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Abstract: The importance of software quality requirements (QR) is being widely recognized, which motivates studies
that investigate software requirements specifications (SRS) in practice and collect data on how much QR are
written vs. functional requirements (FR) and what kind of QRare specified. It is useful to develop a tool
that automates the process of filtering out QR statements from an SRS and classifying them into the quality
characteristic attributes such as defined in the ISO/IEC 25000 quality model. We propose an approach that
uses a machine learning technique to mechanize the process.With this mechanism, we can identify how each
QR characteristic scatters over the document, i.e. how muchin volume and in what way. A toolQRMiner is
developed to support the process and case studies were conducted, taking thirteen SRS documents that were
written for real use. We report our findings from these cases.

1 INTRODUCTION

The importance of software quality requirements
is being widely recognized, although the term is
somewhat confusing. Historically, the termnon-
functional requirements (NFR) has been used longer
(Mylopoulos et al., 1992; Glinz, 2007; Chung and
do Prado Leite, 2009) andquality requirements (QR)
was concocted to replace it, avoiding ambiguity that
derives from the negative definition with the prefix
“non” (Blaine and Cleland-Huang, 2008). But “qual-
ity requirements” is sometimes confused with “re-
quirements quality,” which denotes quality of require-
ments represented as specifications. Throughout this
paper, we use the term quality requirements (QR) but
in most places it can be interchanged with NFR with-
out confusion.

In the introduction of the IEEE Software special
issue on quality requirements (Blaine and Cleland-
Huang, 2008), three challenges to the quality require-
ments research are pointed out.

1. How to elicit quality requirements.

2. How to resolve trade-offs between quality re-
quirements.

3. How to measure quality requirements.

Another crucial issue is “how to implement qual-
ity requirements into products.” Most of quality re-
quirements research focus on one or multiple of the

above four issues, e.g. QR elicitation (Chung and
do Prado Leite, 2009), trade-off resolution (Regnell
et al., 2008; Svensson et al., 2009), QR measurement
(Glinz, 2008; Knauss and Boustani, 2008) and QR
implementation (Wei et al., 2012).

However, before addressing these problems, it
would be worthwhile to grasp how quality require-
ments are dealt with in practice and analyze them
(Svensson et al., 2013). It will make a good base
to explore ways for eliciting, representing and imple-
menting QR. For that purpose, we need a method to
identify where in a software requirements specifica-
tion (SRS) quality requirements are stated and which
characteristic class each requirement belongs to. If
such detection is easily implemented, we can have a
good view on how much amount of quality require-
ments are defined compared to functional require-
ments, how they are distributed over the characteristic
categories, i.e. performance, compatibility, usability,
reliability, security, etc., and how they are structured
in the whole specification document.

In this paper, we propose an approach for analyz-
ing QR found in an SRS in terms of their volume,
balance and structure. The SRS are assumed to be
written in natural language, Japanese in our case. Nat-
ural language processing and machine learning tech-
niques, particularly deep learning, are employed to
detect and classify quality requirement sentences.

The paper is organized as follows. Section 2 dis-
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cusses how QR are described in practice and what
benefit can be obtained by grasping the QR amount
and structure in the SRS. Related work are surveyed
in Section 3. A method for mining QR in SRS is in-
troduced in Section 4. Section 5 presents the results
of our experiments. The paper ends with discussions
in Section 6 and conclusions in Section 7.

2 HOW ARE QUALITY
REQUIREMENTS DESCRIBED
IN PRACTICE?

It is often argued that the importance of requirements
engineering is not well recognized in industry as it
should be (Kaindl et al., 2002). Yet, software require-
ments specifications are actually written extensively
in practice, although no advanced RE techniques may
be used and SRS’s are mostly written in natural lan-
guage. In those requirements documents, the writers
may not be much conscious of the distinction between
FR and QR but still both types of requirements are de-
scribed.

Our research objective is to investigate an SRS in
practice and collect data on how much QR (or NFR)
are written vs. FR and what kind of QR are actu-
ally written, e.g. how they are distributed over quality
characteristics as categorized in the ISO/IEC 25000
standard (ISO/IEC, 2014). The major objective of
developing such a QR classifier is to support a re-
quirements engineer in writing requirements specifi-
cations. In the middle of the specification writing pro-
cess or after it, she uses the classifier to examine how
the written requirements are classified. Then, she may
check the following points.

