
System Protection Agent Against
Unauthorized Activities via USB Devices

José Oliveira1,2, Miguel Frade3,2 and Pedro Pinto1,4

1Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
2Computer Science and Communication Research Centre (CIIC), Polytechnic Institute of Leiria, Portugal

3DEI ESTG, Portugal
4INESC TEC, Porto, Portugal

Keywords: USB, BadUSB, Microsoft Windows.

Abstract: Security attacks using USB interfaces and devices are becoming more advanced, which boost efforts to develop
counter measures in order to protect systems and data. One of the most recent attacks using USB devices is
the BadUSB attack, performed by spoofing the device’s firmware and allowing the attackers to execute a set of
malicious actions, e.g. an USB storage device could be mounted as USB keyboard in order to inject malicious
scripts into the system. This paper proposes a protection agent against BadUSB attack developed for Windows
operative systems. It allows a user to check the class of an USB device ready to be mounted, though enabling
the detection of a potential attack if the expected functionality of the device does not match with its class type.
The results show that the proposed protection agent is capable of detecting potential intrusions by blocking
the installation of the device, scanning the device for something that identifies it, searching for a description
locally and finally warning the user about the device meaning that all devices must be approved by the user
when plugged in if the system protection agent is running.

1 INTRODUCTION

Nowadays there are many kinds of malicious hard-
ware, such as back-doored network devices, back-
doored firmware of devices (printers, hard drives,
etc), keyloggers and many others. For the purpose of
this work we focused only on Universal Serial Bus
(USB) devices. USB devices are of special inter-
est due to its high availability and also often require
less user interaction to install, or no interaction at all.
These characteristics enable USB devices to offer a
large attack surface on computer systems (Jodeit and
Johns, 2010).

In (Crenshaw, 2011) four categories are used to
classify malicious USB devices, namely:

1. USB Mass Storage devices containing malware
(malicious software);

2. U3 smart drives with malicious auto-run pay-
loads;

3. Hardware key loggers

4. Programmable Human Interface Device (HID)
USB Keyboard Dongle devices.

However, new types of devices have appeared
since 2011 and thus, we propose the following up-
dated set of categories:

1. USB Mass Storage devices containing malware;

2. U3 smart drives with malicious payloads;

3. USB devices in the Middle (USBiM);

4. USB with Programmable HID;

5. Denial of Service USB device;

The updated set of categories are based on those
proposed in (Crenshaw, 2011) where the first two cat-
egories are the same, the third and fourth categories
are renamed (to make them more general) and a fifth
category is included.

Devices that fall into the first category are the stan-
dard way to present external storage to an host Oper-
ating System (OS). USB storage devices can be used
as a way to inject malicious code to a computer (Ter-
diman, 2012; Walters, 2012) and, in case these de-
vices are shared between multiple computers, the ma-
licious code could be widely disseminated. In context
of Microsoft Windows OS, and as stated in (Sood and
Enbody, 2014), one of the most commonly exploited

Oliveira, J., Frade, M. and Pinto, P.
System Protection Agent Against Unauthorized Activities via USB Devices.
DOI: 10.5220/0006708502370243
In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (IoTBDS 2018), pages 237-243
ISBN: 978-989-758-296-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

237

vulnerability in this type of devices is the Windows
OS autorun, which allows to execute automatically
any code or software in a Windows OS.

The second category, ”U3 smart drives with mali-
cious payloads”, groups the devices that have a spe-
cial partition that is seen as a CD-ROM device when
the device is enumerated by the host. Like the de-
vices in the first category, these USB devices are also
used as a means to deliver malware. The device is
not malicious by itself, but it can contain files that
are malicious in nature. However, in a mass storage
USB device the infection might be accidental, but on
a U3 smart drive the infection is generally intentional
(Crenshaw, 2011).

The third category was renamed to ”USB devices
in the Middle (USBiM)” to be able to group all de-
vices that are inserted between a non malicious USB
device and the host computer. The most common de-
vices that fit this category are keyloggers; some of
these are sold as forensic tools (TechGuru, 2017),
however, other devices fit this category with malicious
purposes, such as printer loggers, or hardware USB
sniffers 1.

