
A Security Model for Dependable Vehicle Middleware and Mobile
Applications Connection

Shengzhi Zhang1, Omar Makke2, Oleg Gusikhin2, Ayush Shah2 and Athanasios Vasilakos3
1Florida Institute of Technology, Melbourne, Florida, U.S.A.

2Ford Motor, Detroit, Michigan, U.S.A.
3LTU, Luleå, Sweden

Keywords: Cyber Security, Infotainment, Mobile Application, IoT.

Abstract: Nowadays automotive industry has been working on the connectivity between automobile and smartphones,
e.g., Ford’s SmartDeviceLink, MirrorLink, etc. However, as the interoperability between the smartphone and
automotive system increase, the security concern of the increased attack surface bothers the automotive
industry as well as the security community. In this paper, we thoroughly study the attack vectors against the
novel connection framework between automobile and smartphones, and propose a generic security model to
implement a dependable connection to eliminate the summarized attack vectors. Finally, we present how our
proposed model can be integrated into existing automotive framework, and discuss the security benefits of
our model.

1 INTRODUCTION

As nowadays vehicles move towards increased
connectivity, automotive manufacturers have started
integrating more software modules inside the vehicle.
Software modules and connectivity open up the door
towards giving the passenger/driver a seamless
experience and increasing safety while driving the
vehicle. For instance, mobile applications can
leverage vehicle data, for example, tire pressure or
fuel level and assist the driver in finding the next gas
station. Such type of connectivity from cloud/mobile
devices to vehicles is implemented by introducing
middleware technologies which reside within the
vehicle’s head unit, such as SmartDeviceLink,
Entune, MirrorLink, Android Auto, CarPlay and so
on. Each of these technologies has a middleware
software module to extend mobile applications
features to the vehicle. Such connectivity offers
drivers to use intelligent assistant like Siri to read text
messages, make calls, start navigation, launch and
interact with applications. News agencies like
National Public Radio (NPR) can read news directly
in the Ford vehicle via AppLink (Ford’s
implementation of SmartDeviceLink) (npr.org,
2012). GM’s Middleware like NGI gives access to
more than 350 data points in the vehicles like
suspension, vehicle speed, fuel level, tire pressure,

and so on (developer.gm.com, 2017). Further,
middleware like Android auto, CarPlay and
MirrorLink offer users the great convenience of using
the projection, a technique that allows mobile
applications to project the navigation or even create a
customized user interface on vehicle head unit
display. Such an improvement in connectivity
increases safety by allowing drivers to keep hands on
the wheel and eyes on the road. However, such
connectivity to the vehicle also gives a path to the
malicious application developers and hackers to
penetrate into these connected vehicles and try to
compromise the driver’s privacy or various vehicle
modules.

Automotive security issues were brought up by
the research that demonstrated the possibility of
hacking vehicles by injecting commands into the
Controller Area Network (CAN) bus. By either
physical access (typically via the OBD port
connection as in (Koscher et al., 2010)) or remote
access (mostly through Multimedia Head Unit or
Telematics as in (Checkoway et al., 2011)) to the
vehicle, researchers successfully controlled a wide
range of automotive functionalities such as disabling
the brake, stopping the engine, etc. Recently, the
remote hacking on an unaltered passenger vehicle
further convinced automobile manufacturer as well as
the general public the reality of remote exploitation

Zhang, S., Makke, O., Gusikhin, O., Shah, A. and Vasilakos, A.
A Security Model for Dependable Vehicle Middleware and Mobile Applications Connection.
DOI: 10.5220/0006704903790386
In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2018), pages 379-386
ISBN: 978-989-758-293-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

379

without physical access to the vehicle (Miller and
Valasek, 2013). With the integration of vehicle
middleware into head unit system to enable mobile
application connection, the attack surface for the
hackers to manipulate the vehicle will be enlarged,
e.g., compromising mobile phone to control vehicles,
hijacking communication between mobile phone and
head unit systems, etc.

In order to guard the new functionality (vehicle
middleware) provided by automotive manufacturers,
we first performed a thorough study of potential
attack threats against such the deployed middleware.
Then we proposed a novel security model that
integrates cryptography, network security, system
security approaches to eliminate the above
summarised threats. Such security model is well
compatible with existing implementation of such
middleware by vehicle manufacturer like Ford’s
SmartDeviceLink, etc., thus easy to be widely
deployed. Furthermore, it incurs little burden on
mobile application developers, and negligible
communication overhead for vehicle head units.