1. Check the distribution balance between FR and
QR, to see if they are within the expectation. In
general, as the amount of QR tends to get lower
than necessary, it had better be watched carefully
and if that is the case, it may imply more QRs
should be added.

2. Check the distribution balance among the prop-
erty characteristics. In our approach, we discern
eight categories for QR and four for FR. Some
may be written densely and others may be written
scarcely or none. It does not mean that uniformly
distributed descriptions over the quality charac-
teristics is ideal. As M. Glinz pointed out, “if
we have an implicit shared understanding among
stakeholders and developers about a quality re-
quirement, there’s no need to specify it.” (Glinz,
2008). At the same time, sensitivity to a particular
quality characteristic is naturally dependent on the

target domain and the system property. But still, if
descriptions of some quality characteristic are null
or much less than expectation, it is worth noting
it and examining the reason. It is informative just
to expose tacit understanding explicitly. On the
other hand, if a characteristic is densely described
but that quality does not look so crucial to the tar-
get system, the description may be redundant or
there is some imbalance in the SRS. Thus, look-
ing at the distribution of QR can be a good cue
to start analyzing the requirements document. For
example, if the amount of security requirements
is relatively small for a system that is supposed
be security-sensitive, it may imply specification
rewriting is necessary.

3. It is often recommended to write FR and QR sepa-
rately (Glinz, 2007). For example, FR and QR are
to be described in separate chapters in the Volere
template (Robertson and Robertson, 1999). IEEE
Std. 830-1998 (IEEE, 1998) also recommends to
write them separately in most of the template ex-
amples. Wiegers’s book (Wiegers and Beatty,
2013) introduces another template adapted from
the IEEE 830, which also separates FR and NFR.
As not so many authors of SRS use the Volere or
Wieger template or are conscious of IEEE 830,
it is not expected that SRS found in industry has
such a clear structure, nor does the separate de-
scription always imply a good quality of the SRS.
But still, it is often instructive to grasp how QR’s
are distributed over the document and how they
are mixed with FR or not. Particularly, visualiza-
tion of the distribution is helpful.

4. In case some requirement instance is categorized
into a different class from the expected class, it
may simply imply poor performance of the clas-
sifier but in some case it may imply the way of
expressing the requirement is not appropriate.

Requirements specification readers such as users
or implementers can also use the tool to grasp the
general view of the system to be used or to be im-
plemented. It will also benefit maintenance engineers
who need to locate specific requirements such as per-
formance requirements in the requirements specifica-
tion.

3 RELATED WORK

There are already some work that attempt to discern
and classify QR in SRS. For example, the work by
H. Kaiya et al. (Kaiya et al., 2008) calls the distribu-
tion of requirements sentences across QR characteris-
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tics asspectrum and propose a method for detecting
spectra. However, their policy of distinguishing QR
from FR is not clear. Actually, they take functional
requirements statements like “printing shall be sup-
ported” and sort it into quality like “interoperability.”
To execute the sorting, they first classify requirements
quality characteristics by hand (Kaiya et al., 2008).
Then, they partially mechanized the process using a
keyword-to-quality matrix (Kaiya and Ohnishi, 2012)
but the matrix is constructed for each system by a hu-
man, although there is a possibility of reusing the ex-
isting one if the application domain is the same.

Svensson et al. (Svensson et al., 2009) did much
larger-scale work of analyzing QR in practice. They
took more than 2000 requirements for systems of a
company, elaborately coded each requirement with
types and characteristics and accumulated and ana-
lyzed them.

These are based on manual work but an automated
approach to detecting and classifying QR was pio-
neered by the work presented by the Cleland-Huang
et al. at the Requirements Engineering Conference,
2006 (RE06) (Cleland-Huang et al., 2006). They
used a weighted term frequency measure, basically
the same as TF-IDF (term frequency-inverse docu-
ment frequency) to calculate similarity between doc-
uments and classify the requirements with that mea-
sure. Fifteen requirements specifications developed
as term projects by MS students were used to evaluate
their proposed approach and also a large requirements
document from industry was used for a case study.

