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Android has, to this day, more than 80% of the mobile OS market share. Android users also have access to

more than 2 million applications via the Google Playstore. The Playstore being an official market, users tend
to trust the applications they find in it, and therefore, the store is an interesting platform to spread malware. We
want to provide a health state of this store by finding the proportion of malware that managed to get published
in it. In this paper, we explain how we developed the crawler that massively downloads the application
directly from the Playstore. Then we describe what features we extract from the applications and how we
classified them with the help of an Artfificial Neural Network. Our study confirms that there are malicious
applications on the Playstore. The proportion of them is around 2%, which corresponds to about 40,000

officially downloadable malware.

1 INTRODUCTION

Google, with its Android platform, has been solidly
integrated into the smartphone market in recent ye-
ars. One of the reasons for its success is its applica-
tion catalog also called “Playstore” (Statista (2017))
which contains, based on our estimation, more than 2
million applications. It is also the developers’ favo-
rite platform because publishing applications is both
quick and free.

However, the number of users of this platform
make it an attractive target for spreading malware
(malicious applications). Despite the protections put
in place by Google, it is certain that malicious of ap-
plications exist on the Playstore such as Viking Horde
(A. Polkovnichenko (2016)), DressCode (TrendMi-
crolnc (2016)) or FalseGuide (O. Koriat (2017)) at-
tacks have demonstrated.

This article will present our study which aims at
determining the proportion of malware on Google
Play. We consider as malware any application in-
tentionally causing harm or subverting the system’s
intended function (this includes Adware), as well as
manipulating information without user’s express con-
sent. To perform this study, we have designed a cra-
wler able to simulate the download of an application
and to bypass the downloading restrictions of Google
Play. Then, with data from static analysis, we trai-
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ned an Artificial Neural Network to discover new mal-
ware on the PlayStore. This neural network bases its
detection on features that are extracted by reversing
these applications.

In the following paper, we will detail the different
techniques involved in performing our study. It is or-
ganized as follow : Section II, the crawler ; Section
III, the features used for static analysis ; Section IV,
the feed and forward neural network ; Section V the
results. We will conclude by discussing our results.

2 PLAYSTORE CRAWLER

As we are conducting a study on Googles Playstore,
we first need to retrieve a huge set of applications
from it (large enough to be statistically representa-
tive). To do so, we have developed a Python script
to download applications massively directly from the
Playstore. We describe here the restrictions imple-
mented by Google and how we bypassed them.

First of all, there is no exhaustive list of the appli-
cations available on the Playstore. Moreover, Google
tends to bring out the most popular applications and
to hide those less successful. Secondly, even though
the communication with Playstore servers go through
HTTPS, to only allow Android devices with a valid
Google account, a proprietary protocol is used on top
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of it. This protocol is based on Google’s protobuf
(Google (2017)), and has not been officially descri-
bed as of now, but has been, for the most part, reverse
engineered (Figure 1). Finally, any behaviour consi-
dered as not "human” (such as downloading a large
amount of applications in a short time, or following
the same pattern at fixed interval, ...) will be detected
and will lead to an account ban. Furthermore, the cri-
teria to define whether or not a behaviour is normal
seems to be changing every few weeks or months.

Previous work that involves crawling the Plays-
tore has been made by other researchers, and they des-
cribed how they prevent account banning. Playdrone
(N. Viennot and Nieh (2014)) crawls the entire Store
using Amazon EC2 cloud services and thus connecti-
ons come from multiple IP addresses. As for Sher-
lockDroid (Apvrille and Apvrille (2014)), they limit
the number of downloads by pre-filtering what they
are interested in (potential malware), and also, each
connection goes through Tor. The first one is expen-
sive and the second one does not respond to our pro-
blematic, crawling the whole PlayStore.

message AndroidAppDeliveryData {
optional int64 downloadSize = 1;
optional string signature = 2;
= 3;
repeated AppFileMetadata additionalFile = 4;
repeated HttpCookie downloadAuthCookie = 5;

optional bool forwardLocked = 6;

optional string downloadUrl

optional int64 refundTimeout = 7;
optional bool serverInitiated = 8;
optional int64 postInstallRefundWindowMillis = 9;
optional bool immediateStartNeeded = 10;
optional AndroidAppPatchData patchData = 11;
optional EncryptionParams encryptionParams = 12;
}
Figure 1: Playstore’s protocol part (application download).

On GitHub, we can find a Python script (dflower
(2014)) that is able to communicate with the Plays-
tore. This script implements the basic functionalities
of the store (search for applications, get the details,
download, ...) and needs only two elements to work
with: a valid Google account and an Android Device
ID (a unique token generated for each Android de-
vice) (Android (2017c)). However, the tool is not de-
signed for mass downloading and we modified it to
suit our needs.