The rest of the paper is organised as follows.
Section 2 summarizes background of middleware
technologies available by various manufacturers.
Section 3 explores the potential attack vectors against
the vehicle with the mobile application connection
framework. In section 4, we propose our security
model to counter the attack vectors, and in section 5
we discuss the easy deployment of the proposed
security model to SDL. Finally, we conclude in
section 6.

2 BACKGROUND

Rapid adoption of mobile devices has led automotive
manufacturers to integrate a middleware layer into
vehicles to connect the mobile device with the vehicle
ecosystem. There are many middleware technologies
available currently, such as AppLink by Ford,
HondaLink by Honda, MirrorLink by Car
Connectivity Consortium, SmartDeviceLink by
Smart Device Link Consortium, Apple’s CarPlay,
Google’s Android Auto. The purpose of developing
such middleware is to keep drivers’ hands on the
wheel and eyes on the road.

The middleware provides an interface for mobile
applications to communicate with the vehicle
modules. The middleware can display the compatible
mobile applications on the vehicle’s HMI and can
allow the driver to interact with it through voice and

natural language, or even through touch screen.
Automotive manufacturers, with support from the
advancements of the operating systems capabilities
and the hardware of the mobile devices, have
implemented this middleware with use of Remote
Procedural Calls (RPC) and Projection technology.
Apple CarPlay, Android Auto, and MirrorLink use
projection to display a User Interface (UI) on the
vehicle HMI. In such implementation all the business
code and business logic resides in the mobile
application. For these applications using projection
technology, a prior approval is required by the owners
of the technology. For example, Apple has to approve
an application for projection use before it can be used
by CarPlay and downloaded through Apple App
Store. On the other hand, middleware such as
SmartDeviceLink and BlueLink (hyundaiusa.com,
2017) uses Remote Procedural Calls to initiate a
request. RPC Communication can be done over USB,
Bluetooth, or TCP/IP. Once the request is received by
the vehicle, the vehicle will perform corresponding
actions and send back a response or notification.

Furthermore, it is possible for the middleware to
communicate with brought-in and built-in sensors,
IoT devices and provide all the information to mobile
phone via Bluetooth (Yeung et al., 2017). The mobile
device can be connected to brought-in sensors and
IoT devices via Bluetooth Low Energy (BLE) e.g.,
changing climate control can be based on
measurements from wearable devices or dust sensors
(Yeung et al., 2017). Moreover, automotive
companies are introducing cloud services, such as
OnStar (Onstar.com, 2017), which connect each
vehicle to the cloud. Users can get vehicle details,
remote access vehicle, road assist and more. All
information is sent to mobile device from the vehicle
to mobile devices through cloud.

3 ATTACK VECTORS AGAINST
VEHICLE MIDDLEWARE

In this section, we summarize the potential threats of
deploying the vehicle middleware on the head units.

3.1 Mobile App Masquerading

The legitimate mobile applications, approved by the
vehicle manufacturer, can invoke the corresponding
middleware APIs to interact with vehicle, e.g.,
obtaining vehicle mechanical status, controlling
entertainment, etc. However, reverse engineering of
either Android apps or iPhone apps is possible

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

380

according to (Enck et al., 2011), (Gitbub.com, 2017),
etc. With the knowledge of the implementation of the
apps and the middleware APIs, it is straightforward
for attackers to either clone or repackage those
legitimate applications, and release their own
masqueraded apps on Google Play or Apple App
Store, which has been proved weak in detecting
cloned applications or repackaged applications
(Viennot et al., 2014), (Han et al., 2013), etc. Such
masqueraded apps with malicious logic by attackers
could leak vehicle status, manipulate vehicle
functionalities, and even impact vehicle safety.

