
Students’ Understanding of Computational Thinking with a Focus on
Decomposition in Building Network Simulations

Steve Mvalo and Chris Bates
Department of Computing, Sheffield Hallam University, Faculty of Arts, Computing, Engineering and Sciences,

City Campus, Sheffield, U.K.

Keywords: Computational Thinking, Simulation Software, Problem-solving Experiments.

Abstract: This paper reports a study into students’ understanding of decomposition when building network
simulations. Students were asked to complete three problem-solving tasks involving designing and
troubleshooting computer networks using simulation software. Through online surveys, interviews and
focus groups the students’ understanding of computational thinking was interrogated. The results show that
students were not conscious that they were applying computational thinking concepts when designing and
troubleshooting networks on simulation software. It appears their interest were to simply get problems
solved but not necessarily with the understanding of the application of the concepts of computational
thinking.

1 INTRODUCTION

In this study we investigate students’ understanding
and application of one concept of computational
thinking: decomposition. We examine how students
apply the concept when building network
simulations and how, in turn, those simulations
facilitate students’ ability to decompose a
networking problem into a set of smaller tasks.

Decomposition is one of the core concepts of
computational thinking. When using decomposi-
tion, problems are systematically broken into levels
of abstraction that can be understood and solved
more readily than can the original, complex
problem. Computational thinking brings together a
number of ideas about problem solving and
algorithmic thinking in ways that can be readily
applied to a wide variety of problems across diverse
domains.

Section two introduces the idea of computational
thinking, section three looks at how simulation tools
can facilitate teaching computer networks, section
four looks at experimental design, section five
introduces the tasks that were set for the students
and section six presents the results. We conclude by
providing some emerging ideas and
recommendations for further studies.

2 COMPUTATIONAL THINKING

Computational thinking is an approach to problem-
solving which uses abstraction, decomposition,
generalization and the creation of algorithms to
identify solutions. The approach closely mirrors that
which is used in software development and creates
solutions that can be implemented relatively easily
by people or by machines. Originally coined by
Papert (1980), the term was popularized in (Wing,
2006) where the approach was applied to general
problem-solving rather than being restricted to the
domain of computer science. Wing (2006, 2008)
describes computational thinking as involving
problem-solving encompassing a set of mental tools,
the design of systems and an understanding of
human behaviour and that it represents a universally
applicable attitude and skill set everyone, not just
computer scientists, [could] learn and use. In 2011,
Wing revised her definition of computational
thinking as the “thought processes involved in
formulating problems and their solutions so that the
solutions are represented in a form that can be
effectively carried out by an information processing
agent” (p. 60).

Computational thinking helps students think
algorithmically, define abstractions, decompose and
reify them in their solutions, (Wing, 2011). The core

Mvalo, S. and Bates, C.
Students’ Understanding of Computational Thinking with a Focus on Decomposition in Building Network Simulations.
DOI: 10.5220/0006693302450252
In Proceedings of the 10th International Conference on Computer Supported Education (CSEDU 2018), pages 245-252
ISBN: 978-989-758-291-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

245

concepts of computational thinking are abstraction;
algorithmic thinking; problem solving; pattern
recognition (generalization); design-based thinking;
conceptualising; decomposition; automation;
analysis; testing and debugging; mathematical
reasoning; implementing solutions; modelling,
(Grover & Pea, 2013; Kalelioglu et al., 2016).

This study uses a working definition of
computational thinking as:

 Those thought processes that apply
fundamental ideas and approaches from computer
science including, but not limited to, algorithms,
abstraction, decomposition and generalization to
solving technological problems such as the design of
computer networks.

Within the broad discipline of computer science
computational thinking can easily become entwined
with the use of specific tools such as those used for
software design because when using such tools the
ideas and practices of abstraction, decomposition,
generalization and so on become explicit to students.
Wing (2008) is clear that tools should not get in the
way of understanding and applying the concepts
behind computational thinking but, rather, should
reinforce and facilitate them. It is not sufficient that
a learner be adept in the tool, they must become
adept in using the tool to produce abstractions and
concrete implementations from those abstractions.