Similar work followed. One was conducted by the
same group, applied to healthcare systems (Rahimi
et al., 2014). Another example is the work by Slankas
& Williams, also applied to the healthcare domain
(Slankas and Williams, 2013). They used eleven doc-
uments related to electronic health records (EHR), in-
cluding two request for proposals (RFP) and two man-
uals for open-source projects. They classify the re-
quirements by the k-nearest neighbor method. They
also evaluated the naive Bayes and the Support Vec-
tor Machine (SVM) learning methods.

Casmayor et al. proposed what they called semi-
supervised learning approach (Casamayor et al.,
2010). It starts with a labeled set of data but then
the EM (expectation maximization) method is used to
iteratively enhance learning. They used the same data
as that of (Cleland-Huang et al., 2006), which was
made available at the PROMISE software engineer-
ing repository.

Vias & Robinson used various types of documents
found in open-source software projects to discover
and classify requirements. Data of thirty projects
were obtained from SourceForge and on an average

4,962 sentences were collected for each project. For
the QR classification, it used McCall et al.’s quality
model but as the authors admit, the model is old (pub-
lished in 1977) and does not fit well to modern soft-
ware systems.

Some work in natural language processing (NLP)
is worth noting. The natural language processing
techniques have been widely used for requirements
engineering but most of them are concerned with SRS
evaluation and improvement. One successful area is
applying NLP to detecting ambiguity in words and
phrases in the SRS, e.g. (Chantree et al., 2006). There
is also an example of applying NLP to use cases for
detecting ambiguity by Fantechi et al. (Fantechi et al.,
2002).

Text mining employing document similarity de-
tection is also widely used, particularly in various rec-
ommendation systems. A typical area is code recom-
mendation, e.g. (Watanabe and Masuhara, 2011). In
the RE community, it is often used for the traceability
analysis (Cleland-Huang et al., 2010).

4 QUALITY REQUIREMENTS
MINING AND
CLASSIFICATION PROCESS

4.1 QR Mining Process Flow

We propose a method for mining QR in an SRS. The
workflow of our approach is as illustrated in Figure 1.
The explanation of the work in the flow will be given
in the following subsections.

Figure 1: QR Mining Workflow.

4.2 SRS Collection

We collected thirteen SRSs available on the web, is-
sued from local governments or other public institu-
tions in Japan. They are listed in Table 1. Most of
them are Requests for Proposal (RFP) for informa-
tion systems but there are some others such as RFP
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for a medical system. Moreover, two documents for
standard QR writing, “Grade table of non-functional
requirements” issued from Information Technology
Promotion Agency, Japan (IPA) and “Non-functional
requirements indicators” issued from Japan Users As-
sociation of Information Systems (JUAS) were added,
because relatively fewer QRs are found in those col-
lected SRSs. In total, 11,538 requirements sentences
were collected as shown in Table 1. All of them are
written in Japanese.

Use of RFP has the following advantage.

• They are publicly available.

• As they are used as the base for contracts, the de-
scriptions are mostly unambiguous.

Most of the past related work used student project
data or open source project data. In some cases, data
from industry are used but they are proprietary and
not easily available in public. Students projects are
small in size and requirements are not written ex-
tensively. Open source projects in general do not
give much weight on requirements writing as many
of them adopt the agile process. Compared to them
RFP’s are given much efforts and time for creation.
Among the past related work, Slankas & Williams
(Slankas and Williams, 2013) is rather exceptional
as they included two request for proposals (RFP), al-
though the domain is restricted to the healthcare sys-
tems.

4.3 Labeling

For the classification categories of QR, we used the
standard ISO/IEC 25030:2007 (ISO/IEC, 2014). It
provides requirements and recommendations for the
specification of software quality requirements. It is
an extended version of ISO/IEC 9126 quality model.
Eight quality property characteristics are defined:
functional suitability, performance efficiency, com-
patibility, usability, reliability, security, maintainabil-
ity, and portability. Each of the eight characteristics
category is further composed of sub-characteristics as
shown in Fig. 2.