3.2 Privilege Escalation

To ease the development of mobile applications, the
middleware APIs and the corresponding description
need to be available to developers. Depending on how
open different vehicle manufacturers would like their
middleware to be, some of the APIs can be quite
security-sensitive, thus deserving auditing before
invocation, while the others may not. If not properly
protected, such critical APIs could be invoked by a
malicious application in a hidden fashion even it is
not allowed to do so, e.g., dynamic loading of
functions during runtime has been used to
compromise Apple private Object C function calls
(Han et al., 2013).

Figure 1: Confused Deputy Attack for Mobile App and
Vehicle Middleware Connection.

Even worse, if there are other mobile applications
installed on the phone to interact with vehicle
middleware, a malicious application can launch
confused deputy attack. As shown in Figure 1, a
legitimate application B from trusted collaborator has
been approved by vehicle manufacturer to use
security-sensitive APIs. On the same mobile phone
with the above application B installed, a malicious
application A leverages a flawed design of B, e.g., an
open service, and successfully invokes the critical
APIs with the help of B, even if A itself does not have
such privilege.

3.3 Replay Attack

Replay attack can be launched by attackers to
intercept the communication in one session and
retransmit the messages in another session. For
instance, the permissions assigned by vehicle
manufacturer to the mobile application to use a subset
of vehicle middleware APIs can be intercepted by
attackers, and later reused in their own malicious
application. Another example is that the attacker can
intercept the middleware API requests from the
legitimate mobile application with permissions, and
later resend the requests to the middleware to receive
services.

3.4 Compromised Mobile Systems

As the prevalence of smartphones these years, the
attacks against such small but complicated devices
advance significantly. Researchers have identified a
large amount of vulnerabilities on both Android
(Wang et al., 2016), (Zhou et al., 2014), etc. and iOS (Han
et al., 2013), (Wang et al., 2013), etc. systems that allow
attackers to exploit and manipulate. Since the
legitimate mobile applications are running on the
mobile systems, either Android or iOS, the attackers
can exploit vulnerability in the mobile systems, and
then leverage the compromised systems to
manipulate the mobile application. Note that the
mobile system is running in a more privileged mode
than the mobile applications, so the attackers can
leverage a compromised system to manipulate the
application in various ways, e.g., intercepting the
middleware API calls from the application and
replaying, revising the communication between the
application and middleware, etc. Actually, protecting
the legacy application from a compromised system is
a challenging issue in the research community (Chen
et al., 2008), (Guan et al., 2017), etc.

3.5 Compromised Head Unit System

Similarly, the vehicle middleware is running on the
head unit system. Recently, researchers have
demonstrated the feasibility of either direct (Koscher
et al., 2010) or remote hacking into head unit system
(Checkoway et al., 2011), and then manipulating the
vehicle CAN. Since the head unit system is running
in a more privileged mode and also vulnerable to
remote exploitation, all the applications/services
including the middleware could be tampered
considering the system is compromised. The problem
of a compromised head unit system is even harder to
address, compared to that of the compromised mobile

A Security Model for Dependable Vehicle Middleware and Mobile Applications Connection

381

system. One reason is that it is relatively easier to
patch the mobile systems, considering most of the
smartphones are Internet-capable and can maintain
active as well reliable connection. However, not all
head unit systems are equipped with such capability.
Even if a vulnerability is identified and vehicle
manufacturer releases patch immediately, it might
exist in some vehicles for a long time till the vehicle
owner drives to the dealership for maintenance, then
the patch can be applied. Such a late patch leaves the
door open for the attackers to exploit the vulnerability
on vehicles head unit systems, and leverage them to
manipulate the middleware to easily control the
vehicle maliciously.

3.6 DoS or DDoS Attack

Denial of Service (DoS) or Distributed Denial of
Service (DDoS) attack can be launched by attackers
via various channels, if their goal is only to disturb
the routine service. Below we try to provide
taxonomy of DoS/DDoS attack:

 DoS Against Mobile Application: the
attackers can leverage the compromised mobile
system to discard the middleware API calls
from the legitimate mobile application, or the
compromised head unit system to reject
response for the API calls from the legitimate
mobile application.

 DoS Against Vehicle Control: the malicious
mobile application intensively invokes the
middleware API calls to query vehicle status,
thus flooding messages to vehicle CAN bus to
interference the vehicle control functionality,
or broadcasts messages to head unit screen to
disturb the regular display, e.g., navigation, etc.

