines software components (ERP, SCADA) with
buildings (factories) and descriptions of the processes
within the enterprise and the various business actors.
This model was indexed by Hawk successfully
using the same Modelio 3.6 metamodel descriptor

Integration of Hawk for Model Metrics in the MEASURE Platform

Table 1: Listing of queries implemented on Hawk from MEASURE industrial partners.

Implementation Parameters Metric name Test result
Gf:nerlc measure §erverUrl Number of interfaces 1
with custom instanceName
EOL ~query in queryLanguage Number of attributes in a component 1
config. query
serverUrl Average classes per component 2
instanceName Average subcomponents per component 1
Custom measure Number of overridden methods 2
with EOL query Number of overriding methods 3
generated from e rveriyy] Number of subcomponents in a component 4 (cmp. A)
Java code instanceName Number of classes in a component 6 (cmp. A)
componentName

—

Chocolats

ArchiChocolateEnterprise % (Q)

OEM

ArchiBoxEnterprise Chocolate Provider

=]

ChocolateBox ERP

=

ﬁ SCADA

Chocolats ArchiChocolate

Turin Factory

Ly
E Paris Factory|

Mainframe =)

Chocdlate Product Line | =

Genoa

(o
Instance Odoo: Open Source ERP and CRMU

—

Factory

Windows NT

®

Figure 8: Archimate model of the enteprise architecture of the fictional “ArchiChocolate” company.

as before. The model contains 634 elements (as
reported by return Model. alllnstances . size ; through
Hawk) and was indexed in 8 seconds and 48 milli-
seconds with a recent laptop. Particularly, a Think-
pad X1 with an i7-6600U CPU, 16GiB of RAM, and
a solid-state disk, running Ubuntu 16.04.3 and Linux
4.4.0-98, using Oracle Java 8ul02 and the latest ver-
sion of Hawk at the time of writing (commit “66edee”
on Github). The model is not very large, but architec-
tural models are important for early high-level analy-
sis. Listing 4 shows an example of a query which, for
each Concept in the model:

e Annotates each concept with the number of con-
cepts that it is related to, transitively.

e Sorts them from the ones with the most related
concepts to the least.

e Collects the type name, name and number of “re-
lated to” concepts for each.

e Returns the top 5 of those elements.

This type of query could be used for impact ana-

Listing 5: Response from Thrift for Archimate query.

1 QueryReport(result:[

2 [BusinessActor ArchiChocolateEnterprise, 13],

3 [BusinessProcess Produce, 10], [Facility Turin, 7],
4 [Facility Paris, 5], [Equipment ChocoProdLine, 4]
5], wallMillis: 43)

lysis of a potential change in the model: the top 5 ele-
ments would be the ones that would have the largest
effect if they were removed.

When executed through the Thrift API, this query
produces an output like that shown on Listing 5. The
query itself took 54ms from the client to the server
while running in a local instance (as this was a proof
of concept), but it only took 43ms to run within the
server itself: the other 11ms were network overhead.

4.2 Scalability
The next part was to index a large collection of Mo-

delio 3.7 models with this new version of Hawk. This
evaluation was conducted by Softeam, with the help

727

MOMAJ3N 2018 - Special Session on Model Management And Analytics

Table 2: Indexing times per project and processing step for the scalability study, in seconds.

Modelio project analyst app archimate bpmn uml Total
Indexable files 1215 4543 2226 763 2305 11052
Fragment insertion 79 412 64 48 151 754
Fragment connection 105 301 167 140 248 960
Children derivation 103 388 105 66 235 897

Listing 6: EOL source code for the “average classes per component” query.

var components = Component.all;

operation Component countClasses() {

}

operation Package countClasses() {

O 00 ~JI NP W —

return components.collect(c|c.countClasses()).sum() / components.size;

return self.OwnedElement.select(c|c.isTypeOf(Class)).size
+ self.OwnedElement.select(p|p.isTypeOf(Package)).collect(p|p.countClasses()).sum()
+ self.OwnedElement.select(subc|subc.isTypeOf(Component)).collect(subc|subc.countClasses()).sum();

10 return self.OwnedElement.select(c|c.isTypeOf(Class)).size
11 + self.OwnedElement.select(p|p.isTypeOf(Package)).collect(p|p.countClasses()).sum();

12}

of the Hawk developers. The models were those used
for the internal development of Modelio itself: these
change for every release of Modelio, and are used to
generate over a million lines of code. The Modelio
projects added up to 3.7GB on disk, where 2.16GB
was from the 11052 .exml files to be indexed. These
had 452084 model elements, according to Hawk.