To avoid being banned because of non-human be-
haviours, we crowd-sourced the creation of 30 activa-
ted Google accounts (an Android device is required to
validate an account before it is allowed to download
from the Playstore, and you can only create a few ac-
counts from one device) and we try to put as much
time as possible between two downloads from the
same account (multiple minutes). We also generate

an Android ID for every account thanks to android-
checkin (Viennot (2012)). When crawling, we keep
the authentication token as long as it is possible to
download applications and we renew the token each
time it is invalidated. When an account is banned,
the Playstore servers return an error message when
attempting to login. We use a list of HTTPS proxies
to prevent our IP address from being blacklisted.

We find the applications by using the search
function of the Playstore with words randomly se-
lected from multilingual dictionary. Each search gives
at most 250 results. From this point, we download
applications that are free (we cannot download paid
apps) and “compatible” with our fake device (we can-
not download tablet specific apps without a compati-
ble Android Device ID). To speed up the whole pro-
cess, we split the dictionary between multiple proces-
ses and each of these spawns a thread provided with
an account/device ID pair for each app to download
(see Figure 2).
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Figure 2: Playstore Crawler scheme.

The crawler is designed to be scalable. Provided
that we have enough accounts and Device IDs, it is
possible to distribute the crawling across multiple ma-
chines. In our case, to synchronize the different pro-



cesses, we store the applications inside a Cassandra
NoSQL database (Apache (2008)) and before down-
loading a new one, we check if the application is ab-
sent from the database.

The crawler has been used for two purposes. First,
in October 2016, it was configured not to download
applications, but just to find them. It has generated a
list of more than 2 millions applications. In January
2017, we used it to download and extract the features
(see section 3) of 3,650 applications, which constitute
our sample for this study. For this second usage, we
used a laptop with a 2 core 4 thread intel CPU and the
process took 2 weeks (depending on the application
extracting the features can take up to 15 min while
downloading takes less than one minute).

3 FEATURE ANALYSIS

3.1 Extraction

We perform static analysis, and therefore, we extract
all the features that can be interesting for classifica-
tion directly from the APK file. To reverse applica-
tions, we use the set of tools Androguard (Bachmann
(2015)) written in Python. We provide the type of fea-
tures we extract and why. Our static analysis follows a
similar pattern to what was presented by P. Trolla and
E. Filiol at Black Hat Asia Conference (2015) (Irolla
and Filiol (2015)).

¢ General Information:

This information is not directly used to perform
the analysis, but more as a way to identify and
contextualize it. We extract these information
mainly from the application manifest (Android
(2017a)).

First, we retrieve the application common name
(ex: Facebook Messenger) the package name
(com.orca.facebook), and the version number.
Both of these are supposed to identify the appli-
cation, but considering it is easy to repackage an
Android application, we use the SHA-256 hash of
the APK instead.

We also extract the certificate used to sign the ap-
plication (to be published on the Playstore, an ap-
plication must be signed). From this certificate,
we can extract interesting information on the de-
veloper.

The other things we extract are the information
relative to the SDK (Android (2012)) (minimal/-
maximal/target version), the intent for the stati-
cally defined receivers (communication between
applications), intents for the activities (starting a

foreground process inside an application) and in-
tent for the services (background processes). The
last thing retrieved is all the URLSs statically defi-
ned in the application.

Classification Information:

These are the features on which the detection is
based. They are retrieved by decompiling the .dex
files in the application. These files store the java
bytecode that will be executed by dalvik (or An-
droid RunTime), the android Java virtual machine
(Android (2017b)). We chose these features be-
cause, based on other researcher’s work, they see-
med promising for static analysis (see: G. Canfora
and Visaggio (2015b); G. Canfora and Visaggio
(2015a); D. Arp and Rieck (2014)).

Most of the information we extract is based
on the opcodes (the instructions executed by
dalvik) themselves, without the operands.
The first thing we use is opcodes frequencies
(G. Canfora and Visaggio (2015b)). As a more
representative value, we store trigrams (An
N-gram is a sequence of N adjacent opcodes)
frequencies (G. Canfora and Visaggio (2015a)).
In Figure 3, the opcodes are (invoke-static,
move-result-object, if-eqz, invoke-direct, return-
object, const/4, goto), and the corresponding
trigrams would be ([invoke-static:move-result-
object:if-eqz], [move-result-object:if-eqz:invoke-
direct], [if-eqz:invoke-direct:return-object],
[invoke-direct:return-object:const/4], [return-
object:const/4:goto])

To use several Android API methods, Android
applications have to ask for certain permissions
(use network, bluetooth, access user information,
...). Malware also have to ask for these permis-
sions, and some permissions give access to more
potentially malicious behaviour, and are therefore
a good way to analyze applications (D. Arp and
Rieck (2014)).