 DDoS Against Vehicle Manufacturer:
vehicle manufacturer need to maintain a
facility (e.g., cloud servers) to involve some of
the following activities, e.g., releasing patches
for head unit systems, managing all end users’
credential, assigning permissions to invoke
various middleware APIs, or negotiating secret
keys with different parties to encrypt/decrypt
secure communication, etc. Attackers can
control a large amount of zombie machines,
even as simple as IoT (Internet of Things)
devices, to launch DDoS attack against vehicle
manufacturer facility, thus failing the
middleware functionality.

3.7 Man in the Middle Attack

As there are multiple stakeholders involved, like
vehicle manufacturer facility, mobile application,
vehicle head unit, attackers can “jump in the middle”
of the interaction between any two parties, and
pretend to be one party to the other involved party.
Such MITM (Man In The Middle) attack typically
can break communication semantics protected by
encryption/decryption. For instance, via MITM
attack, one can intercept the encrypted credential of
users when users initiate the connection with vehicle
manufacturer facility, or obtain the permissions to
invoke security-sensitive middleware APIs from the
requests of mobile applications and later reuse such
permissions in their own illegitimate application.

4 SECURITY MODEL

In this section, we present our proposed security
model for vehicle middleware, and discuss its
effectiveness of mitigating various threats mentioned
in the previous section.

4.1 Capability based API Management

Developers can be from vehicle manufacturers, their
collaborators, or other third parties to connect their
mobile applications to vehicle middleware to offer
various functionalities. Depending on the affiliation
of developers, some mobile applications can be fully
trusted, while the other may not. Furthermore, as
discussed above, some vehicle middleware APIs can
be quite security-sensitive, e.g., query vehicle
mechanic status, like velocity and location, etc., but
the others may not, e.g., tune the volume of speaker,
etc. Hence, it is critical to regulate the middleware
API usage by different applications based on how
much trust we can place on their developers. We
propose to use capability to protect the usage of
middleware APIs. Specifically, vehicle manufacturer
can define capabilities that are needed for the mobile
applications to call the middleware APIs on head unit.
We leave the definition of capabilities and the
corresponding middleware APIs to individual vehicle
manufacturer, who has better understanding of their
product and security requirements. It is suggested to
have a complete documentation of available
middleware APIs and their corresponding
capabilities. The vehicle manufacturer may deploy
cloud servers to manage the distribution of the
capabilities upon requests from developers for their
applications. The middleware core on the head units

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

382

needs to check the appropriate capability before
approving any API call from mobile applications.

4.1.1 Approving Capability Request

When receiving capability requests from mobile
application developer, manufacturer cloud server can
make decision based on the trustworthiness of the
developer, e.g., a legitimate collaborator or a third
party unknown developer, the reputation/rating of the
developer, etc. Different capabilities may require
different trust level or reputation of developers, which
can be defined flexibly by various manufacturers. In
order to prevent developers from requesting more
capabilities than needed by their application,
manufacturer can also demand them to submit the
application for review together with the capability
request. Once approved, the cloud server will respond
with the requested capabilities to the mobile
application, which can use them to invoke
corresponding middleware APIs during runtime. The
manufacturer cloud server also needs to choose a
unique AppID for the manufacturer with the
capabilities request. The manufacturer cloud needs to
record the AppID together with the approved
capabilities for later reference and management (like
expiration or update etc.). This AppID will be sent
back to application developer.

4.1.2 The Ownership of the Approved
Capabilities

The approved capabilities are the “tickets” to present
to the vehicle middleware when mobile applications
need to invoke the middleware APIs. However, the
attackers can steal such “tickets” from other mobile
applications if one developer does not have any or the
one they need. The stealth is feasible because
typically the approved capabilities need to be
included in the application package, which can be
easily obtained by downloading the application and
disassembling the package. Note that the AppID is the
unique identifier to distinguish different applications
from the manufacturer cloud servers, but it cannot
used to identify a particular application’s ownership
of capabilities. Such AppID is assigned to the
application by manufacturer cloud, thus also easy to
be obtained by attackers from application package to
launch masquerading attack.

