
BUDaMaF
Data Management in Cloud Federations

Evangelos Psomakelis1,2, Konstantinos Tserpes1,2, Dimosthenis Anagnostopoulos1 and

Theodora Varvarigou2
1Dept. of Informatics and Telematics, Harokopio University of Athens, Omirou 9, Tavros, Greece

2Dept. of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytecniou 9, Zografou,

Greece

Keywords: Data Management, Cloud Federation, Cloud Computing, Data as a Service, Resource Optimization.

Abstract: Data management involves quality of service, security, resource management, cost management, incident

identification, disaster avoidance and/or recovery, as well as many other concerns. This situation gets ever

more complicated because of the divergent nature of cloud federations. The BASMATI Unified Data

Management Framework (BUDaMaF) creates an automated uniform way of managing all data transactions,

as well as the data stores themselves, in a polyglot multi-cloud consisting of a plethora of different machines

and data store systems. It provides a context independent platform providing automated scaling and data

migration, tackling in real time disaster scenarios, like sudden usage spikes.

1 INTRODUCTION

1.1 BASMATI

BASMATI (CAS Software AG, 2016) is a

cooperative project between Europe and Korea,

aiming at the creation of a cloud federation platform

that can easily host cloud applications. It will

provide the ability of scaling between multiple cloud

providers, based on the requested Quality of Service

(QoS) as well as the pricelist of each provider

supported. This creates not only a vast, federated

pool of resources but also an automated process of

finding the most cost effective solution by

combining resources from multiple Cloud Providers

(CPs).

For example, a user in Korea could be using a

virtual desktop service, where a virtual machine he

is managing is hosted in the cloud. He needs to be in

close proximity to the cloud datacenter because in

this application gigabytes of data are flowing

between the datacenter and the user’s laptop. If this

user is now traveling to Europe for business, he will

encounter a huge delay when he tries to access his

virtual desktop again because of all the distance

between him and the Korea hosted datacenter. With

BASMATI, the user’s data would travel at the same

time as he to a European hosted datacenter,

controlled by another CP that is part of the

federation, even if the Application Provider (AP) has

no idea which CP is that. So not only will he always

be in close proximity to his data, but the cost to the

AP will have small variance between the European

and Korean datacenters, following automated

procedures of cost analysis.

In order to achieve that, BASMATI uses an

automated Service-Level Agreement (SLA)

negotiation process that predefines all the costs for

resource allocation as well as the federated resources

that each CP provides. Then, using the ACE

(Marshall, 2016) system that is responsible for

allocating resources according to the specified QoS

and budget needs, it creates a common resource

pool, allowing a CP that is unable to serve an

application deployment request (either due to low

resource availability or to QoS requirements such as

the user location or the need of specific

technologies), to automatically “borrow” resources,

in real time, from another CP that is part of the

federation.

1.2 Impact

This paper presents the architecture, interfaces, inner

workings and the use cases of a novel multi-cloud

federation data management framework called

456
Psomakelis, E., Tserpes, K., Anagnostopoulos, D. and Varvarigou, T.
BUDaMaF.
DOI: 10.5220/0006714704560464
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 456-464
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

BASMATI Unified Data Management Framework

(BUDaMaF). This framework was developed in the

context of a cooperative Korean – European project

called BASMATI in order to cover its data

management needs, but as we will discuss in this

paper, it is not limited to BASMATI.

BUDaMaF is a generalized framework, able to

handle the needs of many platforms for cloud

federation management. It can even be used as a

separate entity, providing a federation data

management dashboard, covering all the needs, from

data store management to high level data

management, while providing polyglot persistence.

As a context agnostic framework, it is not bound

by specific domains, platforms or even underlying

technologies. All it needs to be compatible with any

system is the appropriate Wrappers, that can be

developed using any technology, by any person and

then attached to the framework using the loosely

coupled architecture of RestFul Web Services.

Finally, due to the clear separation of its basic

functionalities into singular components, BUDaMaF

is highly scalable. It can be deployed either in a

single machine, in a cluster of machines or in a

cloud with no additional effort, making it an ideal

solution for cloud federations with irregular data

traffic loads.

