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Abstract: Radiomic features are currently being evaluated as potential imaging biomarkers. Deformable image 

registration (DIR) is now routinely applied in many medical imaging applications. Usually, DIR is applied 

in one of two ways: a) mapping the surface of a contoured volume, or b) mapping the image intensities. This 

study investigated radiomic feature stability when DIR is applied in these two ways using four dimensional 

computed tomography (4DCT) data. DIR was applied between the inspiration and expiration phases of 

4DCT datasets. Radiomic features were extracted from (1) the expiration phases of 25 lung cancer 4DCT 

datasets within the contoured tumor volumes, (2) the inspiration phases with the mapped tumor volumes, 

and (3) the inspiration phases deformed to the corresponding expiration phases of the original contoured 

volumes. The mean variation and the concordance correlation coefficient (CCC) between these 3 sets of 

features were analyzed. Many features were found unstable (mean variation > 50% or CCC < 0.5) when 

DIR was applied in either way. Caution is needed in radiomic feature applications when DIR is necessary. 

1 INTRODUCTION 

Medical images play important roles in cancer 

diagnosis, radiation treatment planning, and outcome 

evaluation. Recently, an image analysis field, known 

as radiomics, gained focus in the hopes of obtaining 

more clinically useful information from medical 

images. Radiomic features are quantitative values 

extracted from the digital images, and show 

potential as imaging biomarkers (Fave et al., 2017, 

Nardone et al., 2016). The feature values are usually 

calculated within a region of interest (ROI) in a 3-

dimentional (3D) image set. One of the most 

important ROIs in radiation therapy is the gross 

tumor volume (GTV). 

The feature extraction concept was recently 

expanded to images acquired at different times, for 

treatment response evaluation and outcome analysis 

(Antunes et al., 2016, Cunliffe et al., 2015, Yip et 

al., 2016). Image registration, most often 

deformable, is by definition required to properly 

align two separate datasets for comparison. 

Deformable image registration (DIR) has matured 

and is now a staple in radiotherapy, including, but 

not limited to, adaptive treatment planning (Gao et 

al., 2006) and pulmonary ventilation calculations 

(Huang et al., 2013). In the radiomics realm, when 

two datasets are being compared, the features can be 

extracted following either just the deformed contour 

propagation or full image deformation. For example, 

deformed and aligned images were used to extract 

features for early evaluation of renal cell carcinoma 

treatments (Antunes et al., 2016), and propagated 

contours were employed in feature extraction for 

lung and esophagus cancer treatment outcome 

predictions (Yip et al., 2016, Cunliffe et al., 2015).  

At the same time, it is important to understand 

the limitations of radiomic features before they are 

used clinically. Multiple studies have attempted to 

elucidate the behavior of radiomic features under 

different conditions. Many factors can potentially 

affect the features’ values, including image quality 

(Oliver et al., 2017), voxel size (Shafiq-ul-Hassan et 

al., 2017), motion (Carles et al., 2017, Oliver et al., 

2015), segmentation (Balagurunathan et al., 2014), 

or acquisition and reconstruction parameters 

(Galavis et al., 2010), to name a few. When DIR is 

involved as an extra step in radiomic feature 

extraction, it begs a simple question: does DIR affect 

the feature values, and if so by how much?  
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Feature stability after image registration was 

evaluated by Cunliffe et al., (2012) using propagated 

contours. They evaluated the accuracy of features 

with different registration methods, including rigid, 

affine and deformable, and concluded that DIR gave 

the most accurate values. That study contributed to 

our understanding of DIR’s effect on image features. 

However, the feature stability when the deformed 

pixel values are used, rather than just the propagated 

ROI masks, was not addressed. Also the number of 

features in that work was relatively small (140).  

The objective of our study was to analyze and 

compare feature stability between the two DIR 

approaches for more than 1000 radiomic features. 

2 MATERIALS AND METHODS  

2.1 Image Data 

Twenty-five randomly selected lung cancer cases 

were studied retrospectively. In each case, the end-

inspiration and end-expiration phases from a 10-

phase 4-dimensional CT (4DCT) dataset were used. 

4DCT scans followed a standard clinical protocol, 

hence the voxel size, kVp and mAs settings were 

kept constant. All CT numbers were converted to 

positive values, with air corresponding to 0 and soft 

tissue to ~1000. The lung GTVs were manually 

segmented (contoured) on the end-expiration phase 

by an oncologist. The median contoured GTV was 

6.5 cm3, ranging between 0.8 and 46.5 cm3. 