3 DECOMPOSITION

The intellectual skill of decomposition is the ability
to breakdown complex problems to a level such that
it can be understood, solved, developed or evaluated
(Csizmadia et al., 2015). Decomposition can involve
looking at similarities within, and patterns of, the
constituent parts of the problem. In so doing they
become easier to understand and work with. The
ability to identify these similarities and patterns
depends on one’s previous knowledge, experiences
and skills (Bocconi, et al., 2016). Decomposing a
problem is one thing but solving the problem is
another matter, albeit one that also requires prior
knowledge, experiences and skills.

Wing (2008) defines decomposition within
Computational Thinking as the process of
unwrapping an abstraction of a complex problem
into a concrete solution. Once students have solved a
complex problem, they should be able to describe
both how they identified the problem and the
strategies they used.

4 SIMULATION TOOLS IN
TEACHING COMPUTER
NETWORK DESIGN

Simulation software provides a platform on which
students can design, build and test networks that
vary in complexity from trivial to complex
simulations of the infrastructure of multi-national
companies. Using such software students are able to
work with systems that are far too complex for them
to be able to build in real-life and to include
technologies that they would otherwise not meet at
University.

Teaching students to build even relatively simple
networks that include a couple of routers and a few
VLANs can require racks of dedicated hardware.
Typical university class sizes mean that significant
quantities of specialized equipment must be
available to the students both within formal teaching
sessions and when they undertake their own project
and assessed work. This hardware is not intended by
its manufacturers for a classroom setting. It has the
robustness necessary to run almost indefinitely in the
controlled environment of a network server room but
is less able to withstand the rigour of constant re-
cabling or power cycling or, indeed, of operating in
warm, dusty classrooms.

Simulation software provides an excellent
alternative to physical infrastructure when teaching
computer networking (Janitor et al., 2010). Network
simulations provide feature-rich, flexible platforms
with a range of devices and software that is far
greater than would be possible when using physical
devices (Ruiz-Martinez et al., 2013). When using
network simulations students have the flexibility to
work on their network designs away from the
classroom, (Zhang et al., 2012).

Many studies including those of (Galan,
Fernandez, Fuertes, Gomez, & de Vergara, 2009;
Hwang et al., 2014; Ruiz-Martinez et al., 2013) have
shown that simulation software provides a highly
realistic way of teaching computer networks,
conducting research and experiment in designing
complex network systems. And because simulations
are inherently flexible, extensible and highly
configurable, students are able to use them to design
network topologies that range from simple to highly
complex. The inherent plasticity of a good
simulation tool means that it provides a platform
upon which students can build almost any structure
and, in so doing, extend their inventiveness and
innovation (Ruiz-Martinez et al., 2013).

CSEDU 2018 - 10th International Conference on Computer Supported Education

246

5 DATA COLLECTION
METHODS

This study used mixed methods with dominant
qualitative approaches. Initially two separate surveys
comprising 69 students and 14 lecturers respectively
were conducted to discover participants’
understanding of computational thinking and of the
use of simulation software in network design. Seven
undergraduate students studying for computer
networks were sampled randomly for a focus group
interviews. In this focus group, students were
queried about their understanding of computational
thinking and their experiences of using simulation
software to design networks in their day-to-day lab
activities. A small group of postgraduate students
undertook three consecutive problem-solving tasks
and followed-up with one-to-one and focus group
interviews. The postgraduate students were taught
by one of the authors and the three tasks formed part
of their assessment.

The students were given three different problems
and six weeks to complete each. In total the students
were monitored for almost six months as they
designed and built simulations and undertook
troubleshooting of their simulations. On completing
each problem, the students recorded videos in which
they demonstrated their problem-solving approach,
showed their solutions and reflected on their
learning through the task. In the focus group the
postgraduate students were asked to reflect upon
their understanding of the problems and how they
had solved during the practical tasks.