We notice that the application name is unique on
the application store/market, which typically cannot
be changed after submitting application store for
review. Hence, it is required that the application name
needs to be sent to manufacturer cloud when

requesting capabilities. The approved capabilities
together with the unique AppID and application name
will be sent back to the dedicated application for
middleware API calls. The middleware SDK on
smartphone forwards the API calls together with the
above information to the middleware core on head
unit. Also it needs to retrieve the application’s name
from the smartphone system, and send it to the
middleware core as well. Then the middleware core
compares the application name retrieved by the
middleware SDK (indicating the identify of the
running application) and the one from the
manufacturer cloud (indicating the owner of the
approved capabilities). Hence, any mismatch implies
application masquerading attack.

4.1.3 Approved Capability Revocation

When application developers apply for capabilities
approval from manufacturer cloud, they also need to
indicate the period of validity they would like the
approved capabilities to be. Based on the trust level
of the application developers and the requested
capabilities, the manufacturer cloud approves the
capabilities request with the expiration time. It is the
developers’ responsibility to renew the capabilities
approval before expiration. Once the renewal request
is approved, the new tuple {application name, AppID,
approved capabilities, expiration time} with the
updated expiration time can be available to mobile
applications via update. If the application developers
need extra capabilities for new functionalities in their
mobile applications, they can follow similar
procedure as renewal. When the mobile application
initializes connection to the middleware core, the
middleware SDK should first pull the expiration
status from the manufacturer cloud to validate the
validity of the approved capabilities. If the approval
expires, the middleware SDK refuses connection
request to the middleware core and responds with a
capability expiration error.

4.1.4 Integrity of the Approved Capabilities

If the tuple {application name, AppID, approved
capabilities, expiration time} from the manufacturer
cloud is sent to the application developers in clear
text, attackers can steal it from other applications and
revise any item to over-privilege their own
applications. For instance, by changing the
application name in the tuple, the attackers can
pretend to be another application with the approved
capabilities. They can also manipulate the approved
capabilities or expiration time to over-privilege their
application in functionalities or period of validity.

A Security Model for Dependable Vehicle Middleware and Mobile Applications Connection

383

Figure 2: Security Model.

Hence, the tuple from the manufacturer cloud has to
be authenticated to preserve its integrity. Simply the
manufacturer cloud server can sign the tuple with its
private key, and the middleware core can verify the
signature with its public key. Hence, any revision to
the tuple from one who does not hold the private key
of cloud server will cause mismatched signature.

4.2 Workflow of the Model

Figure 2 demonstrates the workflow of the proposed
security model. Below we present the details of each
step.

0. The mobile application developers request
capabilities from manufacturer cloud, indicating
the set of middleware APIs they need to invoke.
Together with the request, they also send their
application’s name and expected validation time.

1. If the request is approved based on Section 4.1.1,
the manufacturer cloud server selects a unique
AppID for the application, and then build the
tuple {application name, AppID, approved
capabilities, expiration time}. It uses its private
key to sign the tuple, and send the tuple together
with the signature to the application developer.
The tuple is recorded by manufacturer cloud in
its policy for update management.

2. The application developers need to integrate the
tuple and the signature in their application
package. Then they publish their application in
the application store/market (via regular review
process if any).

3. The application package is downloaded into a
smartphone and installed.

4. Whenever the mobile application needs to invoke
middleware API call, it also sends the tuple and
the signature. For any new session, the
middleware SDK retrieves the application name
from smartphone system, and sends it together
with the tuple and signature to the manufacturer
cloud to verify expiration status.

5. Based on AppID, the manufacturer cloud queries
its policy database for the corresponding
expiration status and then sends back the
expiration information to the middleware SDK.

6. If the approval is still valid, the middleware SDK
sends API request, tuple and signature to
middleware core on head unit.

7. The middleware core verifies the signature and
the application name, and then responds the
request if verification succeeds.

8. Whenever possible, e.g., the head unit can be
connected to Internet or the vehicle is under
maintenance in dealership, the middleware core
can request any update of the middleware APIs
and the corresponding capabilities. The initial
setup of such configuration can be done before
the delivery of the vehicle.

