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Abstract: This paper presents the fitting process followed to adjust the parameters of the electrical model associated to 

a cell-electrode system in Electrical Cell-substrate Impedance Spectroscopy (ECIS) technique, to the 

experimental results from cell-culture assays. A new parameter matching procedure is proposed, under the 

basis of both, mismatching between electrodes and time-evolution observed in the system response, as 

consequence of electrode fabrication processes and electrochemical performance of electrode-solution 

interface, respectively. The obtained results agree with experimental performance, and enable the evaluation 

of the cell number in a culture, by using the electrical measurements observed at the oscillation parameters 

in the test circuits employed. 

 

1 INTRODUCTION 

Many research efforts have been devoted to find a 

reliable and robust non-invasive technique to 

estimate and study cell growth on a cell-culture 

assays (Khalil, 2014; Lu, 2009; Lei, 2014; 

Borkholder, 1998; Giaever, 1986) from several 

viewpoint. It can be found: toxicology assays (Daza, 

2013), cancer characterization (Pradham, 2014; 

abdolahad, 2014) biochemical (Lourenco, 2016), 

immune-assays (Dibao-Dina, 2015), stem cells 

differentiation protocols (Reitingen, 2012), etc., that 

look to quantify the number of cells for 

characterizing a diversity of research objectives. 

Bioimpedance based (BioZ) measurements 

technique as ECIS, senses the electrical response 

generated on a biological sample, the cell-culture, 

when is excited with an AC electrical source, 

voltage or current, at several frequencies, as 

consequence of its conductivity properties. To obtain 

confident results, ECIS technique requires precise 

electronic circuits for picking-up the signals of 

interest (Grimmes, 2008), and accurate electrical 

models for the electrodes and cell-electrode-solution 

systems, mandatory for decoding the electrical 

measurements done by the circuits, and to express 

them in terms of cell number. 

Several works on BioZ modelling and monitoring 

have been reported (Borkholder, 1998; Giaever, 

1986; Huang, 2004), based on complex analytical 

approaches or Finite Element (FE) simulations of the 

whole cell-electrode-solution system. The obtained 

results are applied to mono-layer cell-culture 

configurations, fitting the proposed parameters 

and/or electrical circuits, to model the cell-electrode-

solution. This article proposes a method to 

characterize an electric model for the cell-electrode 

interface in (Huang, 2004), using experimental data 

gathered from several experiments carried out in our 

research group. Our motivation is mainly derived 

from analysis of the parameter evolution observed 

on experiments, from the beginning of a cell growth 

assays, and before to win the confluent or mono-

layer phase. These parameters associated to 

electrode models change from one electrode to 
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another, and also in time, as consequence of 

electrochemical processes in electrode-solution-cell 

interfaces. The Fig. 1 shows the oscillation 

frequencies measured with our technique (Huertas, 

2015) for eight different cell cultures in a growth 

curve assay. Each curve shows the oscillation 

frequency measured as a function of the time. The 

number of cell in the culture increases in time, 

depending of the cycle division of the cell line.  

Cell-cultures are done with commercial electrodes 

(Applied Biophysics), for several number of initial 

cells seeded: W1, W3: 2500 cells, W4, W5: 5000 

cells; W7, W8: 10000 cells. From these responses, it 

can be concluded that: 
1) Equal or similar oscillation frequencies were 

expected at the beginning of the assays, 
because cell density is very low. However, a 
wide frequency dispersion can be observed at t 
= 0 h, for example. 

2) It will be expected a constant frequency 
response in cultures with only medium (W2 
and W6). However, frequency response 
decreases in time from 790 Hz to 760 Hz, after 
one week (W2 and W6). 

3) Responses of cultures with the same initial 
cells (W8-W7, W4-W5, W1-W3) should lead 
us to similar oscillation frequencies also. This 
is no true: measured frequencies (see W4 and 
W5 seeded with 5000 cells, for example) at the 
same times, are quite different. 