2.2 Deformable Image Registration 

Based on previous evaluations (Latifi et al., 2013b, 

Latifi et al., 2013a), the diffeomorphic morphons 

(DM) DIR algorithm (Janssens et al., 2011, 

Wrangsjö et al., 2005) was selected for this study 

because of its relatively high registration accuracy in 

the thoracic region. The DIR program was 

implemented in MatLab (The MathWorks, Natick, 

MA, USA) with an iterative and multiscale scheme. 

Eight scales were used for each registration, with up 

to 20 iterations at each one. A deformation matrix 

obtained in the registration process was applied to 

deform and align the images and map the contoured 

tumor volume from one dataset to another. Both the 

original and propagated contoured volumes were 

used as masks to extract features from the 

corresponding image datasets. Linear interpolation 

was applied when volume expansion or compression 

occurred. 

2.3 Feature Extraction 

An in-house program implemented on a PC (Oliver 

et al., 2015, Shafiq-ul-Hassan et al., 2017) extracted 

image features from inside the contoured volumes. 

The feature categories were shape, intensity, textural 

(based on the gray level co-occurrence matrix 

(GLCM) (Haralick et al., 1973, Liang, 2012), the 

gray-level size zone matrix (GLSZM) (Thibault et 

al., 2009), the run-length matrix (RLM) (Galloway, 

1975, Chu et al., 1990), the neighborhood gray-tone 

difference matrix (NGTDM) (Amadasun and King, 

1989)), fractal dimension (FD) (Sarkar and 

Chaudhuri, 1992, Jin et al., 1995), Laplacian of 

Gaussian (LoG) (Chen et al., 1987), wavelets 

(Uytterhoeven et al., 1997), and Laws (Suzuki and 

Yaginuma, 2007), for a grand total of 1007 features. 

The shape-based features included short axis 

(through center of mass, COM), long axes through 

COM and free, sphericity, eccentricity, convexity, 

etc. As many features were volume and/or gray level 

dependent (Shafiq-ul-Hassan et al., 2017), volume 

normalized features (Vnorm) as well as gray level 

normalized features (Gnorm) were also extracted. 

Originally, some of the features were based on 

2D images. However, the in-house program was 

implemented to extract all features in 3D. The 

feature calculations on the transformed, or filtered, 

images (e.g., LoG, wavelets, Laws) were performed 

according to Ref. (Aerts et al., 2014). LoG features 

were extracted with various Gaussian kernel widths. 

The kernel width used in this study varied from 0.5 

to 3 mm with a step size of 0.5 mm. Discrete 

wavelet transform was applied to the original images 

and the wavelet features (intensity-based), were 

extracted from the filtered images. The combination 

of low pass (L) and high pass (H) filters in 3 

directions generated 8 sub-categories of features. For 

Laws features, combination of Local (L), Edge (E) 

and Spot (S) convolution kernels were applied to 3D 

datasets before extracting the intensity features. For 

the Laws features, the combination of 3 kernels in 

3D generated 27 sub-categories of features.  

To evaluate the stability of the two possible 

extraction approaches (e.g., image registration vs. 

mapped contours), the GTV contour was mapped 

from the expiration to inspiration phase (Ctrmap in 

Fig.1) and the inspiration phase image was deformed 

to align with the expiration phase (Imgdef). The 

feature values extracted from inside the ROI volume 

on the expiration phase (Featureorig) were set as 

standards, as both the image set and the contoured 

volume were the originals. The feature values 

extracted from the data sets after the DIR 
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(FeatureDIR), which included the mapped volume on 

the inspiration phase (Featurevol) and the features 

from the original contoured volume on the deformed 

inspiration phase aligned with the expiration phase 

(Featureimg), were compared to the standard values.  
 

 

Figure 1: Analysis flow chart. Ctrmap = mapped contour; 

Imgdef = deformed image; Featureorig = original feature, 

set as standard; Featureimg = features extracted from the 

deformed image; Featurevol = features extracted from the 

mapped volume. 

