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Abstract: The fundamental formula in an optical system is Rayleigh diffraction integral. In practice, we deal with 

Fresnel diffraction integral as approximate diffraction formula. We seek the function that its total power is 

maximized in finite Fresnel transform plane, on condition that an input signal is zero outside the bounded 

region. This problem is a variational one with an accessory condition. This leads to the eigenvalue problems 

of Fredholm integral equation of the first kind. The kernel of the integral equation is Hermitian conjugate and 

positive definite. Therefore, eigenvalues are nonnegative and real number. By discretizing the kernel, the 

problem depends on the eigenvalue problem of Hermitian conjugate matrix in finite dimensional vector space. 

By using the Jacobi method, we compute the eigenvalues and eigenvectors of the matrix. We applied it to the 

problem of approximating a function and evaluated the error. 

1 INTRODUCTION 

The integral theorem of Helmholts and Kirchhoff 

plays an important role in the development of the 

scalar theory of diffraction (Goodman, 2005). 

Although scalar wave propagation is fully described 

by a single scalar wave equation, fundamental 

formula in an optical system is Rayleigh diffraction 

integral. In practice, we deal with Fresnel diffraction 

integral as approximate diffraction formula. The 

Fresnel transform has been studied mathematically 

and revealed the topological properties in Hilbert 

space (Aoyagi, 1973). In recently, it is also used in 

image processing, optical information processing, 

optical waveguides and computer-generated 

holograms. The extension of optical fields through on 

optical instrument is practically limited to some finite 

area. This leads to the spatially band-limited problem. 

The effect of band limitation has been studied for an 

optical Fourier transform, namely in the region of the 

Fraunhofer diffraction. Up to now, sampling theorem 

have been derived from band-limited effect in Fourier 

transform plane and applied to application areas. 

Moreover, sampling function system are orthonormal 

system in Hilbert space. An orthonormal function 

system may be considered as coordinate system in 

some functional space. 

In sampling theorem, it is important to develop the 

orthogonal functional systems (Ogawa, 2009). It has 

been also revealed the function to minimize the norm 

of error on condition that 𝐿2-norm of a function in 

finite Fourier plane is not exceeding a constant (Kida, 

1994). In the literature, there are many examples of 

band-limited function in the Fourier transform, its 

applications and reference therein (Jerri, 1977). 

However, the band-limited effect in Fresnel transform 

plane is not revealed sufficiently.  

In this paper, we seek the function that its total 

power is maximized in finite Fresnel transform plane, 

on condition that an input signal is zero outside the 

bounded region. This problem is a variational one 

with an accessory condition. This leads to the 

eigenvalue problems of Fredholm integral equation of 

the first kind. The kernel of the integral equation is 

Hermitian conjugate and positive definite. Therefore, 

eigenvalues are real non-negative numbers. By 

discretizing the kernel and using the value of the 

representative points, the problem depends on the 

eigenvalue problem of Hermitian conjugate matrix in 

finite dimensional vector space. By using the Jacobi 

method, we compute the eigenvalues and 

eigenvectors of the matrix. In general finite 

dimensional vector spaces (ℂ𝑛), the eigenvalues of 

Hermitian matrix are real numbers and then 

eigenvectors from different eigenspaces are 

orthogonal. We consider the application of the 

eigenvectors to the problem of approximating a 

function and evaluate the error between original test 

functions and approximating functions.  
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2 FRESNEL TRANSFORM 

Assume that we place a diffracting screen on the 𝑧 =
0  plane. The parameter 𝑧  represents the normal 
distance from the input plane. Let ξ , η  be the 
coordinates of any point in that plane. Parallel to the 
screen at 𝑧 is a plane of observation. Let 𝑥, 𝑦 be the 
coordinates of any point in this latter plane. If 𝑓(𝜉, 𝜂) 
represents the amplitude transmittance, then the 
Fresnel transform is defined by 

𝑔(𝑥, 𝑦; 𝑧) =
𝑘exp(𝑖𝑘𝑧)

𝑖2𝜋𝑧
∬ 𝑓(𝜉, 𝜂)

∞

−∞

 

× exp [
𝑖𝑘

2𝑧
{(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2}] 𝑑𝜉𝑑𝜂, (1) 

where 𝑘  is the wave number and 𝑖 = √−1 . The 
inverse Fresnel transform is defined by 

𝑓(𝜉, 𝜂) = −
𝑘exp(−𝑖𝑘𝑧)

𝑖2𝜋𝑧
∬ 𝑔(𝑥, 𝑦; 𝑧)

∞

−∞

 

× exp [−
𝑖𝑘

2𝑧
{(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2}] 𝑑𝑥𝑑𝑦.  (2) 

Figure 1 shows a general optical system and its 

coordinate system. Fresnel transform is a bounded, 

linear, additive and unitary operator in Hilbert space. 