Finally, we extract the Android API call sequence.
The API is a software interface (a set of functi-
ons) used by developers to perform device re-
lated tasks (sending SMS, manipulating the UI,
etc...). Some of these tasks can be maliciously
employed. These calls were found to also be
pertinent to detect android malware (D. Arp and
Rieck (2014)). For Figure 3, API call would be
api_function_calll, api_function_call2, as well as
the constructor of api_typel

From a collection of applications, we extracted
these features. There is a total of 228 dalvik opco-
des. The applications were constituted on average of
80,000 to 100,000 opcodes, but a few reached more



method_name
{
invoke-static {v3}, api_function_calll
move-result-object v0
if-eqz v0, 000c
new-instance vl, api_typel
invoke-direct {vl, v0}, api_function_call2
return-object vl
const/4 vl, #int 0
goto 000b

Figure 3: Decompiled code (SMALI).

than a million of them. From these opcodes, we found
a list of 500,000 trigrams, but not all trigrams are pre-
sent in each application. For the API calls, we re-
corded a total of 100,000 different ones. Finally we
found 250 permissions. Therefore, if we wanted to
represent applications inside vectors, the dimension
of them would be greater than 600,000.

3.2 Feature Selection

Even with neural networks being powerful tools, we
must limit the number of entries to have optimal re-
sults. Taking as entry all the application’s features
would lead building a neural network with millions of
entries which is not easily computable. An optimal
way to limit our entries is to take the most relevant in-
formation/features, those features can be found using
statistical methods.

A way to find relevant features would be to find
the features most represented in Malware. A clas-
sic way to do this is to first apply Principal Compo-
nent Analysis (PCA). PCA was not implemented for
our problem for many reasons. The main reason is
the amount of data, PCA has a too high complexity,
O(f*n+ f3), where f is the number of features and
n the number of samples, and this is too difficult to
solve considering the number of features we have.

To optimize results on malware detection, we took
the features most represented in malware while being
the least represented in benign applications. A well-
known statistical method allows us to find those fe-
atures easily, the TF-IDF indicator (J.Z. and Maloof
(2006)). This method, originally used for document
research for example in search engines, can be adap-
ted for our purpose. The TF or term frequency is the
frequency of a word in a given text. The IDF or in-
verted document frequency is a value evaluating the
generality of a given sequence, the more a word is re-
presented, the less pertinent it becomes as a matter of
selection, the lower the IDF value is.

The TF-IDF is the product of these two values,
thus, the higher the value is the most pertinent the

result will be. In our case, things are slightly dif-
ferent. TF is the feature presence frequency in our
malware database and the IDF is the feature presence
frequency in the benign dataset. We have then an in-
dicator that grows if the feature is well represented in-
side the malware database and diminish if the feature
is well represented in the benign application database.
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After calculating our modified version of the TF-
IDF on each feature and sorting the results from the
most pertinent to the least pertinent, we plot the TF-
IDF histogram for each section (Figures 4, 5 and 6).
We can select the most important features given on
the results distribution and, by cutting a section for
each graph, we then obtain 12175 features which will
be our entries.
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Figure 4: TF-IDF curve: Trigram Frequencies.
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Figure 6: TF-IDF curve: API Calls.

4 CLASSIFICATION

4.1 Training Dataset

We use an artificial neural network to classify applica-
tions. To build it, we need a set of applications that are
already classified. We use the Drebin Dataset (D. Arp
and Rieck (2014)). The Drebin Dataset is widely used
by the Android malware researcher community.

At first we used the 5585 malware and 2201 be-
nign applications as our training dataset. We have
conducted a study on this initial set (Irolla and Dey
(2017)) that show that 42.5% of these applications can
be regrouped into 592 (584 malware, 8 benign) sets of
repackaged applications with the same code and only
resources and a few strings that differ from one anot-
her. Therefore, we removed the duplicates from the
Drebin Dataset, and we end up training on a set con-
stituted of 2891 malware APK and 2178 benign ones.

4.2 Artificial Neural Network

As for the classifier, we use an Artificial Neural Net-
work (ANN) (Widrow and Lehr (1990)). Our neural
network is a multilayer perceptron. A perceptron is
one of the simplest structures in machine learning but,
from previous experimentation using a single percep-
tron applied to malware detection, we deduced that
this structure was sufficient for our problematic.