2.4 Feature Stability Analysis 

Percentage differences between features after DIR 

and the standard ones were calculated as 
 

%𝐷𝑖𝑓𝑓 = 100 × |
𝐹𝑒𝑎𝑡𝑢𝑟𝑒DIR−𝐹𝑒𝑎𝑡𝑢𝑟𝑒orig

𝐹𝑒𝑎𝑡𝑢𝑟𝑒orig
|, (1) 

 

where FeatureDIR is the corresponding feature value 

with the DIR, either Featurevol or Featureimg. The 

percentage differences were averaged for each 

feature across all cases.  

The concordance correlation coefficient (CCC) 

measures the reproducibility between two datasets 

(Lin, 1989). The CCC values are between 0 and ±1, 

with 0 being no correlation at all and ±1 being 

perfect concordance or perfect discordance. The 

CCC values were calculated for each feature 

between the standard, Featureorig, and one of the two 

sets after the DIR, either Featurevol or Featureimg.  

The features with average variation greater than 

50% or CCC lower than 0.5 were considered 

unstable, while the ones with average variation < 

20% and CCC > 0.85 were categorized as 

acceptable. The rest were considered uncertain. 

Within the acceptable group the ones with variation 

< 10% and CCC > 0.9 were considered stable, and 

those with average variation < 5% and CCC > 0.95 

were labeled as robust. 

3 RESULTS  

 

Figure 2: Example of image registration: (A) expiration 

phase, (B) absolute difference between expiration and 

inspiration, and (C) absolute difference between expiration 

and deformed and aligned inspiration-to-expiration. 

Figure 2 shows an example of image registration. 

Notice different intensity scales between A, B 

(0~1500) and C (0~800). Without the scale 

adjustment, differences on panel C would not be 

visible. Overall, the differences between the mapped 

images and the expiration phase images were small. 

Table 1 shows the overall percentage stable 

features for one of the two DIR approaches: mapped 

contour (Ctrmap) and Table 2 shows those for the 

other approach: deformed image (Imgdef). Because 

the same contour was used in the mapped image 

feature calculation, the shape based features in this 

category are 100% stable/robust. Features from the 

categories of intensity, GLCM and FD are stable for 

both DIR approaches. Relatively more wavelet 
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features also were stable, while Laws features were 

the most unstable group for the filtered image 

features. The overall most unstable feature group 

was GLSZ. 

Table 1: Percentage of features in various groups for 

mapped contour, Ctrmap. 

  Unstable Uncertain Acceptable Stable Robust 

Shape  30% 55% 15% 5% 0% 

Intensity 5% 32% 63% 45% 16% 

LoG 31% 21% 48% 38% 21% 

Wavelet 23% 42% 35% 24% 12% 

Laws 51% 28% 22% 9% 2% 

GLCM 3% 30% 68% 40% 5% 

RLM 18% 35% 47% 12% 0% 

GLSZ 67% 17% 17% 17% 8% 

NGTDM 45% 45% 9% 0% 0% 

FD 0% 50% 50% 38% 13% 

Table 2: Percentage of features in various groups for 

deformed image, Imgdef. 

  Unstable Uncertain Acceptable Stable Robust 

Shape  0% 0% 100% 100% 100% 

Intensity 3% 50% 47% 47% 45% 

LoG 28% 36% 36% 16% 9% 

Wavelet 2% 12% 86% 68% 39% 

Laws 53% 32% 15% 7% 2% 

GLCM 5% 38% 57% 28% 20% 

RLM 18% 35% 47% 29% 6% 

GLSZ 75% 8% 17% 17% 0% 

NGTDM 64% 0% 36% 9% 0% 

FD 0% 0% 100% 100% 75% 

 

Table 3 shows some results of the detailed 

analysis of the filtered image features sub-categories 

for mapped contour. Table 4 shows those for 

deformed image. In the table, LoG_1 means the 

features in this sub-category were extracted with 

Gaussian kernel width of 1 mm, and so on. Similar 

analysis was performed on the Laws and wavelet 

features (not presented). 

Table 5 lists the unstable features, excluding 

those from the filtered images (i.e. LoG, wavelet, 

Laws). For the filtered images, the numbers of 

unstable features were 339 for Imgdef and 364 for 

Ctrmap out of 861. Among the LoG and Laws 

features, energy was the most unstable one in each 

sub-category. 

 

Table 3: Percentage of LoG features in sub-categories for 

mapped contour. 