4) The frequency dynamic range of the resulting 
frequencies changes between cultures, both for 
the same initial and different number of cells.  

This experimental performance observed it is also 

detected for the amplitude of the oscillations (Fig. 

1b). In all cases, measures were done with the same 

circuit, so measuring mismatching was not due to 

difference on circuit implementation. Considering 

these data, the electrical model for electrode-cell-

solution system seems to change from electrode 

sample-to-sample, and in time, for the same 

electrode sample. This make not possible to consider 

a “static” model for the parameter values of the 

electrical model defining the performance of this 

system, in the sense that these parameters (resistance 

and capacitance values linked) will change for each 

sample, and also progress in time. It is proposed in 

this paper, on that basis of experimental result 

analysed, a “dynamic” matching of these 

parameters, once each experiment is finished. It is 

true that this approach does not allow full prediction 

of growth curves, but it will be demonstrated that 

errors in measured parameters (frequency and 

amplitude of the oscillations) are reduced by the 

matching method proposed in the following. 

 

 
Figure 1: Measured time evolution of the oscillation frequency (a) 

and amplitude (b) of voltage signal Vcell. Curves corresponds to 

2.500 cells (W1, W3), 5.000 cells (W4, W5) and 10.000 cells 

(W7, W8), seeded at t = 0, into separate well pairs. Wells W2 and 

W6 contain only medium. 

The measurement system is described on section 2 
with the sensing principle based on Oscillation 
Based Test (OBT) (Huertas, 2015). A method to 
solve the system equations is needed to obtain the 
oscillation amplitude (aosc) and frequency (fosc) 
(Huertas, 2015, Maldonado, 2016). Also, equations 
proposed to match experimental results are derived 
to put forward an electrical cell-electrode-solution 
model. Section 3 will describe the followed fitting 
process. Experimental results are described in 
section 4, and finally, conclusions are summarized in 
section 5. 

2.  MATERIALS AND METHODS 

2.1  Cell-culture assay 

Several experiments were carried out within one 
week. The electrodes employed for our tests are 
commercial electrodes from Applied Biophysics. 
These electrodes contain 8 separated wells with ten 
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circular biocompatible gold microelectrodes of 250 

m diameter. The biological sample under test is 
formed by Chinese hamster ovarian fibroblasts. This 
cell line is identified as AA8 (American Type 
Culture Collection). This sample is immersed in 
McCoy’s medium supplemented with 10 % (v/v) 
foetal calf serum; 2mM L-glutamine, 50 μg/ml 
streptomycin and 50 U/ml penicilin. The growing 
environment is set at 37oC and 5% CO2 in a humid 
atmosphere. Different initial number of cells was 
planned for our experiments, either 2500, 5000 or 
10000. 

2.2 Cell-electrode electrical model 

The biological sample under test is located on a 
two electrode system. The first one acts as a 
reference electrode and the second one is the 
measurement electrode. Cells are deployed on the 
electrodes alongside with medium solution. The 
electrical model describing this cell-electrode 
interface is presented on Fig 2a. This model has 
been explored on the literature in (Borkholder, 1998; 
Huang, 2004; Huertas, 2015). The sample is the 
connected to the oscillator as shown in Fig 2b, to 
build the biological sensor. A start-up signal is 
provided to the OBT to provide faster measurements 
and assure the optimal oscillation point for the 
system thus avoiding nonlinear behaviours of the 
electrical model. As it was mentioned in the 
previous section, the variation of the BioZ implies a 
change on the oscillator values, which is directly 
relate to the fill-factor, ff, on the cell culture, thus 
allowing us to measure cell population and growth.   

 

 

 

 

 

 
 

 

 

Figure 2. (a) Electric model of cell-electrode (BioZ). (b) 

Measuring circuit diagram. 