The fourth category, ”USB with Programmable
HID”, represents a relatively new kind of threat where
malicious code is embedded in device’s firmware to
request USB interfaces that usually are not mass stor-
age. This feature provides unacknowledged and mali-
cious functionality that lies outside the apparent pur-
pose of the device (Tian et al., 2015). The advan-
tage of these type of devices is that with a USB HID
it does not matter if autorun is disabled or not. By
default, most OS seem to automatically install and
configure USB HIDs as soon as they are inserted,
regardless of the privilege level of the current user.
Author in (Crenshaw, 2011) released a blog entry de-
scribing a programmable USB device that was capa-
ble of emulating a keyboard and ”typing” out com-
mands specified in a script stored on the device. This
technique allowed commands to be executed automat-
ically by emulating a known keyboard type and ven-
dor. Authors in (Cannon, 2010; Veres-Szentkiralyi,
2012; Benchoff, 2013) developed this concept to be
able to allow perform data exfiltration through the
USB-HID protocol. In 2016 (Kamkar, 2016) created
another type of programmable HID called PoisonTap.
This device uses a Raspeberry Pi Zero to emulate a
fast gigabit network card that is able to exfiltrate data,
even from locked computers.

Finally, the fifth category, ”Denial of Service USB
devices”, is proposed to group multiple devices that
have the malicious purpose to disrupt a service. One

1Project to build a hardware USB sniffer
https://github.com/dominicgs/USBProxy

example is the USB killer (USBKill.com, 2017) that
use the USB power lines to charge its capacitors, and
then discharge 200V DC over the data lines of the
host device, burning any circuit board that does not
provide electrical surge protection 2.

The current paper proposes a system protection
agent for Windows OS that focus into devices of the
fourth category by identifying the device functional-
ity and also, by scanning processes running on back-
ground originated from external devices. Devices
from categories one and two can also be addressed by
aiding the user to detect false USB devices, spoofed
firmware or other threats to the system that might oc-
cur from USB devices. Our proposed solution inter-
sects the operating system requests to install a de-
vice driver and hands over to the user the option to
white list or blacklist the device based on the identi-
fied functionalities by the HID.

This paper is organized as follows. Section 2
presents the actual techniques used for protection
against bad USB devices. Section 3 details the pro-
posed system protection agent for Windows Operative
System based on white listing of known good USB
devices technique. Section 4 presents the validation
procedures of the current proposal. Finally, section 5
presents the conclusions and future work.

2 BACKGROUND

Awareness of USB attacks is becoming more notice-
able, since these devices can be used effectively to
deploy malicious code in computers and networks
where they connected. USB drives are a known secu-
rity threat and they were already blamed for the instal-
lation of Conficker, a worm type of malware, on the
Manchester City Council computers in the year 2009
(Andreasson, 2011) (Greene, 2010). There are many
solutions to defend computer systems from malicious
USB devices, but none of them solves the problem ef-
fectively without affecting the performance of the sys-
tem or matching the end user requirements. We can
define five general categories of defense approaches:
• malicious software detection;

• disable autorun;

• behavior detection;

• physical block of USB ports;

• device installation restrictions;
Malicious software detection and disabling au-

torun are the most common defense approaches

2Video of USB Killer tests on different devices
https://youtu.be/faKX P1Be50

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

238

against malicious USB devices. These strategies work
well for USB Mass Storage devices and U3 smart
drives containing malicious payloads. According to
(Crenshaw, 2011) these storage based classes of USB
devices consist of two attack vectors. The autorun ca-
pabilities of different types of removable media make
them different than malware that spreads over a net-
work, or via a user deliberately choosing to run a
binary, but autorun is already disabled by default in
many modern OS. However, malware detection does
not work against USB devices that fall into the last
three categories of malicious devices.

Although some security software firms such as
Symantec (Ulanoff, 2014) have recommendations
about system protection against BadUSB attack, they
do not provide an effective solution for these type of
attacks.