2 BUDaMaF CHALLENGES AND

GOALS

As a part of a larger system, BUDaMaF is trying to

cover the needs of BASMATI. Because of that it

strives to cover basic data management tasks (read,

write, update, delete) and basic data store tasks

(creation, automated horizontal scaling, deletion,

relocation) before everything else. Once these are

secured, the secondary goals of BUDaMaF include

federation specific data requests (migration, off-

loading, replication) and security and privacy

insurance tasks (protocol enforcement, access

control, encryption/anonymization enforcement).

2.1 Basic Goals

The goal for the basic data management tasks, as

mentioned earlier, is to simply create a query

processor that can understand what the user needs by

reading a JSON format query and forward this query

to the responsible component of the framework, as

we will see later in the architecture of BUDaMaF.

For the data stores now, a more sophisticated

middleware needs to be created in order to serve as a

dashboard that a user (be it a person or an

application) can use to perform the tasks mentioned

earlier on any data store that is supported by the

framework, in an automated (or semi-automated if

that is not possible) way.

2.2 Federation Data Requests

As discussed, three advanced request types can be

served inside the framework; migration, replication

and off-loading. Data migration is needed in cases

that data need to move from one data store to

another or from one physical data center site to

another. This commonly is becoming a necessity due

to cost limitations or datacenter proximity to the user

or to the application provider.

Data replication is about copying the data from

one data store to another or from one physical data

center site to another. The simplest cause for that

request is the need to create a backup. In other cases,

the user may need the data to be available and

synchronized in two different data centers or data

stores. For example if two people on different parts

of the world (one in Korea and one in Europe for

example) are working together on a project and need

access to the same data, without having to endure

vast delays in response times. This process differs

from data migration due to the data coherence

constraints inherently imposed, as data in both

locations need to be in sync.

Finally, off-loading is about the case that an

application is creating huge amounts of load at

specific times on the data store. At these times, the

data requests need to be off-loaded, either by

redirecting the requests to other data stores able to

serve them or requesting real-time data store scaling.

2.3 Security and Privacy

The framework is designed having in mind that an

external source will provide the guidelines for

security and privacy management of the data. This is

derived from the assumption that security protocols

and privacy protection guidelines are always

evolving, so a detached security and privacy

authority needs to keep them always updated.

Having that in mind, BUDaMaF has a

component that acts both as a dashboard for a

security administrator that can define security

protocols and privacy guidelines and as a centralized

authority that the framework can use to coordinate

the security and privacy enforcement actions. Each

time a new data request is directed to the framework

BUDaMaF

457

Core, a request is made to the security and

anonymization engine in order to identify what level

of security, access control and privacy protection is

needed for that request and what protocols need to

be followed.

3 TARGET USE CASES

3.1 Das Fest

Das Fest is a large three day event, taking place

annually in Karlsruhe, Germany. A mobile

application, called Das Fest App, is developed by

YellowMap, providing a number of functions that

support the operation of this event, enhancing the

experience of the visitors and providing assistance

when needed.

In this case, BUDaMaF is needed due to the

sudden peaks in data demand. As this event is

running since 1985, it attracts 200 to 400 thousand

visitors each summer. The fact that the application is

a mobile application, for IOS and Android, creates

the need for a strong and responsive backend that is

scalable in order to handle the few days of increased

activity without bottlenecks, while saving resources

the rest of the year. Even if a general idea of the

visitors’ number is estimated by previous years, the

organizers cannot be sure of the attendance each

year, thus they cannot be certain of how many

resources they need.

3.2 Trip Builder

Trip Builder (Brilhante et al., 2014) is an

unsupervised application, developed by CNR, that

aims to assist tourists plan their visit in a city, taking

into account budget and time limitations. On top of

that, the application can automatically get

information about the attractions available in any

city and the opinion of their visitors about them, by

crawling open internet sources like flickr, Wikipedia

and twitter, thus it does not require manual

registration of every attraction in a city.

TripBuilder is handling a lot of data, both

crawled by external sources as already discussed and

from its users that are constantly updating their

preferences and their personal choices. All these

data create a data management problem in the big

data domain. The application is already based on a

cloud architecture but in order for it to perform as

expected, a chunk of the data need to follow the

user. Given that the user is usually accessing the

services from a mobile device, these data cannot be

stored in the user’s device. So, new data centres,

near the user, need to be located and the data need to

be moved to them while the user is travelling to the

targeted city.