To train and verify a machine learning system, we
have to label the requirements data with a gold stan-
dard, i.e. with “correct” categories assigned to all the
sentences. The authors did it manually as well as
checked the results within us. We extracted require-
ments sentences from the SRS but still some non-
requirement sentences remained. So, they were sorted
to non-R, FR or QR at the top level. QRs were la-
beled with the eight categories following the ISO/EIC
25000. Table 2 shows the distribution of the labels.

We also find FRs and they are classified into the
following four categories.

1. requirements on user interface

2. requirements on system functions

3. requirements on database

4. requirements on external interface

4.4 Japanese Morphological Analysis

In Japanese writing, words are not separated by
spaces and so for the preparation of natural language
processing, a morphological analyzer has to be used
to separate words and determine part of speech. We
used Kuromoji (kuromoji@atilika.com, 2017) and
MeCab (Kudo, 2013) for that purpose. The two have
similar capabilities but we used Kuromoji for prepar-
ing input to machine learning and MeCab for analyz-
ing the relations of the document and term spaces.

As we used ANN (artificial neural network) for
machine learning, we had to vectorize the input text.
For that purpose, the tools Word2Vec (Mikolov et al.,
2013a) and Doc2Vec (Mikolov et al., 2013b) are
available. Both tools themselves exploit deep learn-
ing, and are so powerful that they are currently used
almost as the standard. We used them, particularly
Doc2Vec, for our purpose and found it can be used
without any problem for Japanese language process-
ing.

4.5 Deep Learning

Starting from the work by Cleland-Huang et al., most
of the related work used information retrieval (IR)
techniques for detecting and classifying QRs. The
use of traditional machine learning methods such as
k-nearest neighborhood and naive Bayesian is men-
tioned in some literature but the results are not exten-
sively reported. However, in the past decade, machine
learning, particularly deep learning has made a big
advance as well as natural language processing like
Word2Vec and Doc2Vec. We have made use of those
novel technologies as much as possible.

To select an appropriate machine learning method,
we conducted some preliminary experiments, includ-
ing comparison of the conventional multi-layered per-
ceptrons and Convolutional Neural Network (CNN).
As the result, CNN significantly outperformed the
multi-layered perceptrons. Considering other fac-
tors as well, we adopted one of the deep learning
technique, CNN. It was originally invented by K.
Fukushima asNeocognitron (Fukushima and Miyake,
1982).

For implementation, we used an existing tool
Chainer, combined with related tools packaged in the
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Table 1: SRS List.

No. Issued from Systems Size (lines)
1 Moriyama City Sewerage accounting system 330
2 NIRS Medical information system 7083
3 Okayama City Attendance management system 168
4 Nara Prefecture House construction registration system 50
5 Hayama Town Public service company management system 88
6 Kanda Town Public health management sytem 744
7 Kudarimatsu City School meal management system 126
8 Yokohama City Library information system 1458
9 JUAS Non-functional requirements indicators 288

10 Kyoto Prefecture Total information system 377
11 Kyoto Prefecture Library information system 552
12 IPA Grade table of non-functional requirements 201
13 Ashikaga City Sewerage accounting system 73

total 11,538
NIRS: National Institute of Radiological Sciences

JUAS: Japan Users Association of Information Systems
IPA: Information Technology Promotion Agency, Japan
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Figure 2: System/software product quality.

Table 2: Label distribution.

No. Categories Number
0 Non-requirements 1530
1 Req. on user interface 2870
2 Req. on system functions 4756
3 Req. on database 140
4 Req. on external interface 168
5 Functional suitability 227
6 Performance efficiency 148
7 Compatibility 152
8 Usability 265
9 Reliability 145

10 Security 283
11 Maintainability 304
12 Portability 60

total 11,538

Python machine learning library. As well known, pa-
rameter tuning is important for this kind of work. We
tuned parameters such as the number of units in the
hidden layers, the number of epochs, the number of
minibatches and so on. They were decided by re-
peated experiments.

The data were randomly divided into two sets with
the size ratio 9:1. The former is for training and the
latter is for testing. The partition was repeated a num-
ber of times.