A defensive mechanism against BadUSB attack
would allow the user to simply disable USB inputs,
notify user about a new plugged device, see what cur-
rent processes are being originated and warn the user
about it. Code signing for firmware updates could
also provide protection but only if the signed firmware
is modified. In this case, the device can not authen-
ticate the adulterated firmware and therefore will not
operate. On businesses, the threat is greater because
a thumb drive can travel lots of computers per month
or even the same day. Administrators can block USB
ports or they can install software such as Symantec
Endpoint Protection (Symantec, 2017) which has a
device control module to prevent USB devices from
mounting on the operating system (Ulanoff, 2014).
There are other platforms that can prevent BadUSB
attacks, such as Safend Protector, Sophos Endpoint
Security and many others. As seen in (Cheng, 2014),
another solution for BadUSB attacks is to adopt the
cloud which can be used as a storage method to share
information through the internet between company
members and possible partners. In GoodUSB (Tian
et al., 2015), the piece of code was capable of block-
ing the device and keep it waiting for user authen-
tication to proceed with the natural functions of the
device. It was a step further considering that it had its
own USB Honeypot mechanism focused on BadUSB
attack profiling.

Current paper proposes a protection agent against
BadUSB attacks. This agent identifies the class of the
USB device connected to the computer with Windows
Operating System, and allows the user to block it
based on the expected device type. During the driver
installation, Windows Operating System obtains in-
formation from the device such as hardware ID and
the compatible ID and searches a INF file with more
details about the driver. If a driver as already be as-

signed to the device than the device should start work-
ing after plugging in. If it is the first time plugging
the device, Windows Operating System uses the hard-
ware ID of the device for other manufacturer driver
and a compatible ID to search a generic driver for the
device. Finally, the protection agent will prompt the
user with the device requested interface after windows
finding out the INF file with driver information. To
the best of our knowledge, there are no free and open
source solutions to address this issue for the Windows
Operative Systems.

3 AGENT DEVELOPMENT

The proposed system protection agent maintained in
(Oliveira et al., 2017) is based on a set of functions
performed in specific stages regarding USB ports.
Windows OS generates notifications for every action
on USB ports and thus, this notifications can be cap-
tured by overriding a method called WndProc which
receives a number as a code for the event. As a new
device arrives, the system searches for it comparing
the results of Device Manager to an old list of devices
found in order to find out a new device added.

The protection agent also needs to separate work-
ing devices from the pending devices, usually, while
getting the class of the device, if the class is null it
will throw an exception since it has not been assigned
yet. In this case, the device is probably pending and
requires a driver. Devices who returned error are later
added to a list of pending devices. The list of pending
devices also needs a filter to determine what type of
devices are relevant and irrelevant.

Although windows device manager separate de-
vices according to their class as seen in Figure 1, the
proposed protection agent selects specific USB de-
vices by filtering devices by their hardware ID (i.e.
the three first characters of the hardware id should be
USB or HID).

Figure 1: Device manager separating devices according to
functionality.

For driver installation the system scans two sep-
arate folders where windows stores the inf files con-

System Protection Agent Against Unauthorized Activities via USB Devices

239

taining the driver information. These inf files can be
opened as a txt file and are scanned in search for spe-
cific keywords that help us determine what interface is
the device asking. By searching the driver details in-
stead of just installing it, allows the end user to know
what type of device is connected to the computer.

In Figure 2 it is presented an overall schema of
the three stages used by our agent proposal. First the
agent will block the device installation on Registry,
then it will perform device detection and last, it will
install the driver for a specific device manually. These
stages are detailed in the next sections.

Figure 2: Functional Steps Performed by Protection Agent.

3.1 Registry

The Registry is a system database where system com-
ponents and some applications retrieve stored infor-
mation about configuration data (Fisher, 2017). This
information varies according to the version of Win-
dows OS. The registry stores information about user
preferences, configurations for the operating system,
software, hardware devices and many others. As Win-
dows OS modifies the list of installed devices, soft-
ware or any other object on the system, new values on
registry will be added, edited or even removed. Win-
dows OS installs drivers automatically without asking
for user permission, this is a vulnerability that some
malicious devices use to get inside Windows OS and
inject malicious code.