  Unstable Uncertain Acceptable Stable Robust 

LoG_0.5 0% 24% 76% 62% 29% 

LoG_1 33% 19% 48% 38% 33% 

LoG_1.5 43% 19% 38% 29% 5% 

LoG_2 43% 19% 38% 19% 10% 

LoG_2.5 33% 24% 43% 33% 33% 

LoG_3 33% 19% 48% 48% 14% 

Table 4: Percentage of LoG features in sub-categories for 

deformed image. 

  Unstable Uncertain Acceptable Stable Robust 

LoG_0.5 10% 14% 76% 52% 29% 

LoG_1 33% 62% 5% 5% 5% 

LoG_1.5 33% 57% 10% 5% 5% 

LoG_2 38% 52% 10% 10% 5% 

LoG_2.5 33% 19% 48% 10% 5% 

LoG_3 19% 14% 67% 14% 5% 

4 DISCUSSION 

The feature variations observed after DIR can be the 

result of the deformation itself and/or DIR errors. 

Image deformation could change the voxel intensity 

relationships between neighboring voxels which in 

turn changes the feature values. In addition, the 

shape of the mapped volume is likely to differ from 

the original one, which changes the shape based 

feature values, such as the sphericity, compactness, 

convexity, etc. The DIR errors introduce further 

uncertainty. This study did not attempt to separate 

these two potential causes of variation. 

To reduce the DIR errors, we used the 4DCT 

data, wherein the differences between the phases 

should be much smaller than differences arising 

from the use of dissimilar imaging modalities. 

However, due to the raw scan data being divided 

into multiple phase bins, the quantum noise in each 

phase is higher compared to the standard (3D) data 

set, which in turn may reduce the accuracy of DIR. 

As both DIR accuracy and feature values depend on 

image quality (Latifi et al., 2013a, Oliver et al., 

2017), high quality images are essential for feature 

stability. 

Since image feature stability depends on the 

registration algorithm accuracy (Cunliffe et al., 
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2012), any DIR algorithm for applications in feature 

calculation should be evaluated first. This study was 

limited to one DIR algorithm.  

Table 5: Unstable features. In the table, *Angle between 

short axis and xz plane; angle between short axis and free 

long axis; angle between free long axis and long axis 

through center of mass; **Vnorm = coarseness and volume 

normalized coarseness, 2 features; **V, Gnorm = texture 

strength, volume normalized and gray level normalized 

texture strength, 3 features. 

Feature Ctrmap Imgdef 

Shape 

Angle: short to xz* X   

Angle: short to long* X 
 

Angle: long to long COM* X   

Intensity 
skewness X X 

energy X 
 

GLCM 
correlation   X 

cluster shade X X 

RLM 

LGRE X X 

SRLGE X X 

LRLGE X X 

GLSZ 

SAE X X 

LAE 
 

X 

LIE X X 

LISAE X X 

HISAE X X 

LIHAE X X 

HILAE X X 

IV X X 

HIE X X 

NGTDM 

coarseness, Vnorm**    X 

busyness X X 

texture strength, V, Gnorm** X X 

 

The DIR-stable features varied significantly 

between clinical cases, or were sensitive to different 

conditions. For example, the intensity based entropy 

was robust with both DIR approaches (mean 

variation less than 5% in each case), but it varied up 

to 80% between the cases. Further clinical 

application studies may need to focus on those 

acceptable features when DIR is involved. 

Many feature values are voxel size dependent 

(Shafiq-ul-Hassan et al., 2017). In this study, the 

comparison was performed between the two phases 

of the 4D same dataset, with no voxel size variation.  

The definition of unstable features in this work 

was strict (mean variation > 50% or CCC < 0.5). 

Any feature falling into this category (listed in Table 

5 for the unfiltered image features) should be really 

unstable and thus avoided in in the presence of DIR. 

This study only used CT image data. However, 

due to the nature of DIR, the conclusions should be 

applicable to other imaging modalities as well. 

5 CONCLUSIONS  

We have investigated the impact of DIR on radiomic 

features after either contour propagation or image 

deformation. Deformable image registration 

modified radiomic features with either approach. 

The stability varied slightly with the way the DIR is 

applied for most of the feature categories. Many 

features varied significantly after DIR, and thus 

were categorized as unstable. Those features should 

be avoided in applications requiring DIR. 
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