

A Meta-model based Automatic Conceptual Model-to-Model

Transformation Methodology

Tiexin Wang1, Sebastien Truptil2, Frederick Benaben2 and Chuanqi Tao1

1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,

Jiangjun Road, Nanjing City, China
2Centre Genie Industriel, IMT Mines Albi, Universite de Toulouse, Campus Jarlard, 81000 Albi, France

Keywords: Conceptual Dissimilarity, Automatic Model Transformation, Semantic Checking Measurements, Meta-

model based Transformation Process.

Abstract: Since model-based engineering theories and techniques becoming mature gradually, diverse engineering

domains have adopted the idea of employing modelling and model transformations to help simulate and

analyze domain specific problems. Consequently, substantial numbers of modelling techniques have been

developed. These modelling techniques define specific semantic and syntactic representations. Moreover,

models are normally built to represent systems from diverse domains. Both the conceptual dissimilarities

between modelling techniques and between diverse systems determine the particularity of models. In model

transformation process, distinguishing the conceptual difference from both semantic and syntactic aspects is

a time-consuming process relying mainly on manual effort. In order to remove the manual effort from

model transformation process, this paper proposes a generic automatic conceptual model-to-model

transformation methodology. This methodology employs semantic and syntactic checking measurements to

automatically detect the conceptual dissimilarities, and aims to solve both domain specific problems and

cross-domain problems. A refined meta-model based model transformation process is defined to better use

the two checking measurements.

1 INTRODUCTION

With the gradually mature of the theories and

techniques in model based engineering (MBE), more

and more engineering domains have adopted MBE

principles to solve domain problems. As two of the

key concepts in MBE “modelling” and “model

transformation” attract attention from both

academics and industrials.

Modelling means the activities of building

models. For different purposes, substantial numbers

of modelling techniques (e.g., UML, BPMN) have

been developed by employing specific semantic and

syntactic representations. A research of modelling is

presented in (Muller et al., 2012).

Models are built to represent systems, and model

transformations can simulate the interactions or

indicate the connections between systems.

Furthermore, for a specific system, concerning

different views, many models can be built to

represent it. Many defined model, table 1 shows four

definitions of model.

Table 1: Four definitions of model.

No. Definitions

1
“Models provide abstractions of a physical

system that allow engineers to reason about that

system by ignoring extraneous details while

focusing on the relevant ones.” (Brown, 2004)

2 “A model is an abstraction of a (real or

language based) system allowing predictions or

inferences to be made.” (Kühne, 2006)

3 “A model of a system is a description or

specification of that system and its environment

for some certain purpose.” (OMG, 2006)

4

“Engineering models aim to reduce risk by

helping us better understand both a complex

problem and its potential solutions before

undertaking the expense and effort of a full

implementation.” (Selic, 2003)

A model is particular because it is built for a

specific purpose (e.g., describing a view of a

complex system) and by using a specific modelling

technique. Models can be divided into different

groups. As stated in (Fowler et al., 1999),

586
Wang, T., Truptil, S., Benaben, F. and Tao, C.
A Meta-model based Automatic Conceptual Model-to-Model Transformation Methodology .
DOI: 10.5220/0006718105860593
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 586-593
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

depending on the level of precision, models are

divided into three levels namely Conceptual

Models, Specification Models and Implementation

Models. Another similar distinction proposed in

(Mellor, 2004), a model can be considered as a

Sketch, as a Blueprint, or as an Executable.

In order to build connections between models

in the same level and from different levels, model

transformation practices are required. However, in

model transformation practices, distinguishing the

conceptual difference between two models is a time-

consuming process which is mainly relied on manual

effort.

As stated in (Del Fabro and Valduriez, 2009),

in traditional model transformation practices there

are several weaknesses: low reusability, contain

repetitive tasks and involve huge manual effort, etc.

Due to the wide requirement and usage of model

transformation practices, it is unacceptable to do

model transformation manually. Thus, this paper

proposes a generic (domain-cross) automatic

conceptual model-to-model transformation

methodology (ACMTM), which is built on the base

of semantic and syntactic checking measurements

(S&S). S&S is used to automatically detect the

conceptual similarities and build mapping rules. A

refined meta-model based model transformation

process is defined to better combine S&S in.