The indexing process was done on a laptop with
an Intel 17-6500U CPU, 8GiB of RAM, and an SSD
running Oracle Java 8u60 over Windows 10, and the
same version of Hawk as above. The OrientDB bac-
kend was used. Indexing took 2686 seconds in total
(45 minutes), which is slightly higher than the break-
down shown on Table 2 (2611s). The table has the
times needed to index the .exml fragments, connect
them, and (optionally) derive their parent-children re-
lationships.

While it may seem expensive at first glance, it
is important to note that this high upfront cost only
needs to be paid once: later changes to the models
will be processed incrementally by Hawk, with a cost
roughly proportional to the change of the model. In
our previous study, this cost was quickly amortised as
queries were faster than with just Modelio (Garcia-
Dominguez et al., 2016).

As for the queries, we first ran some simpler ex-
amples in this case to see how quickly we could
count all instances of a certain type. This would
give us a rough estimate of how quickly we could
find certain subsets of the entire collection of models.
These were queries of the form return X.all.size;,
except for the one counting all model elements, which
was return Model. alllnstances . size ;. The results are

728

Table 3: Times required to count all instances.

Type Time (s) Count
(All types) 15.50 452084
Attribute 0.73 7403
Class 1.93 8545
Component 0.20 118
Interface 0.20 370
Operation 1.45 52502

shown on Table 3: it is possible to iterate over all in-
stances and count them in 15 seconds, and we can find
all 8545 classes across all projects in less than two se-
conds.

Next, we decided to run one of the MEASURE in-
dustrial queries, particularly the “average classes per
component” query from Table 1 shown in Listing 6.
This query ran across the indexed 2.16GB of models
in only 1666ms, producing the end result of 59.49
classes on average per component. Results like these
show that Hawk can produce answers in seconds for
queries over very large models, by taking advantage
of the efficient navigation of references in graph data-
bases.

S RELATED WORK

The increasing size of industrial models has given rise
to several other high-performance model persistence
and model querying technologies. If the model is sto-
red in a database in the first place, it may be faster

to query than if it is stored on files: this is possible
with NeoEMF (Goémez et al., 2015), an alternative
model persistence layer for EMF models with sup-
port for Neo4j and MapDB among other technologies.
Another similar option is MongoEMF?, which uses
the MongoDB document database.

Beyond database-backed single models, database
storage of entire collections is also possible with
model repository technologies such as Eclipse Con-
nected Data Objects (CDO)? or Morsa (Pagén et al.,
2013). CDO in particular is very mature and supports
both relational and document-oriented databases.

Unfortunately, none of these technologies would
have been of much use for MEASURE straight away,
as Modelio models are not based on EMF. Even if
a mapping to EMF were implemented, we would
be left with two options: either replace the persis-
tence technology in the original models (which is
non-trivial and intrusive on the user experience), or
implement an incremental synchronisation approach
between the original models and our EMF-based copy
for indexing. The second alternative would have been
roughly equivalent to what was already in Hawk, wit-
hout its other benefits of incremental/derived attribu-
tes and a web service APL

6 CONCLUSION AND FUTURE
WORK

The MEASURE project is developing a platform for
collecting metrics across the entire software develop-
ment lifecycle. In model-driven processes, the spe-
cification and design phases operate on models rat-
her than on code: it is necessary to extract measure-
ments from models as well. It can be very expensive
to collect metrics across large collections of models,
or from very large models. This paper has shown the
first version of an integration between the MEASURE
platform and the Hawk model indexing framework,
with positive results in terms of flexibility and perfor-
mance. Hawk makes it possible to use “big data’-
class NoSQL technologies for efficient querying of
existing models with little technical risk.