The BioZ main electrical-model parameters are C, 

the double-layer capacitance arising from the cell 

electrode complex and R, the transfer resistance that 

represents biological sample resistance. Both 

elements are placed in parallel (Huang, 2004; 

Huertas, 2015). Fill-factor is presented as the cell 

covered area ratio in the electrodes (if there are not 

cells, is 0, and it is 1 when electrode is fully 

covered). 
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where C1 and R1 account for the empty 
microelectrodes contribution to the electrical 
response of the biological sample, and C2 and R2 
depict the electrical response generated by the 
electrodes covered by cells. The Rs models the 
resistance which current must overtake to arrive at 
reference electrode. Finally, Rgap represents the 
resistance shaped at the gap or interface region 
between cell and electrode. 
The model fitting process requires further 
knowledge on the circuit transfer function. Having 
analyzed the electrical model, next step is to define 
the transfer functions for the measuring system 
(Huertas, 2015; Maldonado 2016; Pérez, 2017). The 
analysis is presented below and summarized in eq. 
(2). 
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During the modelling adjustment process, three 

challenges were identified: 

• Fill-factor: This is the measurement we aim to 

find out. This work is part of the process to 

obtain a reliable ff measurement out of the aosc 

and fosc acquired from the implemented sensor. 

To fit the model, we need to use a reliable 

reference for ff other than the measurements 

itself. This ff reference may be obtained from the 

microscopic analysis of the cell cultures under 

(a) 

(b) 
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test, but it can be the final solution because the 

ultimate goal is getting a sensing robust system 

to measure the number of cells without touch the 

cell-culture assay until the end of experiment. 

• Non-constant value of the BioZ parameters along 

ff: The following Bode diagrams acquired from 

biological samples under test (Fig. 3) shows that 

magnitude at high frequencies can be used to 

determine Rs. However it is important to remark 

the differences among different days (cells are 

growing, hence increasing ff), which implies also 

variations on the Rs obtained values. 

 

Figure 3: Bode diagram, magnitude and phase, for a single well 

during the experiment. 

• Each well starts at different values of fosc and 

aosc: Fig. 4 illustrates small differences on each 

well in magnitude and phase during the 

experiment starting period. Experiment begins at 

several hundred Hertz, below 1 kHz, at this 

operation point each well has different frequency 

and amplitude values. The sample contains eight 

wells, each of them contain only either medium 

or cells with medium. These one start in an initial 

value of fosc and aosc which does not match with 

expected theoretical values for low ff. 

Experimental measurements tend to fit the 

expected values around 20 hours periods, 

corresponding to the cell division cycle. 

Figure 4: Bode diagram for each well on the first day. 

2.3 Oscillator 

Complete closed-loop system (circuit with BioZ) 

behaves like an oscillator (Fig 2 (b)). This is due to 

the circuit containing a non-linear element, a 

comparator in the feedback loop. Non-Linear system 

can present oscillations with a constant amplitude 

and frequency without external stimulation (limit-

circles). According to describing-function method, 

non-linear component of the system can be 

linearized like it is presented in equation, 

 ( , )
Y

N A
X

                  (8) 

where N(A, ) is an approximate linear form of 

the non-linear element, X is the sine input 

amplitude, Y is the amplitude of output fundamental 

harmonic component, and  is phase difference of 

output fundamental harmonic component. In this 

case, describing function of comparator is shown in 

eq. (9). 
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where Vref is the reference voltage for the 

comparator and h is defined in eq. (10), 
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being h the comparator hysteresis. The shape of 

describing-function has been defined. Additionally, 

the behaviour of the system is determined by the 

characteristic equation (11). If a solution exists for 

the given system, with a specific amplitude and 

frequency, means that the system is oscillating at 

that frequency with given amplitude. 

 1 ( ) ( ) 0G j N A          (11) 

where G(j) is the transfer function for the linear 

component of the system, which is the measurement 

circuit without the comparator and with BioZ. This is 

fulfilled when the following conditions are met: 

1. A non-linear component must be part of the 

system. In this case non-linear part is the 

comparator. 