This paper is structured as follows. Section 2

presents the relevant theories to ACMTM. Section 3

shows an overview of ACMTM. A use case is

illustrated in Section 4. Finally, a conclusion draws

the advantages, potential improvement points and

future usage of ACMTM.

2 RELATED WORK

2.1 Model Transformation Definitions

Model transformation is a process, which contains a

sequence of activities operating on models. Many

propose the definitions about model transformation.

Table 2 shows three of them.

Model transformation is a process of generating

target models based on source models. The

transforming rules shall be built between same or

similar concepts that are from the two models,

respectively.

Table 2: Three definitions of model transformation.

No. Definition

1 “model transformation is a program that

mutates one model into another” (Tratt, 2005)

2 “the process of converting a model into another

model of the same system” (Miller and

Mukerji, 2003)

3 “automatic generation of a target model from a

source model, according to a transformation

description” (Kleppe et al, 2003)

2.2 Model Transformation Category

Generally, model transformation can be divided into

three groups: Text-to-Model, Model-to-Model and

Model-to-Text. The content in models is presented

in abstract syntax, while the content in text is

presented in concrete syntax.

As defined in (Czarnecki and Helsen, 2003),

there are two main model transformation approaches:

model-to-code and model-to-model. For model-to-

code category, there are two kinds of approaches:

“visitor-based” approaches and “template-based”

approaches. For model-to-model category, there are

five approaches: “direct-manipulation” approaches,

“relational” approaches, “graph-transformation-

based” approaches, “structure-driven” approaches

and “hybrid” approaches. In model-to-model

transformation category, there are also some other

approaches, such as: marking and pattern approach,

automatic transformation approach, meta-model

based transformation approach, model merging

approach, etc.

ACMTM belongs to model-to-model

transformation category. It is designed and

implemented as a hybrid approach which is also a

meta-model based.

2.3 Model Transformation Techniques

Focusing on model-to-model transformation

category, there are several well-known techniques.

Table 3 shows four of these techniques.

ATL and QVT are similar to each other on

architecture aspect. Both VIATRA2 and GReAT

focus mainly on graph models. Usually, specific

model transformation techniques can be only used

on models that are built by specific modelling

techniques. Also, model transformation techniques

integrate (or rely on) other techniques, such as：
QVT – OCL, VIATRA2 – graph transformation

techniques, etc. Current model transformation

techniques lack the ability of automatically detecting

A Meta-model based Automatic Conceptual Model-to-Model Transformation Methodology

587

model transformation mappings, and require manual

effort to operate them.

Table 3: Model-to-model transformation techniques.

Name Characteristic Note

ATL

(Jouault et

al., 2008)

Hybrid (declarative

& imperative); three

layers architecture

self-executed

(provide both

transformation

language & toolkit)

QVT

(Omg,

2008)

Hybrid three kinds of

transformation

languages involved

based on MOF 2.0

(Omg, 2008)

integrated OCL

VIATRA2

(Varró and

Balogh,

2007)

Unidirectional

transformation

language; based

mainly on graph

transformation

techniques

operates on models

conformed to VPM

meta-modeling

approach

GReAT

(Karsai et

al., 2003)

Visual language

developed using

Generic Modeling

Environment

operates on models

conform to meta-

models specified in

UML

Based on these model transformation

techniques, numerous model transformation

practices have been developed, such as the work

stated in (De Castro et al., 2011; Fleurey et al., 2007;

García et al., 2013).

Comparing with the existing model

transformation techniques and practices, ACMTM

aims to be a generic, automatic conceptual

model-to-model transformation methodology. It

provides a theoretical framework and employs

semantic and syntactic checking measurements as

potential mappings detecting techniques.

3 ACMTM OVERVIEW

ACMTM employs S&S in a refined meta-model

based model transformation process. S&S is

illustrated first in this section. Then, the refined

transformation process is presented.

3.1 Semantic & Syntactic Comparisons

3.1.1 Use of S&S

In ACMTM, semantic checking and syntactic

checking measurements are combined as a single

function. This function is used between items on

meta-model level. Figure 1 shows the relation

between them and its usage in ACMTM.

S&S takes two words (strings) as inputs, and its

output is the matching possibility between the two

strings. For the syntactic checking part, it contains

two steps: predefined treatment (pretreatment) and

employing “Levenshtein distance” algorithm

(Hirschberg, 1997; Gilleland, 2009).