9. The manufacturer cloud responds such update
request to the middleware core if any.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

384

4.3 Trusted Execution Environment
for the Middleware Core and the
Mobile Application

In Section 3.4 and 3.5, we discussed the compromised
systems running on smartphone or the head unit can
manipulate the execution of the mobile application or
the middleware core. Due to the common belief that
smartphone system and the head unit system are
vulnerable to remote exploitation, building a trusted
execution environment for security-critical programs,
e.g., the application, the middleware SDK, as well the
middleware core, is highly desired. Fortunately, most
smartphones and head units are running on ARM
processors, which recently released a hardware based
security extension, ARM TrustZone, partitioning
hardware and software resources for separate uses.
We have built a trusted runtime environment,
TrustShadow, based on TrustZone for legacy
applications on edge devices (Guan et al., 2017). The
TrustShadow prototype can be easily ported into the
proposed model, to protect the middleware core from
the untrusted head unit system, and the mobile
application as well as the middleware SDK from the
untrusted smartphone system. For example, we run
the middleware core and the corresponding device
driver interacting with CAN bus inside the built
trusted runtime environment, while the head unit
system runs outside. Intuitively, the communication
with the middleware SDK, CAN bus, and the
processing of the corresponding information should
be in the trusted runtime, protected by the hardware
partition from the system running outside. The
middleware SDK and the mobile applications can be
protected in a similar fashion.

5 DISCUSSIONS

In this section, we first introduce SmartDeviceLink,
an implementation of connection framework between
vehicle middleware and mobile phones, review trade-
off between privacy and convenience for fully
automated control applications, and finally present a
case study showing the effectiveness of the proposed
model against app masquerading attack.

5.1 SmartDeviceLink Example

SmartDeviceLink (SDL) is an open source
middleware framework led by Ford Motor. SDL
allows mobile application developer to implement an
in-vehicle experience for their users. To develop a

SDL compatible mobile application, application
developers would have to request the permissions that
their application will need, e.g., speed, GPS and so
on. Once the cloud servers approve the request,
developers can receive a unique AppID. The cloud
server maintains a global policy table mapping an
individual AppID with the approved permissions, and
share it with all the head unit systems. Then the
mobile application can use this unique AppID to
register with the vehicle middleware (SDL_CORE),
through the SDL API available in the software
development Kit (SDK) on the smart phones. Once
registered successfully, SDL_SDK will use this
APPID to generate any future RPC request to
SDL_CORE on behalf of the mobile application.
SDL_CORE would request for updated policy table
every time it connects to the Internet. Whenever there
is a new mobile application registering to
SDL_CORE, it would request policy table update
according to the AppID of the new application to
make decisions for the incoming API calls from the
application (Github.com, 2017).

5.2 Automated Control Applications

The mobile applications can be designed to support
fully automated control, to offer better user
experiences. For instance, such application can also
read user’s calendar from his/her mobile phone, and
automatically start corresponding settings on the
incoming vehicle when the uber drive is 5 minutes far
away. Moreover, for the users with a smart wearable
device with temperature sensor and heart rate
monitor, the application on mobile phone can read the
information and intelligently adjust the air
conditioning in the vehicle. Such application can also
request automobile head unit play music based on
mobile user’s personal preference, which can be
obtained on user’s mobile phone as well.

Utilizing the appropriate vehicle middleware APIs,
such kind of fully automated control applications can
be implemented. Enjoying the convenience offered
by such applications, mobile users should be warned
to pay attention to the information collected by such
applications, since most of the information can be
private and even sensitive. It is the mobile users’
decision to either agree or disagree with the
permission requirements made by such applications
when installing them on their mobile phones. The
security model proposed in this paper does not handle
the privacy leakage on users’ smartphone since that is
the issue for smartphone security.

A Security Model for Dependable Vehicle Middleware and Mobile Applications Connection

385

5.3 Attack Case Study

Below we present one case study to demonstrate how
the proposed security model can preserve the
dependable connection between vehicles and mobile
phones under Application Masquerading Attack. The
attackers can simply search for the applications that
can connect to the vehicle head unit, and download it
from Google Play. Through reverse engineering, they
can obtain the middleware API calls from the
application, as well as any confidential that the
application received from manufacturer cloud. With
such information, the attackers implement their own
application and pretend to be legitimate, but with
malicious logic that will leverage the middleware
APIs to manipulate the navigation functionality. With
our proposed security model, such attack is not
feasible. On one hand, the confidential received by
the mobile application contains its name, and is
signed by the manufacturer servers, which will be
detected by head unit middleware if modified by
attackers. On the other hand, the middleware SDK
extracts the application name from mobile phone
system directly, to check the ownership of the
confidential. In the scenario of this attack, mismatch
will be detected and the corresponding API calls from
the malicious application will be denied.