2. Non-linear component does not depend on time. 

3. Linear parts behave like a low-pass filter to 

guarantee that high frequency harmonics do not 

affect non-linear part. The system contains a 

band-pass filter, which avoid the input of non-

fundamental harmonic components of the signal 

in the comparator. 
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4. Non-linearity is symmetrical, so there is not any 

DC component in the output signal when input 

signal is a sine. 

 

With this method, theoretical aosc and fosc can be 

obtained depending on system parameters. Therefore, 

it is necessary to characterize a system model to 

compare theoretical and experimental results. 

 

2.4 Sensitivity 

To characterize an empirical model it is necessary 

to understand how changes in model parameters 

affect amplitude and frequency of the oscillation 

signal. 

2.4.1 Fill-factor 

It is important to understand the effects of fill-
factor in the model of BioZ. Considering ff →0, we 
can conclude that R2→∞ and C2→0. Transfer 
function for BioZ is presented in eq. (12). 
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where Zff→0(s) is the impedance of cells for ff→0. 
Considering ff→1 we can conclude that R1→∞ and 
C1→0. Transfer function for BioZ is presented in eq. 
(14). 
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where Zff→1(s) is the impedance of cells having ff→1. 

From equations (13) and (14), the following 
statements are deduced. Low ff (experiment 
beginning) implies that Rgap does not affect model 
behavior. However, high ff implies greater effect on 
system model. 

2.4.2 Poles and zeros location 

It is necessary to identify the position of pole and 

zero in transfer function in eq. (14). These are 

defined on eq. (15) and eq. (16). 
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It is possible now to calculate RS and R using eqs. 
(17) and (18), 
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by knowing the Bode diagram of the real system 
when the experiment starts and finishes. This task 
has been performed in three different experiments. 

Fig. 4 shows Bode diagrams for well number one 
during each day of the experiment. First approach 
was to try to fit the model using such Bode diagrams 
but it was very difficult to find a suitable fit, as it is 
illustrated on Fig. 5. 

Firstly, the model of BioZ is far from perfect, so that 
it is not possible to get a Bode diagram of the model 
similar to experimental Bode diagram. Secondly, it 
is difficult to reproduce similar magnitude and phase 
at the same frequency in model and experiment. 
Thus, it is necessary to find another way to fit the 
model. However, it is important to remark that zero 
is approximately at 15 kHz in every well and 
considered ff. To prove the use of 15 kHz as the zero 
value it is compared to another experiment, this is 
shown in Fig. 6. This experiment was performed in 
one day. Different cells concentrations were put on 
all wells, in ascending order, from well one 
(medium) until well eight (upper cells 
concentrations). Objective of this experiment is to 
obtain the Bode diagram of the system for each cell 
concentration without medium degradation. 

 
Figure 5: First approach fitting. 
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Figure 6: One day experiment 

2.4.3: Other parameters 

There are some parameters which are yet not 
characterized. It is important to consider the effect of 
these parameters in frequency and amplitude of the 
oscillator. Thank to electric simulator Multisim (and 
comparing with theoretical results of Matlab), the 
effects can be estimated using parametric sweeping. 
Some conclusions are provided below: 

• ff→0 (beginning of the experiment): 

o Initial frequency can be selected only with 
position of the pole fp. 

o Initial amplitude can be selected using Rs and fp. 
The Rs effect is significantly higher. 

• ff→1 (end of the experiment). Frequency can be 
selected using Rgap, however it is important to 
remark that Rgap affect final amplitude as well. 

It is possible to characterize the model parameters 
using this conclusions and eqs. (15) and (16). 

2.5 Estimation of ff 

During first experiment, which Bode diagrams 

were measured, wells were also photographed to 

estimate ff once a day until the end of the 

experiment. However, estimation of ff using photos 

was not accurate enough. On the following, a math 

temporal evolution estimation method for ff is 

presented. 