3 EIGENVALUE PROBLEM 

To simplify the discussion, we consider only one-

dimensional Fresnel transform. The one-dimensional 

Fresnel transform is defined by 

𝐹(𝑥, 𝑧) =
1

√𝑖2𝜋𝑧
∫ 𝑓(𝜉)

∞

−∞

  

×exp {
𝑖

2𝑧
(𝑥 − 𝜉)2} 𝑑𝜉,         (3) 

where we set the wave number unit. The inverse 

Fresnel transform is defined by 

𝑓(𝜉) = √
𝑖

2𝜋𝑧
∫ 𝐹(𝑥, 𝑧)

∞

−∞

 

 

Figure 1: Sketch of a general optical system. 

×exp {−
𝑖

2𝑧
(𝑥 − 𝜉)2} 𝑑𝑥.        (4) 

Assume that 𝑓(𝜉) is limited within the finite region 𝑅 

on the ξ-plane and its total power 𝑃𝑅  , namely the 

inner product of the function, is constant. 

𝑃𝑅 = ∫|𝑓(𝜉)|2

∞

−∞

𝑑𝜉 = ∫ |𝑓(𝜉)|2

𝑅

𝑑𝜉 

= ∫ 𝑓(𝜉)𝑓∗(𝜉)
𝑅

𝑑𝜉 = 𝑐𝑜𝑛𝑠𝑡.         (5) 

where 𝑓∗(𝜉) denotes the complex conjugate function 

of 𝑓(𝜉). Assume that 𝑔(𝑥) is the Fresnel transform of 

the function 𝑓(𝜉) which is bounded by a finite region 

𝑅, that is, 

𝑔(𝑥) =
1

√𝑖2𝜋𝑧
∫ 𝑓(𝜉)exp {

𝑖

2𝑧
(𝑥 − 𝜉)2}

∞

−∞

𝑑𝜉 

=
1

√𝑖2𝜋𝑧
∫ 𝑓(𝜉)exp {

𝑖

2𝑧
(𝑥 − 𝜉)2}

𝑅

𝑑𝜉.    (6) 

Then, the total power 𝑃𝑆  of 𝑔(𝑥)  in the bounded 

region 𝑆 is 

𝑃𝑆 = ∫ |𝑔(𝑥)|2

𝑆

𝑑𝑥 = ∫ 𝑔∗(𝑥)𝑔(𝑥)
𝑆

𝑑𝑥 

= ∫
1

√−𝑖2𝜋𝑧
∫ 𝑓∗(𝜉)exp {−

𝑖

2𝑧
(𝑥 − 𝜉)2}

𝑅

𝑑𝜉
𝑆

 

×
1

√𝑖2𝜋𝑧
∫ 𝑓(𝜉′)exp {

𝑖

2𝑧
(𝑥 − 𝜉′)2}

𝑅

𝑑𝜉′𝑑𝑥 

= ∫ ∫ 𝐾𝑆(𝜉, 𝜉′)𝑓∗(𝜉)𝑓(𝜉′)
𝑅𝑅

𝑑𝜉′𝑑𝜉, (7) 

where the kernel function 𝐾𝑆(∙,∙) is defined by 

𝐾𝑆(𝜉, 𝜉′) =
1

2𝜋𝑧
exp {−

𝑖

2𝑧
(𝜉2 − 𝜉′2)} 

× ∫ exp {
𝑖

𝑧
(𝜉 − 𝜉′)𝑥}

𝑆

𝑑𝑥.          (8) 

We seek the function 𝑓(𝜉)  that maximizes 𝑃𝑆 

provided that the total power 𝑃𝑅  is fixed. This 

problem is a variational one with an accessory 

condition. We use the method of Lagrange multiplier 

to solve this problem. 

Let us define two functions, 𝐻(𝜉)  and 𝐺(𝜉)  as 

followings. 