Figure 1: S&S illustration.

“Predefined treatment” also contains two phases:

special forms detection and applying stemming

algorithms. Both the two phases aims to discover

special semantic relations (e.g., synonym and

antonym) between a pair of words. If the

pretreatment step fails in discovering such kinds of

semantic relations, then the second step employing

“Levenshtein distance” algorithm will be executed.

This algorithm calculates the syntactic similarity

between a pair of words. This syntactic similarity

stands by a value ranges between 0 and 1.

In order to detect the potential semantic relations

between two comparing words, a semantic thesaurus

“ACMTM_ST”, is created. Semantic relations

stands by a calculating (or assigned) value defined

within ACMTM context.

Equation (1) is defined to calculate the S&S

relation, between two words (strings). The S&S

relation is represented by a value which is the sum

of two aspects: semantic and syntactic.

S_SSV=SeV_weight*S_SeV+SyV_weight*S_SyV (1)

“S_SSV” stands for the S&S value between a

pair of words. “S_SeV” stands for the semantic

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

588

value while “S_SyV” stands for the syntactic value.

Two coefficients: “SeV_weight” and “SyV_weight”

are defined. Their value range is “0” to “1”, and the

sum of them is ‘1’. They are used to determine

which aspect is more important in determining S&S

value between a pair of words.

3.1.2 Syntactic Checking Measurements

Syntactic checking measurements focus on forms of

words (e.g., do-doing, student-students), formats of

concepts (date description in different cultures), and

units (Celsius, Fahrenheit and Kelvin measuring

temperature) used to describe subjects.

In the first checking phase, inspired by the

research work stated in (Benaben et al., 2013), a

profile is created and used to detect the different

formats and units standing for the same or similar

concepts. For words in different forms (also words

belong to the same semantic group: concerning the

stemming issue), a special algorithm “word forms

detecting: WF_D” is developed to detect these

situations. WF_D adopts parts of the “porter

stemming” (Porter, 1980) algorithms.

The second phase employs “Levenshtein

Distances” algorithm which is a string metric for

measuring the difference between two alphabet

sequences. Informally, the “Levenshtein distance”

between two words is the minimum number of

single-character edits (i.e. insertions, deletions or

substitutions) required to change one word into the

other.

Mathematically, the Levenshtein distance

between two strings: string a and string b with the

length │a│ and │b│, respectively) is given by

“Leva,b(│a│, │b│)”.In order to use this value,

equation (2) is defined.

S_SyV=1–Leva,b(│a│,│b│)/ max (│a│,│b│) (2)

The value of “S_SyV”, which first appears in

equation (1), shall always be within the range of 0 to

1. The higher of this value means the higher

syntactic similarity between two comparing words.

3.1.3 Semantic Checking Measurements

Semantic checking measurements focus on the

semantic meanings. Between a pair of words, one

syntactic similarity value always exists, while

several or no semantic relations (with different

semantic values) can exist.

To support semantic checking, ACMTM _ST,

which contains large amount of words, semantic

meanings and semantic relations, is particularly

created to support ACMTM. It adopts parts of the

content stored in “WordNet” (Fellbaum, 1998).

Figure 2 shows the structure of ACMTM _ST.

Three kinds of items are stored in ACMTM _ST.
• Word Base: contains 147306 English words (i.e.,

nouns, verbs and adjectives).

• Word-sense Base: contains 206941 senses that

owned by the words stored in “Word Base”.

• Synset Base: contains 114038 synsets. A synset

contains a group of word senses, which own

synonym meanings; semantic relations are built

among different synsets.

Figure 2: ACMTM_ST structure.

The relation between word and word senses is

“one-to-several”, and the relation between word

senses to synset is “several-to-one”. Eleven kinds of

semantic relations (adopted from WordNet) are

maintained among synsets in ACMTM_ST. Table 4

shows these semantic relations and their values

pairs.

Table 4: Semantic relations maintained in ACMTM_ST.