Considering the area of the well is Aw=0.8 cm2, 

approximate radio of cells is rcell = 10 μm2. Knowing 

the number of cells at the beginning of experiment 

as No and the division time of cells as tr = 18 hours, 

it is possible to define a growth curve for (ff) in time. 
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Using eqs. (19) and (20), it is possible to calculate 
the number of cells and ff at a given moment, k, as is 
shown in Fig. 7. 
 

 
Figure 7: Estimated evolution of ff with No = 2.500, 5.000 and 

10.000 cells. 

3. Fitting model 

There is enough information to fit the experiment 
model. Keeping in mind that fz = 15 kHz, the 
algorithm to obtain the model: 

Step 1: Select fp using experiment initial frequency. 

Step 2: Select Rs using experiment initial amplitude. 

Step 3: Select Rgap using experiment final frequency. 

Following this three steps, it is possible to fit a 

model which behaves similar to the experimental 

results. Even so, there is an amplitude error that 

increases with ff, observed in Fig. 8. 

 

Figure 8: Comparison between experimental amplitude, 

uncorrected and corrected model amplitudes. 

To solve this problem, first approach is to use the 

work presented in (Huang, 2004), but performing an 

alternative correction of Rs with ff. Moreover, it is 

decided that parameter Rs, which is calculated for ff 

→0, is an initial value of Rs, named Rsi. Rs grows 

with ff during the whole experiment. Rs must match 
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the amplitude in ff → 1. This is represented on eq. 

(21). 

 ( ) . ( )n

s si sR k R R ff k     (21) 

where Rsi is the initial value for Rs, Rs is the range 

of Rs from ff = 0 to ff = 1, and n decided the growth 

rate of Rs until the maximum value (n=4 in this 

case). The eq. (21), represents Rs variation, allowing 

Rs to reach its final value when well is full (Rs(ff 

→1) = Rsi+Rs). Finally, it is necessary to complete 

the fitting model selecting Rs. 

Step 4: Select Rs using experiment final amplitude. 

The Fig. 7 shows the effect of the evolution of Rs, 

with good agreement for amplitude estimation. 

4. RESULTS 

This section presents the results of the fitting 

method proposed before. Results are shown from 

Figures 9 to 11 (each figure shows one well with 

cells), and start from three different values of initial 

number of cells: 2500, 5000 and 10.000 cells. For 

each initial number of seeded cells, the time 

evolution of the ff is calculated according to eq. (20), 

and then, electrical simulations are performed in 

Multisim, considering the proposed parameters 

evaluated for the electrical model. The oscillation 

parameters, fosc and aosc, are measured and compared 

with the experimental ones. 

In all cases, the amplitude and frequency errors 

are reduced, being possible to make the cell number 

estimation, at every time of the experiment. Errors 

observed at amplitudes are lower than frequencies. 

One of the main problems to fit the models of each 

well of the experiments is the small range of aosc and 

fosc found on the available data. Using this method, 

theoretical results are similar to experimental results. 

 

5. CONCLUSIONS 

It has been presented a fitting procedure to 

assign values to proposed parameters of the 

electrical-model in cell cultures assays. The proposal 

is useful in ECIS experiments to define the number 

of cells in a culture, giving a general solution, not 

only for cell monolayer configurations. For several 

initial values of cell seeded, results show that fitting 

models provide low error estimations for ff values. 

Thanks to ff estimation and Rs modification, it is 

possible to fit a model for each well knowing only 

aosc y fosc values at beginning and end of the 

experiment. A Matlab script has been developed to do 

this work automatically when experiment ends, 

either using theoretical equations of the system or 

using the software Multisim software to execute 

electrical simulations. 

 

Figure 9: Comparison of frequencies and amplitudes between 

model and experiment for No = 2500 cells. 
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Figure 10: Comparison of frequencies and amplitudes between 

model and experiment for No = 5.000 cells. 

 
Figure 11: Comparison of frequencies between model and 

experiment for No = 10.000 cells. 
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