𝐺(𝜉) ≡ ∫ 𝑓(𝜉)𝑓∗(𝜉)
𝑅

𝑑𝜉 − 𝑐𝑜𝑛𝑠𝑡.       (9) 

𝐻(𝜉) ≡ ∫ |𝑔(𝑥)|2

𝑆

𝑑𝑥 

= ∫ ∫ 𝐾𝑆(𝜉, 𝜉′)𝑓∗(𝜉)𝑓(𝜉′)
𝑅𝑅

𝑑𝜉′𝑑𝜉.    (10) 
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We want to maximize the function 𝐻(𝜉), subject to 
the constraint 𝐺(𝜉). Setting λ the Lagrange multiplier, 
Lagrangian functional is defined by 

𝐿(𝜉) ≡ 𝐻(𝜉) − λ𝐺(𝜉).                    (11) 
We set the gradient of Lagrangian to zero, that is, 

∇𝐿(𝜉) = ∇𝐻(𝜉) − λ∇𝐺(𝜉) = 0,      (12) 

where ∇ indicate the gradient. 

By Eq. (7) and Eq. (9), we obtain 

∫ 𝐾𝑆(𝜉, 𝜉′)𝑓∗(𝜉)𝑓(𝜉′)
𝑅

𝑑𝜉′ 

−λ𝑓(𝜉)𝑓∗(𝜉) = 0.                 (13) 

We conclude that 

∫ 𝐾𝑆(𝜉, 𝜉′)𝑓(𝜉′)
𝑅

𝑑𝜉′ = λ𝑓(𝜉).           (14) 

This is the Fredholm integral equations of the first 

kind. This equation corresponds to some modification 

of the integral equation for prolate spheroidal wave 

functions (Slepian and Pollak, 1961). 

According to Eq. (7), we can write 

∫ ∫ 𝐾𝑆(𝜉, 𝜉′)𝑓∗(𝜉)𝑓(𝜉′)
𝑅𝑅

𝑑𝜉′𝑑𝜉 

= ∫ |
1

√𝑖2𝜋𝑧
∫ 𝑓(𝜉)exp {

𝑖

2𝑧
(𝑥 − 𝜉)2} 𝑑𝜉

𝑅

|

2

𝑑𝑥
𝑆

 

≥ 0.                                (15) 

Therefore, the kernel 𝐾𝑆(𝜉, 𝜉′)  of the integral 

equation is positive definite. 

To prove the eigenvalues of above integral equation 

are nonnegative, it is necessary to show λ‖𝜑‖ ≥ 0.  

In this case λ is an eigenvalue, φ is an eigenvector 

and ‖∙‖ indicates the norm in Hilbert space (Yosida, 

1980). Therefore, by replacing 𝑓(𝜉)  with φ(𝜉)  and 

taking Eq. (14) into consideration, we can write 

 

Figure 2: Absolute values of the kernel of the integral 

equation. Variable ‘a’ is the non-zero region on Fresnel 

transform plane, i.e. |x|≤a. 

λ ∫ |𝜑(𝜉)|2𝑑𝜉
𝑅

 

= ∫ ∫ 𝐾𝑆(𝜉, 𝜉′)𝜑∗(𝜉)𝜑(𝜉′)𝑑𝜉𝑑𝜉′

𝑅𝑅

 

= ∫ |
1

√𝑖2𝜋𝑧
∫ 𝜑(𝜉)exp {

𝑖

2𝑧
(𝑥 − 𝜉)2} 𝑑𝜉

𝑅

|

2

𝑑𝑥
𝑆

 

≥ 0.                                (16) 

 

Therefore, the eigenvalues of the integral equation are 

nonnegative and real number. 
Let us consider the kernel of the integral equation. 

If object plane and Fresnel transform plane are 
bounded by finite regions, the kernels of the integral 
equation are calculated analytically as the kernel 
function. We set the finite region 𝑆  in Fresnel 
transform plane −a ≤ 𝑥 ≤ a. 

𝐾[−𝑎,𝑎](𝜉, 𝜉′) =
1

2𝜋𝑧
exp {−

𝑖

2𝑧
(𝜉2 − 𝜉′2)} 

× ∫ exp {
𝑖

𝑧
(𝜉 − 𝜉′)𝑥}

𝑎

−𝑎

𝑑𝑥 

=
1

𝜋(𝜉 − 𝜉′)
exp {−

𝑖

2𝑧
(𝜉2 − 𝜉′2)} 

× sin (
𝜉 − 𝜉′

𝑧
𝑎).                     (17) 

Figure 2 shows the absolute value of the kernel in Eq. 

(17). In this case we set 𝑧 = 1. 

Let us consider the complex conjugate of the kernel 

of the integral equation. 