If the host has a Pro version of Windows OS, there
is an option to prevent the installation of Plug and
Play devices in the Local Group Policy Editor. We can
mimic that procedure by adding a specific key to the
registry that denies device installation and using this
agent instead to install drivers manually with a more
user friendly interface. This originates a new prob-
lem, by blocking installation of all devices we are not
just blocking USB devices but all types of devices.
To solve this, we implemented a GateKeeper which
is a simple mechanism that works basically with the
same logic as the GateKeeping Theory. The Gate-
Keeping Theory, originally created by Kurt Zadek
Lewin (1890-1947), a Psychologist and pioneer in
Social Psychology, was first time used to describe
a wife buying food, selecting what food should end
up on the dinner table and what should not (Roberts,
2005). Most commonly adopted by the media that de-
termines what information should be displayed to the
audience and what should not, this information can be
from different types such as policy, religion and so on.

Figure 3 presents the gatekeeping theory, where from
the list of total items some are selected and others re-
jected.

Figure 3: GateKeeping Theory, from the list of total items
to the selected ones and the rejected.

3.2 Device Detection

The applications on Windows OS can capture sys-
tem notifications if it registers itself using the method
RegisterUsbDeviceNotification, this way we are
able to know when a device is plugged in and the sys-
tem protection agent can proceed scanning the device.
Although we detect every device arrival, we do not
need to block those which do not communicate over
USB protocol; it was used the GateKeeping Theory.

We used Gatekeeping Theory explained in previ-
ous section to solve the issue of the previous registry
key that was blocking the installation of all devices
and made the system protection agent install automat-
ically devices by scanning the hardware, finding the
ID and comparing the resulting string value with USB
and HID.

3.2.1 WndProc

For every action that occurs on USB ports, win-
dows generates a notification that can be captured
by overriding a method called WndProc which is an
application-defined function that processes messages
set to a window and receives a code number for the
event. Multiple code numbers are specified such as
code number 0x0007 or DBT DEVNODES CHANGE ob-
tained when device added or removed, code number
0x0219 or WM DEVICECHANGE used to notify a change
of hardware configuration of a device or the computer,
and code number 0x8000 or DBT DEVICEARRIVAL ob-
tained when a new device gets plugged in.

When a new device is plugged in, the system
searches for it comparing the results of Device Man-
ager list of devices with an old list of devices found,
should a device repeat itself, the loop will skip the
iteration until it finds a new device and if it was actu-
ally plugged in or out. In other words, this protection

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

240

agent does not fetch a new device, it simply verifies
a difference between connected devices and, after the
WndProc function is called, the new list of connected
devices.

3.2.2 Device Enumeration with
ManagementObjectSearcher

ManagementObjectSearch collects management ob-
jects based on a query and is one of the most used
to retrieve management information. It can be used,
as an example, to enumerate the disk drives, network
adapters and other types of hardware, processes and
many other management objects on Windows. Af-
ter instantiated, an instance of this class uses a WMI
query (Microsoft, 2017a).

On context, a ManagementObjectSearch in-
stance will be used to get all devices connected to
Windows by using the Get() method. When this
method is invoked, ManagementObjectSearcher
runs the query and returns the collection of manage-
ment objects which should contain a list of all devices
on the system.

An instance of ManagementObjectSearcher can
be instantiated with different constructors but, on this
case, it only required a value of type string which con-
tained the query to get all the devices.

3.2.3 Windows Management Instrumentation
(WMI)

WMI (Microsoft, 2017c) is an infrastructure that al-
lows data management as well as other operations
such as task automation for windows based opera-
tive systems. According to Microsoft, WMI can be
used in all Windows-based applications and is very
useful in administrative scripts or even enterprise ap-
plications . The system is using WMI to retrieve data
from the devices using a specific class called win32
pnpentity. This class represents all the information of
a plug and play device and inside this class is a vari-
able which should tell the interface of the device.

In the Figure 4 it is presented a system internal
flow diagram. For each device that this system is able
to retrieve, a new object is created to save all the in-
formation of the device. The class used for this object
contains information about the device, such as class,
name, ID and others which, in case of the blocked
device, should appear empty and only have the hard-
wareID and the compatibleID.

3.2.4 Searching for INF

The system protection agent uses a simple function to
search the correct inf for the captured device. It scans

Figure 4: System internal flow diagram.

two different folders:

1. INF

2. FileRepository

The first folder is where the agent starts scanning first,
opening any folders inside and searching for all the
files with extension ”.inf”. For every file with this ex-
tension, the system will read all the lines and check
for the hardware ID or the compatible ID of the de-
vice. Once the system detects a match between the
hardware ID or compatible ID of the device with a
peace of the line, meaning that the line contains a
string with one of those IDs, it adds the file full path
to a list of strings that stores every compatible INF
location.