All participants have been anonymized to
preserve their confidentiality. Undergraduate and
postgraduate students in this study have been
referred to as UGx and PGx respectively, where x
represents a random number. Lecturers have been
referred to as LecX where X represents a random
number too.

In the focus groups the students were prompted
to explain their understanding of the differences
between computational thinking and critical
thinking. Students were asked about the strategies
that they used when designing complex network
simulations to try and reveal whether, and how, they
might apply the core concepts of computational
thinking. Students were further asked to explain
their previous experiences in using simulation
software against physical hardware and finally were
asked to explain their general recommendations on
the use of simulation software in developing their
understanding of computational thinking.

The focus groups investigated the students’
perceptions and reflections on the use of simulations
in network problem solving. These students were
also asked their understanding of computational
thinking and their perceptions on the use of
simulation software in developing their
computational thinking. The intention was to
investigate their ability to apply any of the core
concepts of computational thinking and to further
drill down into their use of decomposition in
building network simulation.

To triangulate the findings of the online survey
and focus groups, three lecturers participated on
one-to-one interviews in which they talked about
their own understanding of computational thinking
with a particular interest in decomposing network
abstraction when building network simulation.
Lecturers further talked about how they apply the
core concepts of computational thinking in their own
teaching practice.

6 THE PROBLEM-SOLVING
TASKS

The students undertook series of increasing
complexity tasks across six months during
laboratory sessions for three of their modules. They
recorded themselves using the Screencastomatic
software desktop capture program,
https://screencast-o-matic.com/. Because the
students were asked to record all of their activities in
each lab session we were able to see exactly how
they used the simulation software including
mistakes, dead-ends and failed approaches. Desktop
capture differs from other approaches because it is
unobtrusive - these students tended to forget that it
was recording them - and so gives the researcher a
raw and unfiltered view of the activity.

When capturing their sessions, the students were
asked to outline the task as they understood it, show
themselves solving the task, demonstrate and discuss
the strategies they used, and demonstrate their
working solutions. On completing each lab task, the
students were questioned about their thinking as they
solved the problem.

6.1 Task One

Students had to reverse engineer an enterprise
network from a list of routing tables. Routers
advertise those networks to which they connect
directly and share those networks advertised by their

Students’ Understanding of Computational Thinking with a Focus on Decomposition in Building Network Simulations

247

neighbours. The set of routes gives the topology of
the enterprise network. In reverse engineering the
networks which are advertised are traced back so
that the topology of the entire network can be re-
built.

In this first task the students had to reverse
engineer the enterprise network infrastructure,
troubleshoot design problems that were embedded in
the routing tables, and implement appropriate
solutions. To verify their designs, students had to
show their routing tables matched those given in the
task description and corrected its embedded errors.

6.2 Task Two

In the second task the students had to design from
scratch an enterprise network infrastructure as
shown in Figure 1 with sites dispersed across five
cities. Specific requirements covering: the provision
of bandwidth; throughput; response time; access by
users to appropriate resources; confidentiality; and
system integrity. The students were told to use IP
addressing schemes that involved IPv4 and IPv6 and
to choose suitable routing protocols to facilitate
communication across the network.

This was a challenging task for these students
because it built on their priori knowledge and skills
in LAN design and implementation to produce a
larger, more functional network infrastructure
incorporating WANs. At the time that they
undertook the task, the students were still becoming
familiar with many aspects of networking
technology.

6.3 Task Three

The third task was a set of activities that combined
the design of LANs and WANs to implement a
secure enterprise infrastructure. The key learning
points for the students were the incorporation of
security into otherwise familiar network
infrastructure.