Semantic relation S_SeV Example

synonym 0.9 shut & close

hyponym 0.6 person-creator

hypernym 0.8 creator-person

similar-to 0.85 perfect & ideal

partmeronym 0.7 tire & car

partholonym 0.55 car & tire

membermeronym 0.65 car & traffic jam

memberholonym 0.45 traffic jam & car

Antonym 0.1 good & bad

iterative hyponym 0.6n person-creator-maker

iterative hypernym 0.8n maker-creator-person

A Meta-model based Automatic Conceptual Model-to-Model Transformation Methodology

589

The “S_SeV” (first introduced in equation (1))

stands for the semantic similarity between a pair of

comparing words. The higher of this value means

the closer of the two words in semantic aspect. All

these “S_SeV” values are assigned directly (based

on experience).

Both the calculating rules for “S_SyV” and

“S_SeV” are illustrated. The “S_SSV” between any

pair of comparing words is computable.

On the basis of semantic and syntactic checking

measurements, a “S_SSV” value can be calculated.

This “S_SSV” value means the possibility of

matching two words. The determination mechanism

is shown in Figure 3.

Figure 3: Matching pair chosen mechanism.

According to the range of S_SSV, three regions

are divided. If two words have a S_SSV in Region 1,

the two words have a high matching possibility.

While this value in Region 2, the two words have a

medium match degree. If this value is in region 3, no

matching can be made between the two words.

3.2 ACMTM Theories & Process

The S&S illustrated above are used between word

pairs, while ACMTM focuses on transforming

models. So, a refined meta-model based model

transformation process is created.

3.2.1 ACMTM-MMM

Meta-model is a special kind of model which defines

the rules of building models. Meta-models can exist

in several levels.

In a model transformation process, a model is

regarded as two parts: shared part (transformable)

and specific part (non-transformable). Both shared

and specific part on model layer can be traced on

meta-model layer as shared and special concepts. In

this way, identifying the shared part on model layer

becomes detecting the shared concepts on meta-

model layer. In ACMTM, the mechanism of

applying S&S is defined in a meta-meta-model.
There are several meta-modelling architectures,

two of them are: “MOF: Meta-Object Facility”

(Omg, 2008) and “ISO/IEC 24744” (Henderson-

Sellers and Gonzalez-Perez, 2008). These are

general-purpose architectures. For supporting

particularly to model transformation field, a specific

meta-meta-model “ACMTM-MMM” is created.

As shown in Figure 4, there are nine core

elements in this meta-meta-model. “Model” stand

for all the model instances. “Model” is made of

“Element”, which has two inheritances: “Node”

(concepts) and “Edge” (relations). “Element” is self-

contained. “Node” are linked by “Edge” based on

their “roles”. “Element” has a group of “Property”,

“Property” can identify and explain the “Element”.

“Semantic Relation” and “Syntactic Relation”

exist between different kinds of items (i.e. between

element’s pairs, between property’s pairs, between

models pairs and between environment’s pairs).

Potential model transformation mappings are built

based on them.

Figure 4: The structure of ACMTM-MMM.

3.2.2 Iterative Transformation Process

Model transformation is regarded as an iterative

process in ACMTM. Between the original source

model and final target model, several intermediate

models can be generated. The target model of former

iteration becomes the source model of latter iteration.

In each iteration phase, the specific part of

source model shall be stored in ontology named

“ACMTM_O”. Also, the specific part of target

model shall be enriched by additional knowledge

stored in ACMTM_O.

As shown in Figure 5, the content stored in

ACMTM_O comes from both the specific part of

source models and other knowledge base (e.g.,

domain ontologies).

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

590

Figure 5: Iterative transformation process illustration.

3.2.3 Four Matching Steps

To apply S&S to build potential mappings between

meta-models, four matching steps are divided. These

four matching steps aim to solve the inherent

granularity issue in model transformation domain:

M-to-N matching and cross-level (element-property)

matching. Figure 6 shows an overview of the four

matching steps.

Figure 6: Four matching steps.

The first step “matching on element level”:

aims to build mappings between element’s pairs

(considering elements’ names and their property

groups) and between property’s pairs (considering

properties’ names and types) which are within the

matched element pairs. Two equations: (3) and (4)

are defined to do this matching step.

Ele_SSV=name_weight*S_SSV+

property_weight*(∑ max(P_SSVi)
x

i=1
)/x (3)

P_SSV=pn_weight*S_SSV+pt_weight*Id_type (4)

The second step “hybrid matching” focuses on

properties (property-to-property matching), which

are unmatched after executing the first matching

step. Equation (5) is defined for this matching step.