𝐾[−𝑎,𝑎](𝜉, 𝜉′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝜋(𝜉 − 𝜉′)
exp {

𝑖

2𝑧
(𝜉2 − 𝜉′2)} 

× sin (
𝜉 − 𝜉′

𝑧
𝑎) 

=
−1

𝜋(𝜉′ − 𝜉)
exp {−

𝑖

2𝑧
(𝜉′2 − 𝜉2)} 

× (−1)sin (
𝜉′ − 𝜉

𝑧
𝑎) 

=
1

𝜋(𝜉′ − 𝜉)
exp {−

𝑖

2𝑧
(𝜉′2 − 𝜉2)} sin (

𝜉′ − 𝜉

𝑧
𝑎) 

= 𝐾[−𝑎,𝑎](𝜉′, 𝜉)                  (18) 

Therefore, the kernel is of Hermitian symmetry. 

4 COMPUTER CALCULATION 

4.1 Eigenvalues and Eigenvectors 

It is difficult in general to seek the strict solution of 

the integral equation. So we desire to seek the 

approximate solution in practical exact accuracy 

(Kondo, 1954). By discretizing the kernel function 

and using the value of the representative points, we 

can write 
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∑ 𝐾𝑖𝑗𝑥𝑗

𝑁

𝑗=1

= 𝜆𝑥𝑖 ,                   (19) 

where 𝑖 , 𝑗  are the natural number, 1 ≤ 𝑖 ≤ 𝑀 . The 

matrix 𝐾𝑖𝑗  is the Hermitian matrix if the kernel is 

discretized evenly-spaced and 𝑀 = 𝑁. Therefore, the 

eigenvalue problems of the integral equation depend 

on a one of the Hermitian matrix in finite dimensional 

vector space. However, although the diagonal 

elements of the matrix are indeterminate form, we 

seek the limit value. If 𝜉 = 𝜉′, we can write  

lim
𝜉→𝜉′

𝐾[−𝑎,𝑎](𝜉, 𝜉′) 

= lim
𝜉→𝜉′

1

𝜋
exp(𝜉 − 𝜉′)

sin {
𝑎
𝑧

(𝜉 − 𝜉′)}

𝜉 − 𝜉′
.  (20) 

We can replace 𝜉 − 𝜉′ with 𝑋. 

lim
𝜉−𝜉′

𝐾[−𝑎,𝑎](𝜉, 𝜉′) = lim
𝑋→0

1

𝜋
exp(0)

sin {
𝑎
𝑧

𝑋}

𝑋
 

=
1

𝜋
exp(0) lim

𝑋→0

sin {
𝑎
𝑧

𝑋}

𝑎
𝑧

𝑋

𝑎

𝑧
 

=
1

𝜋

𝑎

𝑧
lim
𝑋→0

sin {
𝑎
𝑧

𝑋}

𝑎
𝑧

𝑋
=

𝑎

𝜋𝑧
.               (21) 

In general finite dimensional vector spaces (ℂ𝑛), the 

eigenvalues of Hermitian matrix are real numbers and 

then eigenvectors from different eigenspaces are 

orthogonal (Anton and Busby, 2003). 

We use the Jacobi method to compute eigenvalues 

and eigenvectors of the matrix (Press et al., 1992). 

Jacobi method is a procedure for the diagonalization 

of complex symmetric matrices, using a sequence of 

plane rotations through complex angles (Seaton, 

1969). It works by performing a sequence of 

orthogonal similarity updates 𝐴 ← 𝑄𝑡𝐴𝑄  with the 

property that each new 𝐴  is more diagonal than its 

predecessor. In this update 𝑄 is an orthogonal matrix. 

Eventually, the off-diagonal elements are small 

enough to be declared zero (Golub and Van Loan, 

1996). Finally, it can calculate all eigenvalues and 

eigenvectors. 

Figure 3 shows the eigenvalues in descending order, 

if z is 1.0, 2.0 and 3.0. They are nonnegative and real 

number. Figure 4 shows the real part of the 

eigenvectors for the largest eigenvalue. Because of 10 

dimensional vector space, except for this, there are 9 

eigenvectors. Figure 5 shows the imaginary part of 

the eigenvectors for the largest eigenvalue. In this 

case, the finite region S in Fresnel transform is |𝑥| ≤
3.0. Its vector space is spanned by these eigenvectors. 

 

 

Figure 3: Plots of the eigenvalues in descending order. 

a=3.0. 

 

Figure 4: Plots of the eigenvectors for the largest eigenvalue. 

Its real part. a=3.0. 

 

Figure 5: Plots of the eigenvectors for the largest eigenvalue. 

Its imaginary part. a=3.0. 

4.2 Evaluation of Functions 

We consider the application of the above eigenvectors 

to the problem of approximating a function. 