The final neural network parameters are: 1 input
and 1 hidden layer set to a sigmoid symmetric acti-
vation function , 12175 entry nodes, 25 nodes on the
hidden layer, 2 nodes on the output (Figure 7), trai-
ning results are (-0.95;0.95) for a malware and (0.95;-
0.95) for a benign application. The learning method
is incremental (classic backpropagation), the learning
rate is set to 0.25 and the library used is FANN (Nis-
sen (2015)). The entry nodes will take the selected
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Figure 7: Multilayer Perceptron.

features frequencies as entries. The hidden layers
are the layers in between the entry layer and the out-
put, the more we have nodes and layers on the hid-
den layer, the more complex the structure becomes to
train. The results are the values on the two output no-
des, our decision strategy is winner takes all.

The neural network configuration was a compro-
mise between performance and training speed.The le-
arning rate can be seen as the progression speed, but
a too big learning rate may miss the optimal solution.
The neural network is trained to maximize the genera-
lization property via cross validation. The validation
subset is 20% of our original subset of 4908 applica-
tions.

4.3 Testing Phase

We trained our neural network to maximize our ge-
neralization capabilities. The optimal training was
found thanks to the cross validation method. Our cri-
teria for this training is the MSE (Mean Squared Er-
ror) (Lehmann and Casella (1998)). We select the trai-
ning stage where the MSE on a foreign dataset is at its
lowest (See Figure 8).
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The best neural network among all the created

neural networks is the one with the best accuracy. The
accuracy criteria is:

_ TP+TN 5
 TP+TN+FP+FN

With TP, number of True Positive, TN, True Ne-
gative, FP, False Positive and FN, False Negative. For
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a health state, instead of a ROC analysis, we privile-
ged accuracy with an ANN giving a 98.03% accuracy
with equal false positive and false negative rates. As
such, with a large enough sample, applications falsely
detected as malware are compensated by the malware
that are not detected, and thus, the proportion of mal-
ware is accurate.
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Figure 8: MSE for Generalization VMSE (Gray) and Kno-
wledge KMSE (Black).

S RESULTS AND CONCLUSION

We ran the crawler for 2 weeks on a machine shipped
with an Intel®Core’™ i7 3520M CPU. Each appli-
cation was decompiled before downloading the next
one, and that was what took the majority of the time.
We harvested a total of 3,650 applications directly
from the Playstore. We search the Playstore for appli-
cations using random words in a large dictionary and
therefore these 3560 applications constitute a repre-
sentative sample. Before downloading, we also used
the crawler to generate a list of applications on the
Playstore. This list contains a little under 2 million
applications.

Among the 3,650 applications, the neural network
classified 92 as being malicious. This represents
2.52% of our sample. From this, and considering that
our classifier is selected to be the most accurate and
that false positive rate is roughly equal to false ne-
gative rate, assuming proportion of malware follows
a normal distribution, using the normal estimation of
the interval (6), we calculate the confidence interval
of the proportion of malware on the Playstore:

X —1.964/ @,X+ 1.964/ w] (6)

With X our measured proportion and n the sample
size. We can estimate with a 95% confidence level
that the proportion of malware on the Playstore sits
between 2.01% and 3.03%.

Some of these applications were manually tested
and proved to be malicious. For example, the appli-
cation Battery King (now removed from the store) is
granted many permissions by the user and uses them
to leak information about him. The application also
writes binary file on the machine and execute them
afterward.

By allocating more resources (more accounts,
Device IDs, CPU power, ...) to the crawler, it would
be feasible to crawl most of its applications. The
main bottleneck here is the time needed to extract the
features from the applications. This is explained by
the fact that Androguard is a really complete tool that
does more than what we actually need. Some testings
showed that using a C++ program greatly reduces
the extraction time for the opcodes (this program is
still work in progress). Additionally, once it will be
easily deployable and fully documented we plan on
releasing the crawler to the OpenSource community
(https://github.com/AlexandreDey/cygea-playstore-
crawler).

Considering the classifier, it shows great accuracy
for only light computation time. The TF-IDF variant
employed here also allowed us to target more preci-
sely the important features without the need of deep
knowledge in the Android malware domain. Howe-
ver, moving to a deep learning algorithm might be
beneficial for the accuracy rate. Classification capa-
bilities could be enhanced by using a larger training
dataset constituted of more actual and complex mal-
ware.

Finally, we are sure that Google’s Playstore hou-
ses a certain number of malware, and we estimate that
this number is between 40,000 and 60,000 applicati-
ons. We are hoping that in the near future it will be
possible to conduct the same kind of study on a larger
scale, and with the best classifier possible.
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