6 CONCLUSIONS

In this paper, we present a novel security model that
can initiate dependable connection between vehicle
systems and smartphones. In particular, such model
incurs minimal burden on mobile application
developers, and negligible communication overhead.
Our analysis and comparison with the existing
methods demonstrate that the proposed model is
effective in defeating most of the security threats that
are introduced by the new communication channel
between vehicle systems and smartphones.

REFERENCES

Developer.gm.com, 2017. Next Generation Infotainment.
[online] Available at: https://developer.gm.com/ngi.

Npr.org, 2012. Ford enables voice control of NPR app
delivering in-car, On-demand access to news, programs
and stations. [online] Available at: http://www.npr.org/
about/press/2012/010912.NPRAnnouncesFordSYNC.
html.

Miller, S. and Valasek, C. 2013. Remote Exploitation of an
Unaltered Passenger Vehicle, [online] Available at:
http://illmatics.com/Remote%20Car%20Hacking.pdf.

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T.,
Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,
Shacham, H. and Savage S. 2010. Experimental
security analysis of a modern automobile. IEEE
Symposium on Security and Privacy, pp. 447–462.

Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,
Shacham, H., Savage, S., Koscher, K., Czeskis, A.,
Roesner, A. and Kohno, T. 2011. Comprehensive
experimental analyses of automotive attack surfaces.
USENIX conference on Security.

Hyundaiusa.com, 2017. Hyundai Blue Link | 3 Years Free
on Eligible 2018 Models. [online] Available at:
https://www.hyundaiusa.com/bluelink/index.aspx.

Yeung, J., Makke, O., MacNeille, P. and Gusikhin, O. 2017.
SmartDeviceLink as an Open Innovation Platform for
Connected Car Features and Mobility Applications.
SAE Int. J. Passeng. Cars – Electron. Electr. Syst.
10(1):231-239.

Onstar.com, 2017. Home | OnStar. [online] Available at:
https://www.onstar.com/us/en/home.html.

Enck, W., Octeau, D., McDaniel, P. and Chaudhuri, S.
2011. A Study of Android Application Security.
USENIX conference on Security.

Gitbub.com, 2017. iOS reverse engineering. [online]
Available at: https://github.com/iosre/iOSAppReverse
Engineering.

Viennot, N., Garcia, E. and Nieh, J. 2014. A Measurement
Study of Google Play, ACM SIGMETRICS.

Han, J., Mon Kywe, S., Yan, Q., Bao, F., Deng, R., Gao,
D., Li, Y., and Zhou, J. 2013. Launching Generic
Attacks on iOS with Approved Third-Party
Applications, ACNS.

Wang, K., Zhang, Y. and Liu, P. 2016. Call Me Back!
Attacks on System Server and System Apps in Android
through Synchronous Callback. ACM CCS.

Zhou, X., Lee, Y., Zhang, N., Naveed, M. and Wang, X.
2014. The peril of fragmentation: Security hazards in
android device driver customizations. IEEE S&P.

Wang, T., Lu, K., Lu, L., Chung, S. and Lee, W. 2013.
Jekyll on iOS: When Benign Apps Become Evil.
USENIX Security Symposium.

Chen, X., Garfinkel T., E. Lewis, C., Subrahmanyam, P.,
Waldspurger, C. A., Boneh, D., Dwoskin, J. and Ports
DRK. 2008. Overshadow: virtualization-based
approach to retrofitting protection in commodity
operating systems. ASPLOS.

Guan, L., Liu, P., Xing, X., Ge, X., Zhang, S., Yu, M. and
Jaeger, T. 2017. TrustShadow: Secure Execution of
Unmodified Applications with ARM TrustZone. ACM
Mobisys.

Github.com, 2017. smartdevicelink/sdl_core. [online]
Available at: https://github.com/smartdevicelink/
sdl_core.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

386