3.3 Virtual Desktop

Mobile Virtual Desktop (MVD) (Kim et al., 2016) is

an application provided by ETRI, a Korea based

corporation. The main idea behind this application is

having 24/7 access to a virtual computer system

from any device that has internet access. This turns

any device into a terminal, connected to a machine

that can cover the needs of any user, be it a casual

user that just browses the web or a power user that

needs immense resources for heavy duty projects.

The need for BUDaMaF arises when the user

tries to move great distances. In this case, the user

can encounter huge amounts of delays, every time a

big data package needs to travel from the cloud

infrastructure to the user interface or vice versa.

When these big packages of data are travelling great

distances, for example from Korea to Europe or vice

versa, a delay is created, making the user interface

unresponsive. This can be avoided if the data follow

the user, starting a migration process while she is

flying from Korea to Europe or vice versa.

But in order for the application provider to

support this operation, a cloud provider hosted in

Europe has to be contacted in advance and an SLA

signed. This cannot be done in real time, it needs

days of preparation and market research and cost

analysis. BUDaMaF is instead using the multi-cloud

federation in order to find a low cost option in the

area that the user will be and start transferring the

data to a federation member the instant it gets

notified that the user is flying to Europe.

4 RELATED WORK

4.1 Cloud Federations

The world of cloud computing is full of market

shares and competitive corporations. In order to

provide a cloud service, a CP needs to invest huge

amount of money in data centers and computing

resources, regardless of the type of cloud services

provided; IaaS, SaaS or PaaS. Today, the market is

conquered by four major providers, Amazon (AWS),

Microsoft (Azure), Google (Google Cloud Platform)

and IBM (Bluemix) (Panettieri, 2017).

Celesti et. al. remind us of the fact that cloud

technology is all about sharing and pooling

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

458

resources instead of a harsh contest for market

shares by clarifying the three stages of cloud

federations (Celesti et al., 2010). They mention that

currently most CPs are built based on stage 1 of

cloud computing which is the most primitive stage

of relying only on resources owned by one provider.

Stage 2 is an evolution of that where each provider

still holds tight to its resources but also buys

resources from other providers if it suits its needs.

Stage 3 on the other hand is creating a common pool

of resources by regarding all resources, both the

ones owned by the CP and the ones rented from

other CPs, as the same.

Rochwerger et. al. are concerned with another

aspect of cloud federations, the limited

interoperability that CPs are providing (Rochwerger

et al., 2011). They are also trying to implement a

system that creates a common pool of resources

between several CPs. They mention several concerns

that need to be addressed in such an effort, revolving

around the optimization of resource usage and cost

efficiency. Above all else, they mention that the CPs

have created their systems without thinking about

interoperability, which makes a middleware

necessary in order to provide a level of abstraction to

the deployment process.

On the other hand, standardization is trying to

tackle the interoperability issues of cloud

federations. Open Cloud Computing Interface

(OCCI) is an open standard as well as a working

group improving three basic aspects of cloud IaaS

services; portability, interoperability and integration

(Metsch, 2006). It aims to achieve this by providing

a slim (about 15 commands) RestFul API for IaaS

management, including resource and virtual machine

management, based on the HTTP and other, already

established, standards.

Since its creation, OCCI has gathered a lot of

support by academia and already has

implementations for an impressive number of cloud

management systems such as OpenStack,

CloudStack, OpenNebula, jClouds, Eukalyptus,

BigGrid, Okeanos, Morfeo Claudia and others

(OCCI-WG, 2016).

4.2 Cloud Data Management

4.2.1 Major Cloud Provider Solutions

As discussed in a previous section, Amazon is the

most popular cloud provider in the market. They are

providing two services for data management using

their cloud infrastructure, one for relational

databases and one for non-relational ones. In this

paper we will focus on the non-relational one which

is closer to our big data needs. The service

mentioned is called Amazon Elastic MapReduce

(EMR) (AWS, 2018). It is using the cloud

infrastructure of Amazon to provide big data

management solutions in many of the most popular

data store systems of the market, including HDFS,

Presto, Spark and others.

Google, another major player in the cloud

computing market, has created their custom solution

for data management called Dremel (Melnik et al.,

2010). The relevant software provided to the users

though is called BigQuery, which is actually based

on the Dremel software (Sato, 2012). Sato mentions

that Dremel is complementing the classical

MapReduce by improving the seek time, making it

possible to execute a read query in a 35.7 GB dataset

in under 10 seconds. Also, all this is done using

classical SQL queries, so Google actually created a

powerful, scalable data management solution

without the need to create a new query language.