HM_SSV=en_weight*S_SSV+pl_weight*P_SSV (5)

The third step “cross-level matching” concerns

making mappings between properties and elements.

This step focuses on the unmatched elements and

properties after executing the two former matching

steps. S&S are applied between elements’ names

and properties’ names. Equation (6) is defined to

work for this step.

CM_SSV=sem_weight*S_SeV+syn_weigh*S_SyV (6)

“Ele_SSV” stands for the semantic and syntactic

value between an element’s pair, while “P_SSV”

stands for this value between property’s pairs.

“HM_SSV” stands for the value of hybrid matching

and “CM_SSV” for cross-level matching value. All

of the four values are the sum of two variables. In

each of the equations, two impact factors (e.g.

name_weight & property_weight), the sum of them

is 1, are defined to determine which of the two

variables plays a more important role in deciding the

final equation value.

All the three matching steps aim to define

mappings within the shared part. For the specific

parts, the fourth step “auxiliary matching” can be

used.

“Auxiliary matching” focuses on enriching the

specific parts of target models by extracting

additional knowledge from ACMTM_O. It reuses

the three former matching steps to detect

potential model transformation mappings, while

taking ACMTM_O as the source meta-model.

4 USE CASE

To explain and test the working mechanism of

ACMTM, a simple use case is illustrated in this

section. This use case concerns the process of

comparing two “Elements”. The two elements are

shown in Figure 7.

A Meta-model based Automatic Conceptual Model-to-Model Transformation Methodology

591

Figure 7: Iterative transformation process illustration.

Two elements “student” (with five properties)

and “person” (with seven properties) are taken as

inputs. The outputs are potential mappings between

them. Before executing the detecting process,

concrete values are assigned to the parameters used

in equation (1), (3), and (4). Table 5 shows the

assigning value pairs.

Table 5: Assigning values to parameters.

No.

Equation
Parameter value

1 SeV_weight, SyV_weight 0.9, 0.1

3
name_weight,

property_weight
0.5, 0.5

4 pn_weight, pt_weight 0.8, 0.2

Taking the calculation process of “Ele_SSV”

between two elements: “student” and “person” as an

example; equation (3) is used to do this step. Figure

8 is the screenshot of calculating the “S_SSV” value

between elements’ names: “student” and “person”.

Figure 8: S&S comparisons between elements’ names.

The word “student” has two semantic meanings,

and the word “person” has three semantic meanings.

The semantic relation between the two words is

“iterative hypernym”, and the semantic value

between them is “0.64”. The syntactic similarity

value between them is: 0.1428. In this use case,

semantic relation is assumed more important than

syntactic relation, so two coefficients:

“SeV_weight” and “SyV_weight” in equation (1)

are assigned with values as 0.9 and 0.1, respectively.

The final S&S value between the two words is:

0.5903.

The S&S comparisons between the two elements’

properties groups are calculated by using equation

(4). Table 6 is created to store these comparison

values. Between each pair of properties, a “P_SSV”

can be calculated. The two parameters “pn_weight”

and “pt_weight” are assigned with values 0.8 and

0.2. This means property name is more important

than property type when making mappings.

When calculating Ele_SSV, the two parameters

in Equation (3) are assigned as 0.5 and 0.5. This

means element name and property group have the

same weight in deciding element matching pairs.

The “Ele_SSV” calculated between “student”

and “person” is: 0.695. According to the matching

pair chosen mechanism, there is a medium potential

mapping exist between them.

5 CONCLUSION

This paper presents an automatic conceptual model-

to-model transformation methodology: ACMTM.

Comparing with the existing model transformation

methodologies, two main characteristics of ACMTM

are: generic and automatic.

ACMTM combines semantic and syntactic

checking measurements into a refined meta-model

based model transformation process. Also, ACMTM

takes model transformation as an iterative process

and four matching steps are divided within each

iteration phase. To better use S&S, five equations

have been defined to use in different matching steps.

Some potential improvements in ACMTM are as

follows.

• A validation and evaluation process of the

automatic generated model transformation

mappings is required.

• Strengthen semantic checking measurements by

extending ACMTM_ST with more content from

specific domains (e.g., ontology).

• A better way to assign values to coefficients

defined in equations (3), (4), (5) and (6) (e.g.,

mathematical, statistical analysis).