6.4 Task Four

The final task having attempted all three of the
networking tasks, the students were asked to write
an individual reflective report covering all three
tasks. They had to discuss their thought processes
and the strategies that they followed in creating their
solutions and recommendations. This task was an
important part of the assessment that the students
were undertaking. For the researchers these reports
had the benefit that the students' recollections and
memories could be compared with the video
evidence to show whether they had done the things
as they thought they had.

7 RESULTS

Simulations are not just about designing and making
complex systems, they also allow students to work
with complex ideas. The flexibility and usability of
simulations mean that students can be encouraged to
do more testing and thus be able to critically
evaluate their own work. This was alluded to by a

Figure 1: Sample problem-solving task.

CSEDU 2018 - 10th International Conference on Computer Supported Education

248

number of subjects in the focus groups:

I think I will however, test more on simulation
software than on real kit. You would therefore
apply problem solving on simulation software
with more critical because you know you are not
doing it on the real thing (UG6)

It's more efficient and you don’t waste time when
configuring on simulation software; as you have
more and more ideas you can apply and
implement them as you wish hence developing
your computational thinking much better (UG4)

As their learning progressed the students learned to
decompose the complexity of their network
topologies and the security requirements built into
the problems into small, solvable tasks. This is what
students had to say in their reflective reports:

The topology was designed in such a way that
each branch is separate and can be easily
evaluated. The idea is to break down the network
structure to be less complex when sorting out
issues, through computational thinking, it makes
it easier to isolate the problem and solve it in bits
(PG1)

Breaking the task into smaller tasks and
concentrating on the main task helped me a lot
in solving network problems such as when
designing a WAN, the whole design can be
broken down to smaller task that is into LANs
and the LANs can be breakdown into smaller
branches like creating small networks and
combining them as a LAN (PG4)

By building the simulations the students were able to
view the entire enterprise network and identify areas
of vulnerability, loopholes, bottlenecks and threats.
Once they were able to visualize and experiment
with problems within the network, the students
could begin to develop their ideas about overcoming
them and so secure the system. In their reflections
the students noted that decomposing systems within
the simulation meant that they could better
appreciate the abstraction and operation of routing
tables. This is something that has been shown to be
difficult to achieve when using physical hardware
(Janitor et al., 2010). These are some of their
comments:

Depending on the level of complexity working on
simulation was much more appreciated […] it

was less stressful to work on complex design
than real set [hardware] (PG2)

when you are analysing a network it is pretty
much easier to analyse it through Packet tracer.
It is easy to see things which need to be seen.
You can easily break down problems. Packet
tracer is user-friendly as a software and so it is
easy to apply critical thinking (PG1)

Through the simulation's visual representation of a
network the students were able to work at differing
levels of abstraction. They could think about
hardware, applications or routing tables as
necessary, focusing on important details as they
produced the final concrete design. The topology in
Figure 2 shows a partial output from one of the
students after working out a reverse engineering
problem-solving task.

Figure 2: Student partial topology.

After creating a visual representation of the
enterprise network, students were able to solve
problems that were inherent in the routing table that
they were given. The students managed to
breakdown problems for each router and its switches
to create a correct routing table.

Having learned to break problems down to their
constituent parts, the students were asked to
demonstrate whether they could generalize solutions
from specific instances. In computational thinking,
the concept of generalization is extended from the
concept of decomposition (Bocconi et al., 2016).
Once students have broken the problem down and
begin solving them they must apply their prior
knowledge, experience and skills to identify

Students’ Understanding of Computational Thinking with a Focus on Decomposition in Building Network Simulations

249

patterns, similarities and commonalities to come up
with their optimum solutions.