The third great provider is Microsoft, with their

Azure Cosmos DB software (Shukla, 2017). Cosmos

DB is a cloud data base engine based on atom-

record-sequence (ARS). This enables it to function

as an extremely scalable data management engine

while providing support to multiple popular data

management systems like DocumentDB SQL,

MongoDB and Gremlin. It also provides easy API

access to most programming languages, using

simple JSON representations, enabling users to

access its functionality from their customized

clients.

4.2.2 Polyglot Persistence

When talking about traditional data management, we

imagine a data administrator managing a database in

a high end data server. This image gets more and

more obsolete as the cloud technology and parallel

computing are advancing, both in technological level

and in low cost solutions. Regardless of all the

advances of such a solution, including cost

effectiveness and easier scalability, a new problem

arises, that of the polyglot data stores.

A cloud consists of many machines and many

different data store systems, either due to machine

limitations or due to the need for specialized tasks

(Kolev et al., 2015). When trying to use these

different data store systems in an interconnected

cloud we encounter the polyglot persistence (Fowler,

2011) problem, which tries to manage a group of

different data stores, talking in different languages,

by using a common interface.

BUDaMaF

459

A common solution to that problem is creating

wrapper components that translate queries from a

common language to the native language of each

different data store (Bondiombouy, 2015;

Bondiombouy et al., 2015; Kolev et al., 2016, 2015;

Zhu and Risch, 2011). They also need to translate

the response into a format readable by the common

language processor. That methodology permits both

the support of new data stores as needed, just by

creating the corresponding wrapper, and the

definition of new query types in the common

language.

The major drawback in this methodology is that

this new language is not standardized, so any

researcher develops his/her own language that is

incompatible with all the others (Wang et al., 2017).

That means extra hours of training for anyone who

wants to use this polyglot persistent system. The

solution commonly followed, in order to counter this

problem, is using an SQL based language and

adding specialized commands on it by either

expanding its glossary or using PLSQL

(Bondiombouy et al., 2015; Kolev et al., 2016; Zhu

and Risch, 2011).

5 ARCHITECTURE

5.1 General Architecture

BUDaMaF is comprised of four basic components,

as seen in Figure 1. These are the Core, the

Analytics Engine, the Off-Loading APIs and the

Security and Anonymization Engine. Each

component will be presented in detail in the

following sections. For now let’s consider them

“black boxes” and comment on the general

architecture of the framework.

Figure 1: BUDaMaF General Architecture.

The general architecture diagram, presented in

Figure 1, shows that each one of the four main

components is responsible for a single role that the

framework needs to play, with the exception of the

Core components, which acts as the coordinator

between all the components. The Off-loading APIs

component handles the data store and data

management requests, the Analytics Engine handles

the data mining and data analytics requests and the

Security and Anonymization Engine handles all the

security concerns that arise due to the vulnerable

nature of the internet communications between the

federation members and their resources.

All the requests are passing through the Core

component, which then decides how to handle each

request. This component then redirects the request to

the responsible component, lets it handle it and then

receives the response. The response then is

forwarded to the original request owner, except if

the response demands an action from the Core first.

For example, if the response reads as a timeout error,

the Core may redirect the original request to another

instance of the responsible component, in order to

overcome this error before responding to the request

owner.

5.2 Components

5.2.1 Core

The Core component acts both as the coordinator for

the other components and as a portal for the outside

world. All the requests and data are passing through

the Core before being pushed in or out of the

framework, in the form of RestFul API calls and

responses respectively. This enables the Core to

communicate with the Security and Anonymization

Engine in order to get information about which

protocols to enforce on the data and actually enforce

them on all data passing through the BUDaMaF. It

also enables the users (be it actual people or pieces

of software) to access the framework in a uniform

way, using one access point (which is scalable and

distributed in order to avoid bottlenecks and single

point of failure hazards) and a common request

glossary in JSON format, regardless of the job they

need to perform. The Core can also keep information

about requests, giving us the ability to enforce global

access control to the data, enhancing data security.

The final job of the Core component is load

balancing and delay handling. It can identify

bottlenecks, by monitoring the response time of

other components, and try to resolve them by using

alternative component instances if it can find any. If

no instances are available it can inform the request

owner that the framework suffers from a high load

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

460

of requests and patience is advised while logging the

issue and notifying the responsible administrators.