Hawk can now index any model supported by cur-
rent and future versions of Modelio without changes
in its code. It has been used in this paper to index
both Modelio 3.6 and 3.7 models, some of them from
the enteprise architecture domain and some from the
object-oriented software design domain. Hawk ser-
vers can be provisioned in an automated way wit-

Zhttps://github.com/BryanHun/mongo-emf
3http://wiki.eclipse.org/CDO

Integration of Hawk for Model Metrics in the MEASURE Platform

hout involving the use of its API, and it is possible
to deploy both custom and predefined EOL queries in
the MEASURE platform. Hawk was also used to in-
dex 2GB of industrial Modelio models: while there is
some upfront cost in the indexing, it is quickly amorti-
sed through the faster execution of the queries and the
incremental updates for later changes in the models.

Regarding future work, the MEASURE platform
will be extended with analysis capabilities that com-
bine multiple metrics, possibly from different arte-
facts and phases in the software development lifecy-
cle. Hawk will be further validated through the imple-
mentation of additional queries from the MEASURE
industrial partners, and some of the queries will be
optimised with the use of derived and indexed attribu-
tes.

ACKNOWLEDGEMENTS

The research leading to these results was partially fun-
ded by the ITEA3 project 14009, MEASURE.

REFERENCES

Abherve, A. (2017). Github project for the SMM Mea-
sure API library. https://github.com/ITEA3-Measure/
SMMMeasureApi. Last accessed on 2017-11-01.

Abherve, A., Bagnato, A., Stefanescu, A., and Baars,
A. (2017). Github project for the MEASURE
platform. https://github.com/ITEA3-Measure/
MeasurePlatform/graphs/contributors. Last accessed
on 2017-11-01.

Al-wadeai, O. (2017). Github project for the Hawk
query SMM measure library. https://github.com/
Orjuwan-alwadeai/HawkQuerySMMMMeasureLib.
Last accessed on 2017-11-01.

Apache Software Foundation (2017). Apache Thrift project
website. http://thrift.apache.org/. Last accessed on
2017-11-01.

Barmpis, K. and Kolovos, D. S. (2013). Hawk: towards a
scalable model indexing architecture. In Proceedings
of the Workshop on Scalability in Model Driven Engi-
neering, BigMDE *13, pages 6:1-6:9, New York, NY,
USA. ACM.

Garcia-Dominguez, A., Barmpis, K., Kolovos, D. S.,
da Silva, M. A. A., Abherve, A., and Bagnato, A.
(2016). Integration of a graph-based model indexer
in commercial modelling tools. In Proceedings of the
ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, pages
340-350, Saint Malo, France. ACM Press.

Goémez, A., Tisi, M., Sunyé, G., and Cabot, J. (2015). Map-
based transparent persistence for very large models.
In Egyed, A. and Schaefer, 1., editors, Fundamen-
tal Approaches to Software Engineering, volume 9033

729

MOMAJ3N 2018 - Special Session on Model Management And Analytics

of Lecture Notes in Computer Science, pages 19-34.
Springer Berlin Heidelberg.

Kolovos, D. S., Garcia-Dominguez, A., Paige, R. F., Guerra,
E., de Lara, J., Rath, 1., Varr, D., Suny, G., and Tisi,
M. (2016). MONDO: Scalable Modelling and Model
Management on the Cloud. In Joint Proceedings of the
Doctoral Symposium and Projects Showcase Held as
Part of STAF 2016 co-located with Software Techno-
logies: Applications and Foundations (STAF 2016),
Vienna, Austria.

Kolovos, D. S., Rose, L., Garcia, A., and Paige, R. (2017).
The Epsilon book. http://www.eclipse.org/epsilon/
doc/book/. Last accessed on 2017-11-01.

Object Management Group (2016). The Software
Metrics Meta-Model Specification 1.1.1. http:/
www.omg.org/spec/SMM/1.1.1/. Last accessed on
2017-11-01.

Pagan, J. E., Cuadrado, J. S., and Molina, J. G. (2013). A
repository for scalable model management. Software
& Systems Modeling, 14(1):219-239.

Shields, A. (2014). Must-know: an overview of the software
industry - Market Realist. http://marketrealist.com/
2014/07/must-know-overview-software-industry-2/.

Softeam Cadextan (2017). Modelio project website. https://
www.modelio.org/. Last accessed on 2017-11-01.

Softeam R&D (2017). MEASURE project website. http://

measure.softeam-rd.eu/. Last accessed on 2017-11-
01.

730