In order to find the true identity of the device,
this system protection agent searches on those pos-
sible INF files for specific keywords such as SvcDesc
which should help determine the identity of the de-
vice. As an example, a thumb drive should be recog-
nized as a USB storage device according to the infor-
mation obtained from this line:
USBSTOR.SvcDesc = "USB Mass Storage
Driver"

System Protection Agent Against Unauthorized Activities via USB Devices

241

3.3 Install Driver

When in the stage of installing a driver, there is a func-
tion called UpdateDriverForPlugAndPlayDevices
that given a INF file and the hardware ID of a de-
vice this native function will install a driver for certain
device that uses USB protocol to communicate (Mi-
crosoft, 2017b). In the current proposal, the function
is called once the user accepts the device plugged in
after receiving information about interface. Whether
it is a keyboard, mouse or any other type of device, the
previous result (see Section 3.2 and Figure 4) should
return enough information about the device that the
user is trying to connect to the Windows Operative
system.

4 VALIDATION TESTS

The proposed protection agent was built and de-
ployed in a Windows 10 Pro Creators Update, ver-
sion 10.0.15063. After the execution of the protec-
tion agent the same was tested against many devices
such as thumb drives, keyboards, mice and pointing
devices, network adapters and other types of USB de-
vices. When plugged in, if allowed on the settings
panel, all tested USB devices triggered the graphi-
cal interface presented in Figure 5 enabling the user
to choose between the USB devices that are being
blocked in the system.

Figure 5: Device SvcDesc and INF location.

The proposed system protection agent was also
tested using an Open Source Android penetration test-
ing platform, capable of HID keyboard and BadUSB
Man-in-the-middle attacks, namely the Kali Linux
Nethunter (kali.org, 2017). As result, the agent suc-
ceeded in recognizing the pseudo device as a key-
board, blocked the device and requests from user fur-
ther instructions.

The performance of the current proposal depends
if the system protection agent finds a match between
hardware ID or compatible ID of the device on the

folder with the INF files. According to the OS ver-
sion, the amount of devices connected prior to the
first launch of this system protection agent, it can take
some milliseconds to find a match because the total
number of INF files will probably not be the same in
every computer. Printing the current file path to the
console while scanning the files will also result on a
delay between device connection and possible class
notification and therefore the output on the console is
only used for testing purposes.

5 CONCLUSIONS AND FUTURE
WORK

Security attacks using USB interfaces and devices im-
pose high risks to users and companies. In particu-
lar the BadUSB attack allows attackers to inject mali-
cious scripts into a target OS.

This paper proposes a protection agent against
BadUSB attack developed for Windows operative
systems. It allows a user to check the class of an USB
device ready to be mounted, though enabling the de-
tection of a potential attack if the expected function-
ality of the device does not match with its class type.

The results show that the proposed protection
agent is capable of detecting potential intrusions by
blocking the installation of the device, scanning the
device for something that identifies it, searching for a
description locally and finally warning the user about
the device meaning that all devices must be approved
by the user when plugged in if the system protection
agent is running.

In spite of the protection provided by the proposed
system agent, identifying and intercepting the instal-
lation of the devices drivers, there are limitations that
should be addressed as future work. There are some
performance issues that should also be improved and
an effective filtering should also be deployed for mul-
tiple USB devices. User interaction with the proposed
system agent can also be improved in order to facil-
itate the user decision. The current implementation
still relies on the user knowledge to allow or block
the device installation and thus, there is the real risk
that malicious devices are wrongly accepted, poten-
tially harming the system.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their
detailed comments that helped to improve this paper.

The authors acknowledge the support by

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

242

Fundação para a Ciência e a Tecnologia (FCT)
through the Computer Science and Communication
Research Centre (CIIC), Portugal.

REFERENCES

Andreasson, K. J. (2011). Cybersecurity: public sector
threats and responses. CRC Press.

Benchoff, B. (2013). Extrating data with USB
HID. Website accessed on 2017-10-10
(https://hackaday.com/2013/01/26/extracting-data-
with-usb-hid/).