5.2.2 Security and Anonymization Engine

This component supports the BUDaMaF by

providing security and anonymization guidelines

concerning the data flowing through the framework.

It takes into account three things; (a) the current

technologies, as described in its options which are

set by a security administrator, including specific

rules about the origin and destination countries of

the data, (b) the owner of the data, as described in

the metadata travelling with the data, and (c) the

type of the data, as described in the metadata as

well. On the other hand, the application data, which

is the third category, contains private data such as

user names, age groups, trajectories, favorite places,

photos, personal documents and many others. As

such, we need to safeguard the privacy of these data

by anonymization wherever possible and encryption

when needed. This will ensure that even if the basic

access control implemented by Core fails and the

data end up in the wrong hands, they will be either

unreadable or anonymized.

5.2.3 Off-Loading APIs

As discussed, one of the main targets of this

framework is to manage not only the data traversing

through the federation but also the data stores

themselves. In order to do that in a unified way, we

need a connector that translates the common

requests into more specific commands for each one

of the different data stores hosted in BASMATI.

For that purpose we have the Off-Loading APIs

component, which receives data and data store

requests in a uniform way, following the OCCI

specifications. Then it decides who is responsible for

handling this request and forwards it to the

responsible Wrapper module. This process ensures

that regardless of the data store system and the

technologies involved in the machines that host this

data store, the interface and the commands to

manage this data store or the data contained in it are

constant.

The Wrapper modules are smaller components

that are developed separately and they are loosely

coupled to the Off-Loading APIs component

through RestFul Web Services. This architecture

enables individual developers or even users of the

framework to develop their own module, adding

support for their preferred data store. Currently we

have implemented only HDFS and MongoDB

Wrappers but more are to follow. This module is

responsible for translating the high level requests

received from the Off-Loading APIs component into

commands that make sense to the target data store

and then translating the response into a format

acceptable by the Off-Loading APIs.

The requests this component handles are basic

data requests (read, write, update, delete), federation

specific data requests (migration, replication,

publication, anonymization, encryption) and data

store requests (horizontal scaling, relocation,

creation, destruction). More details on these requests

will be provided in section 5.3 Interfaces.

5.2.4 Analytics Engine

This component will handle all data requests by

analytics modules. It will not perform analytics tasks

itself. Instead, it will act as an access point for the

specialized analytics modules, loosely coupled to it,

using RestFul Web Services. Each module will be

responsible for one specific analytics task in a

specific dataset, which may contain data from

multiple sources, be it internal or external to the

federation.

This enables the Analytics Modules to find the

data they need without caring about where or how

they are stored in the federation. They can just locate

and access them by describing them, using a

common interface and a common glossary in JSON

format.

The analytics modules can be developed

separately and then connected to the analytics engine

by using its access point. This way each new

analytics module will enhance the range of tasks the

framework can perform, giving it the ability to serve

even more requests as it evolves.

5.3 Interfaces

Each component of the framework exposes several

RestFul APIs, following the OCCI standard. These

interfaces are built in a way that each component is

an OCCI category, having specific actions and

attributes, while using the standard http methods, as

the OCCI standard dictates. In the rest of the chapter

we will present the various interfaces of the

framework.

5.3.1 Common Specifications

As all components are parts of the same framework,

some specifications are common but not shared.

Each component is using the specifications for its

own needs. Though, in order to save space in this

paper, we decided to present all the common

BUDaMaF

461

specifications in this section instead of presenting

the same things over and over again. If any deviation

is present in a specific component interface it will be

mentioned in that component’s sub-section.

Members:

• initiator: the initiator credentials for

this job in JSON format.

• job_description: The type of this job.

• job_details: The details for this job in

JSON format.

• status: The status of this job, either

pending, running, finished or crashed.

• data: The provided data in insertion

jobs or a placeholder for the requested

data in retrieval jobs or an error

description if an error is encountered.

Methods: The standard OCCI methods are managed

for this category endpoint with the following

specificities.

GET

This method may be used to retrieve the data

requested if the instance was started with a retrieval

job or the status of a request if no data are to be

retrieved.

PUT

This method is used in job requests that need to

keep an open channel, accepting data while they are

active, for the other job types all the data are

included in the original POST request that creates

them.

DELETE

This method may be used to delete the instance

and release resources.

5.3.2 Core

Category Name: core

Description: Instances of this category will be

created in order to start generalized jobs in the

BASMATI Unified Data Management Framework

(BUDaMaF), interconnecting and managing the

individual sub-components.