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

592

Table 6: S&S comparisons for property groups.

person \ student id surname … age phone address

id 1 - … - - -

name 0.2 0.6777 … 0.04 0.016 0.011

age 0 0.0229 … 1 - -

address 0.21 0.2 … 0.02 0.011 0.8

sex 0.2 0.2114 … 0 0 0.011

teacher 0 0 … 0.02 0.011 0.2

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial

support from European Commission C2Net project

(H2020-FoF-1-2014/636909), Chinese Scholarship

Council, National Natural Science Foundation of

China (61502231) and Natural Science Foundation

of Jiangsu Province (BK20150753).

REFERENCES

Benaben, F., Boissel-Dallier, N., Pingaud, H., Lorre, J. P.

2013. Semantic issues in model-driven management of

information system interoperability. International

Journal of Computer Integrated Manufacturing,26(11),

1042-1053.

Brown, A.W., 2004. Model driven architecture: principles

and practice. SoSyM 3(3), 314–327.

Czarnecki K, Helsen S., 2003. Classification of model

transformation approaches[C]//Proceedings of the 2nd

OOPSLA Workshop on Generative Techniques in the

Context of the Model Driven Architecture, 45(3): 1-

17.

De Castro V, Marcos E, Vara J M., 2011. Applying CIM-

to-PIM model transformations for the service-oriented

development of information systems [J]. Information

and Software Technology, 53(1): 87-105.

Del Fabro, M. D., & Valduriez, P., 2009. Towards the

efficient development of model transformations using

model weaving and matching transformations.

Software & Systems Modeling, 8(3), 305-324.

Fellbaum, C., 1998. WordNet. Blackwell Publishing Ltd.

Fleurey, F., Baudry, B., France, R., Ghosh, S., 2007. A

generic approach for automatic model composition. In

Models in Software Engineering (pp. 7-15). Springer

Berlin Heidelberg.

Fowler, M., Scott, K., Booch, G., 1999. UML distilled,

Object Oriented series, 179 p.

García, J., Diaz, O., Azanza, M., 2013. Model

transformation co-evolution: A semi-automatic

approach. Software Language Engineering,7745, 144-

163.

Gilleland, M., 2009. Levenshtein distance, in three flavors.

Merriam Park Software: http://

www.merriampark.com/ld.htm.

Henderson-Sellers B, Gonzalez-Perez C., 2008.

Standardizing methodology metamodelling and

notation: an ISO exemplar [M]. Springer Berlin

Heidelberg.

Hirschberg, D., 1997. Serial computations of Levenshtein

distances.

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I., 2008.

ATL: A model transformation tool. Science of

computer programming, 72(1), 31-39.

Karsai, G., Agrawal, A., Shi, F., & Sprinkle, J., 2003. On

the use of graph transformation in the formal

specification of model interpreters. J. UCS, 9(11),

1296-1321.

Kleppe, A. G., Warmer, J. B., Bast, W., 2003. MDA

explained: the model driven architecture: practice and

promise. Addison-Wesley Professional.

Kühne, T., 2006. Matters of (meta-) modeling. SoSyM,

5(4).

Mellor, S. J., 2004. MDA distilled: principles of model-

driven architecture. Addison-Wesley Professional.

Miller, J., Mukerji, J., 2003. MDA Guide Version 1.0. 1

Muller, P. A., Fondement, F., Baudry, B., & Combemale,

B., 2012. Modeling modeling modeling. Software &

Systems Modeling, 11(3), 347-359.

OMG 2006: Model Driven Architecture. http://

www.omg.org/mda/.

Omg, 2008. Meta object facility (mof) 2.0

query/view/transformation specification. Final

Adopted Specification.

Porter, M. F., 1980. An algorithm for suffix stripping.

Program, 14(3), 130-137.

Selic, B., 2003. The pragmatics of model-driven

development. IEEE Softw. 20(5), 19–25.

Tratt, L., 2005. Model transformations and tool

integration. Software & Systems Modeling, 4(2), 112-

122.

Varró, D., & Balogh, A., 2007. The model transformation

language of the VIATRA2 framework. Science of

Computer Programming, 68(3), 214-234.

A Meta-model based Automatic Conceptual Model-to-Model Transformation Methodology

593