Cannon, T. (2010). Data leak prevention by-
pass. Website accessed on 2017-10-10
(http://thomascannon.net/dlp-bypass/).

Cheng, N. (2014). Protect against badusb with mobile
cloud storage. Website assessed on 2017-10-06
(https://chaione.com/blog/protect-badusb-cloud-
storage/).

Crenshaw, A. (2011). Plug and prey: Malicious usb devices.
Proceedings of ShmooCon.

Fisher, T. (2017). What is the Windows Reg-
istry? Website assessed on 2017-10-06
(https://www.lifewire.com/windows-registry-
2625992).

Greene, T. (2010). Conficker worm takes Manchester police
offline for three days. Website assessed on 2017-10-06
(http://www.computerworlduk.com/security/conficker-
worm-takes-manchester-police-offline-for-three-
days-18640/).

Jodeit, M. and Johns, M. (2010). Usb device drivers: A
stepping stone into your kernel. In Computer Net-
work Defense (EC2ND), 2010 European Conference
on, pages 46–52. IEEE.

kali.org (2017). Kali linux nethunter for nexus
and oneplus. Website accessed on 2017-10-13
(https://www.kali.org/kali-linux-nethunter/).

Kamkar, S. (2016). PoisonTap – exploiting locked com-
puters over usb. Website accessed on 2017-10-10
(https://samy.pl/poisontap/).

Microsoft (2017a). ManagementObjectSearcher. Website
assessed on 2017-10-06 (https://msdn.microsoft.
com/en-us/library/system.management.management-
objectsearcher(v=vs.110).aspx).

Microsoft (2017b). UpdateDriverForPlugAndPlayDe-
vices function. Website assessed on 2017-10-08
(https://msdn.microsoft.com/en-us/library/windows/
hardware/ff553534(v=vs.85).aspx).

Microsoft (2017c). Windows Management Instru-
mentation. Website assessed on 2017-10-
06 (https://msdn.microsoft.com/en-us/library/
aa394582(v=vs.85).aspx).

Oliveira, J., Pinto, P., and Frade, M. (2017). usb-
whitelisting. DOI:10.5281/zenodo.1009691
https://doi.org/10.5281/zenodo.1009691.

Roberts, C. (2005). Gatekeeping theory: an evo-
lution. Website accessed on 2017-10-13
(http://www.reelaccurate.com/about/gatekeeping.pdf).

Sood, A. and Enbody, R. (2014). Targeted cyber attacks:
multi-staged attacks driven by exploits and malware.
Syngress.

Symantec (2017). Endpoint Protection - Machine Learning
Security | Symantec. Website assessed on 2017-10-06
(https://www.symantec.com/products/endpoint-
protection).

TechGuru (2017). Reviews of the best USB key-
loggers. Website accessed on 2017-10-10
(https://nerdtechy.com/reviews-best-usb-keyloggers).

Terdiman, D. (2012). Stuxnet delivered to Iranian nuclear
plant on thumb drive. (Worm). Website assessed
on 2017-10-06 (https://www.cnet.com/news/stuxnet-
delivered-to-iranian-nuclear-plant-on-thumb-drive/).

Tian, D. J., Bates, A., and Butler, K. (2015). De-
fending against malicious usb firmware with
goodusb. In Proceedings of the 31st Annual
Computer Security Applications Conference,
ACSAC 2015, pages 261–270, New York, NY,
USA. ACM. DOI:10.1145/2818000.2818040,
(http://doi.acm.org/10.1145/2818000.2818040).

Ulanoff, L. (2014). How you can avoid a badusb
attack. Website assessed on 2017-10-06
(http://mashable.com/2014/10/03/how-can-you-
avoid-badusb/).

USBKill.com (2017). USB kill v3. Website accessed on
2017-10-10 (https://usbkill.com/products/usb-killer-
v3).

Veres-Szentkiralyi, A. (2012). Leaking data using DIY
USB HID device. Website accessed on 2017-10-
10 (http://techblog.vsza.hu/posts/Leaking data using
DIY USB HID device.html).

Walters, P. (2012). The Risks of Using Portable Devices. In
United States Computer Emergency Readiness Team.

System Protection Agent Against Unauthorized Activities via USB Devices

243