Links: Core instances will be linked to the

Offloading APIs and the Hosted Applications.

Methods: The standard OCCI methods are managed

for this category endpoint with the following

specificities.

POST

This method will be used to initiate a job in the

BUDaMaF by providing the initiator id, the type and

the details of the job. The type can be the name of

any supported operation, whereas the details depend

on the job type, some jobs need only a minimal

quantity of details, such as a status update request

which requires only the id of the job and the

credentials of the initiator. Other jobs require more

details, such as the data store scaling which requires

a list of machines available to the initiator that can

host data store instances, the current access point of

the data store and credentials for the job initiator, for

the data store and for the machines.

5.3.3 Security and Anonymization Engine

Category Name: security_engine

Description: An instance of this category will be

created in order to have a security and privacy

administrator that is global and always updated

throughout the whole framework.

Members: The following members are defined for

instances of the application control category.

• initiator_log: the initiator credentials

for any access or modification in the

security and privacy policies for a

certain period of time, in JSON format.

Links: Security and Anonymization Engine

instances will be linked to the Core component.

Methods: The standard OCCI methods are managed

for this category endpoint with the following

specificities.

POST

This method will be used to initiate a security

and privacy job. This job can either be a

modification to the current policies, an access

control check or a security and privacy protocol

query, in order for the Core to get information about

the current protocols and enforce them.

PUT

The type of requests that Security and

Anonymization Engine handles creates no need for

continuous data transactions, thus the PUT method

is not needed for this interface and it is disabled.

DELETE

This method may be used to delete a request and

prohibit further access to all connected data.

5.3.4 Off-Loading APIs

Category Name: off_loading_apis

Description: Instances of this category will be

created in order to communicate with and manage

the individual data stores in the BASMATI

federation.

Links: Off-loading APIs instances will be linked to

the Core and Wrapper Modules.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

462

Methods: The standard OCCI methods are managed

for this category endpoint with the following

specificities.

POST

This method will be used to initiate an

off_loading_apis instance by providing the job type

and the job details. These information will be

forwarded from the Core component and as such we

do not need the initiator credentials because basic

authentication has already been concluded

successfully at this point. What we need is the job

ID in order to correlate the job response with the job

request. This ID is added to the job_details JSON by

the Core component.

5.3.5 Analytics Engine

Category Name: analytics_engine

Description: An instance of this category will be

created in order to facilitate the communication

between the BASMATI cloud and the individual

Analytic components.

Links: Analytics Engine instances will be linked to

the Analytic Modules.

Methods: The standard OCCI methods are managed

for this category endpoint with the following

specificities.

POST

This method will be used to initiate a data

request by providing the job type (save or retrieve),

the description of the data and the initiator

credentials. As discussed, this category is

functioning just as an interface to analytics modules

in order to ensure access control and polyglot

persistence to the monitoring data.

DELETE

This method may be used to delete a request and

prohibit further access to all connected data.

6 FUTURE WORK

BUDaMaF is an ongoing project and as such there

are still a lot to be done. The main axis of future

work in BUDaMaF concern the creation of an

intelligent agent. The Intelligent Agent component,

called BUDaMaFIA, will provide artificial

intelligence to the framework. It will implement a

machine learning model that locates and tries to

predict load fluctuations and disastrous events and

then tries to avoid or rectify them by using the

BUDaMaF functionality. This agent will in fact

replace the data administrator, by performing load

balancing, data off-loading, security and privacy

guideline management and other tasks automatically

even before the need for such actions arise.

Of course, at the same time, the work on

additional Wrappers and Analytics modules will

continue, providing always improving data store

support and analytics functionality.

7 CONCLUSIONS

To conclude, we can see that BUDaMaF, even

though a lot of work is still under way, is already a

multi-function framework that can perform a

plethora of tasks in any multi-cloud federation.

Regardless of the underlying technologies and

context of the federation, it can provide basic and

advanced data management support, creating a

polyglot persistent environment, as long as the

federation resource manager provides a RestFul API

for resource allocation. It can also provide a

dashboard, allowing real-time, or near real-time,

management of data and data stores in an

environment of great complexity, such as a multi-

cloud federation. Complexity that arises from the

fact that cloud providers never aimed of working

with one another or sharing their resources in a

common pool.