Theoretically, we deal with a problem of expressing 

an arbitrary element on a finite 𝑁 -dimensional 

Hilbert space 𝐻𝑁 with an orthonormal basis. 
 In 𝐻𝑁 , every element can be expressed as a linear 
combination of orthonormal basis (Reed and Simon, 
1972). For any element 𝒗  in 𝐻𝑁 , by using 
orthonormal basis {𝜓𝑛}𝑛=1

𝑁 , we can write 
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𝐈 = ∑|𝜓𝑛⟩⟨𝜓𝑛|

𝑁

𝑛=1

,                     (22) 

and 

|𝒗⟩ = 𝐈|𝒗⟩ = ∑⟨𝜓𝑛|𝒗⟩|𝜓𝑛⟩

𝑁

𝑛=1

,             (23) 

where 𝐈  indicates an identity operator and ⟨∙ | ∙⟩  is a 

bracket. 

Now, we set 𝑁 = 10. Let us consider the set ℂ10 of 

all 10-tuples 

𝒗 = (𝑣1, 𝑣2, ⋯ , 𝑣10),                     (24) 

where 𝑣1, 𝑣2, ⋯ , 𝑣10  are complex numbers. 
Figure 6 shows the original test vector in ℂ10, which 

real part is (0, 0, 1, 1, 1, 1, 1, 1, 0, 0) and imaginary 

part is all zero. Figure 7 shows another original test 

vector in ℂ10, which real part is (0, 0, 0.5, 1, 0.5, -0.5, 

-1, -0.5, 0, 0) and imaginary part is all zero. Figure 8 

shows third original test vector in ℂ10, which real part 

is (0, 0, 0.5, 1, 0.5, -0.5, -1, -0.5, 0, 0) and imaginary 

part is (0, -0.5, -0.5, -0.5, 0, 0, 0.5, 0.5, 0.5, 0). The 

eigenvectors which are calculated by the Jacobi 

method are automatically orthonormal. So, by using 

Eq. (23), we have evaluated the error between the 

original test vector and the approximating vectors 

which are consisted of the eigenvectors. Figure 9 

illustrates the mean square error versus the number of 

eigenvectors. The mean square error is defined by 

Error(𝑛) =
‖𝒗𝑛 − 𝒗‖2

‖𝒗‖2
,                   (25) 

where 𝒗𝑛  is the sum in Eq. (23) up to 𝑛 , 𝒗  is the 

original vector, and ‖∙‖2 is the ℓ2-norm. From Fig. 9, 

we can see that the error decreases with increasing 

number of eigenvectors used in the expansion. The 

problem of time consuming arises with increasing 

vector dimension. 

 

Figure 6: Example 1: Plots of the real parts of the original 

test vector.  

 

Figure 7: Example 2: Plots of the real parts of the original 

test vector. 

 

Figure 8: Example 3: Plots of the original test vector. Filled 

squares indicate the imaginary part. 

 

Figure 9: Plots of the normalized mean square error versus 

the number of eigenvectors. 

5 CONCLUSIONS 

We have sought the function that its total power is 

maximized in finite Fresnel transform plane, on 

condition that an input signal is zero outside the 

bounded region. We have showed that this leads to 

the eigenvalue problems of Fredholm integral 

equation of the first kind. By discretizing the kernel 

and using the value of the representative points, the 

problem depends on the eigenvalue problem of 

Hermitian conjugate matrix in finite dimensional 
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vector space. By using the Jacobi method, we 

compute the eigenvalues and eigenvectors of the 

matrix. Furthermore, we applied it to the problem of 

approximating a function and evaluated the error. We 

confirmed the validity of the eigenvectors for the 

Fresnel transform by computer simulations. In this 

study, there are many parameters, especially, band-

limited area 𝑆, 𝑅, and 𝑧. It is necessary to consist of 

orthogonal functional systems with the optimal 

parameters for finite Fresnel transform in application 

of an optical system. In our Hermitian matrix, its 

elements depend on the parameter a/𝑧 . It is 

necessary to reveal the property of the matrix with 

such parameter and its effect of the eigenvalues and 

the eigenvectors. Moreover, in general, the matrix 

given by discretizing the kernel of the integral 

equation is not the Hermitian matrix. If so, it is 

difficult to compute accurately all eigenvalues and 

eigenvectors. It is also necessary to consider other 

computational methods for this. These become the 

future problems. In our further problem, theoretically, 

it is important to search for a spectral representation 

of finite Fresnel transform in Hilbert space. 
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