5 RESULTS

We named our a toolQRMiner. The top-level classifi-
cation is between non-R, FR and QR. The results are
as shown in Table 3
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Table 3: Results of QRMiner: FR and QR.

precision recall F value
non-R 0.86 0.84 0.85
FR 0.89 0.94 0.91
QR 0.70 0.54 0.61

The results of QR category classification are as
shown in Table 4.

Table 4: Results of QRMiner: QR characteristics.

QR precision recall F value
Functional suitability 0.44 0.42 0.43
Performance efficiency 0.67 0.62 0.64
Compatibility 0.38 0.27 0.32
Usability 0.28 0.31 0.29
Reliability 0.45 0.39 0.42
Security 0.61 0.63 0.62
Maintainability 0.45 0.54 0.49
Portability 0.25 0.20 0.22

One of our original results is the detection and
classification of FRs. In the literature, there is almost
no work on classifying FRs. Our result shows that the
same technique is applicable to classify FRs. As even
the way of categorizing FRs has been given very little
attention in the past (Sharma and Biswas, 2015), this
can be a starting point for exploring research on the
detection and classification of FRs.

6 DISCUSSIONS

6.1 Usage in the RE Process

As we discussed in the introduction, the QR mining
can be used in different phases of the RE process cy-
cle.

Elicitation Phase. In the elicitation phase, require-
ments may not be duly documented but as our QR
mining is applicable even to rough descriptions of re-
quirements, it can be used to check elicited QR in the
middle of the elicitation process.

Documentation Phase. Similarly, as unfinished re-
quirements documents can be analyzed with this tool,
findings obtained from QR mining can be used to give
a feedback when writing an SRS.

Evaluation Phase. Probably, the most natural us-
age of QR mining is in the phase of evaluation when

the SRS is completed and passed to a quality assur-
ance team for reviewing. The results of the QR min-
ing will be informative in analyzing and improving
the SRS.

The cycle of analysis and improvement may be re-
peated and the mining can be employed in every cy-
cle.

6.2 Threats to Validity

We studied thirteen systems, which are large enough
compared to the past related work. But still, it is de-
sirable to collect much more SRS from a variety of
areas.

The gold standard defined by the authors may be
a factor of threat to validity. We plan to ask other
experts to validate our decisions.

All the documents dealt with are written in
Japanese and so the lessons learned may not be ap-
plicable to other languages, e.g. English. However,
the techniques used were not language dependent.

6.3 Findings

We explain and discuss our findings through this case
study.

QR Ratio. One of our questions was how much QR
are written in SRS or what is the ratio of QR ver-
sus FR. In total, we dealt with 9518 requirements and
1584 among them were QR, which occupies 16.6%
(this is based on human counting but counting by QR-
Miner is about the same). This ratio is lower than the
data reported by Olsson et al.(Olsson et al., 2007) but
we need more data to interpret this result.

Usefulness of QRMiner. Precision and recall for
FR are 0.89 and 0.94 and those for QR are 0.70 and
0.54, which are satisfactorily high. Of course, we
have to make an effort to obtain higher performance,
which is our near future work.

Scarce Quality Characteristics. Among the eight
QR categories, the number of instances of portability
was 60, which is relatively low. It may indicate the
nature of the target systems.

QR Structure. Some SRS show well-structured de-
scriptions, separating QR and FR clearly but some do
not show such a structure clearly. It shows QRMiner
is useful in illustrating the structure of SRS.
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7 CONCLUSIONS

We proposed a QR mining approach and developed a
tool QRMiner that supports it. With the case studies,
it was shown that the tool produces informative output
to analyze SRS.

The evaluation of the tool in terms of precision
and recall is satisfactory but there is a good room for
improvement.

Original points of our work can be summarized as
follows..

• We used the up-to-date machine learning technol-
ogy, deep learning and Doc2Vec, which have en-
hanced performance of QRMiner considerably.

• We used the real practical requirements docu-
ments open to the public, rather than data from
student projects or open-source projects.

• The scale of the collected requirements is large
enough.

• We showed that our approach can be applied not
only to QR but also to FR.

• We showed that using non-English SRS is not re-
striction but indicates wide applicability of the
current machine learning and natural language
processing technology.
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