ACKNOWLEDGEMENTS

This work has been supported by the BASMATI

project (http://www.basmati.cloud) and has been

funded by the ICT R&D program of the Korean

MSIP/IITP (R0115-16-0001) and the European

Unions Horizon 2020 research and innovation

programme under grant agreement no. 723131.

REFERENCES

AWS, 2018. Amazon EMR – Amazon Web Services

[WWW Document]. Amaz. EMR – Amaz. Web Serv.

URL //aws.amazon.com/emr/ (accessed 1.19.18).

Bondiombouy, C., 2015. Query Processing in Cloud

Multistore Systems, in: BDA’2015: Gestion de

Données–principes, Technologies et Applications.

Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez,

P., 2015. Integrating big data and relational data with a

functional sql-like query language, in: International

Conference on Database and Expert Systems

Applications. Springer, pp. 170–185.

BUDaMaF

463

Brilhante, I.R., de Macêdo, J.A.F., Nardini, F.M., Perego,

R., Renso, C., 2014. TripBuilder: A Tool for

Recommending Sightseeing Tours., in: ECIR.

Springer, pp. 771–774.

CAS Software AG, 2016. BASMATI Web Page [WWW

Document]. BASMATI. URL

http://www.basmati.cloud/

Celesti, A., Tusa, F., Villari, M., Puliafito, A., 2010.

Three-phase cross-cloud federation model: The cloud

sso authentication, in: Advances in Future Internet

(AFIN), 2010 Second International Conference On.

IEEE, pp. 94–101.

Fowler, M., 2011. PolyglotPersistence [WWW

Document]. martinfowler.com. URL

https://martinfowler.com/bliki/PolyglotPersistence.ht

ml (accessed 7.22.17).

Kim, S., Choi, J., Kim, S., Kim, H., 2016. Cloud-based

virtual desktop service using lightweight network

display protocol, in: Information Networking (ICOIN),

2016 International Conference On. IEEE, pp. 244–

248.

Kolev, B., Bondiombouy, C., Valduriez, P., Jiménez-Peris,

R., Pau, R., Pereira, J., 2016. The CloudMdsQL

Multistore System, in: SIGMOD.

Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris,

R., Pau, R., Pereira, J., 2015. CloudMdsQL: Querying

heterogeneous cloud data stores with a common

language. Distrib. Parallel Databases 1–41.

Marshall, J., 2016. Amenesik Cloud Engine [WWW

Document]. Amenesik Cloud Engine. URL

http://www.amenesik.com/cloud/AmenesikCloudEngi

ne.pdf (accessed 7.21.17).

Melnik, S., Gubarev, A., Long, J.J., Romer, G.,

Shivakumar, S., Tolton, M., Vassilakis, T., 2010.

Dremel: Interactive Analysis of Web-Scale Datasets,

in: Proc. of the 36th Int’l Conf on Very Large Data

Bases. pp. 330–339.

Metsch, T., 2006. Open Cloud Computing Interface.

OCCI-WG, 2016. Implementations – Open Cloud

Computing Interface [WWW Document]. URL

http://occi-wg.org/community/implementations/

(accessed 1.19.17).

Panettieri, J., 2017. Cloud Market Share 2017: Amazon

AWS, Microsoft Azure, IBM, Google [WWW

Document]. ChannelE2E. URL

https://www.channele2e.com/channel-

partners/csps/cloud-market-share-2017-amazon-

microsoft-ibm-google/

Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D.,

Loy, I., Nagin, K., Tordsson, J., Ragusa, C., Villari,

M., Clayman, S., others, 2011. Reservoir-when one

cloud is not enough. Computer 44, 44–51.

Sato, K., 2012. An inside look at google bigquery. White

Pap.

Shukla, D., 2017. A technical overview of Azure Cosmos

DB [WWW Document]. URL

https://azure.microsoft.com/en-us/blog/a-technical-

overview-of-azure-cosmos-db/ (accessed 7.31.17).

Wang, J., Baker, T., Balazinska, M., Halperin, D., Haynes,

B., Howe, B., Hutchison, D., Jain, S., Maas, R.,

Mehta, P., others, 2017. The Myria Big Data

Management and Analytics System and Cloud

Services., in: CIDR.

Zhu, M., Risch, T., 2011. Querying combined cloud-based

and relational databases, in: Cloud and Service

Computing (CSC), 2011 International Conference On.

IEEE, pp. 330–335.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

464