Students’ reflective reports showed that they
were often able to identify similarities and
commonalities from their previous knowledge and
experience but they were not aware that they were
applying computational thinking skills to the
problems. They were not able to demonstrate how
they identified patterns in solving tasks that they
could go on to apply to other tasks. This is what one
of the students commented:

I think the main problem is your knowledge in
solving the problem, because in as much as you
may be able to break down the chunk of a bigger
problem into small manageable problems but if
you don’t know how to solve all those small
problems, it still remains a problem. So your
knowledge to the problem you are solving is
significant. […] Background knowledge helps in
understanding the similarities and differences
which will help in making appropriate decision
in solving that problem (UG6)

Some of the lecturers who were surveyed as part of
the work said that their students were interested in
making sure that the problems were solved but not in
how they were doing so. It became clear through the
study that students were solving problems through a
routine of troubleshooting, configuring and fine-
tuning.

These were some of the comments students made
in their reflective report which were not clearly
demonstrated:

Sometimes viewing the case via a general point
of view can be useful to find out possible
solutions as it helped me to recognise the general
similarities and differences in the whole scenario
so that I could apply the same solution for the
similar parts of the case. For example, in WAN
assignment I found out that some LANs followed
the similar patterns so I applied the same
configuration for each of them based on my
previous knowledge in configuring LAN Student
(PG6)

Analyzing similar patterns (network
requirements, when defined the role of each
branch, specifically we had a plan of setting up
similar configuration on different branches, such
as where it was asking to provide NAT on
LEICESTER and DERBY we had a same
requirement, ACLs on VLANs) (PG2)

The students were not taught an explicit approach to
problem solving and the strategies that they
developed did not necessarily map onto a
computational thinking approach. The students'
design approach was not based on their
understanding and application of computational
thinking but was one of simply making sure through
trial and error that their designs were operational.

This was a lot of trial and error for me. I found it
most difficult to find how to use the redistribute
command correctly. I had to use online resources
to figure out a solution. I am still studying up on
this so I may not have used it in the exactly
correct way, but it did produce an output that
appears to match [routing output] (PG3)

This concurred with what one of the lecturers
commented:

I expect students will largely use trial and error
in the beginning until they understand the
problem. If students knew how to do
computational thinking (or indeed any structured
approach to thinking) they would be more
organised. I guess we have to teach them that
(Lec7)

This point was well encapsulated by one of
undergraduate students during focus group
interviews who alluded to the nature of their course
as being one that gave practical skills rather than
teaching a way of thinking about problems and
systems. This suits these students who are focused
on getting into employment on graduation. They are
more interested in gaining good practical skills that
will immediately help them to get employment in
their field of study than in developing those higher-
level analytical skills that may be used to build a
career. This student thinks computational thinking is
just “an academic buzz word”:

I don’t feel our course teaches us any
computational thinking, I feel our course is
design to incooperate workforce processes. The
course is designed to introduce workplace
processes, best practices from hardware, best
practices from enterprises. It is designed ready
to get you in the workplace; it gets you
understand how the mind of everyone who works
in the industry works; so I can jump into my job
and design my network based on CISCO-based
practice or Juniper-based practice, so you don’t
necessarily approach it from a computational
thinking point of view. Computational thinking is
kind of like an academic buzz word and not a

CSEDU 2018 - 10th International Conference on Computer Supported Education

250

real while in deploying enterprise architects
(UG4)

The lecturers indicated that they do not focus on
computational thinking. Their focus is to test all of
the concepts that they have taught in class by
making sure that students are able to demonstrate
and apply them in practical tasks. One lecturer said
that he does not influence his students’ choice of the
methods that they adopt when designing solutions
because he believes that every student has his or her
own best way of solving problems. These are some
of the comments which other lecturers made:

I simply give them an assessment that test all the
points of knowledge they should have and not
necessarily from the computational thinking
point of view. I look at can they implement it, can
they look at why am I doing this, […] But I have
never thought on how do I create an assessment
from a computational point of view […] may be
its some of the things we should be thinking
about (Lec2)

I want to see that students can demonstrate that
they can apply what is it they have learnt to
produce a viable solution, for example, and be
able to critically evaluate that solution that they
come up with – so am not thinking down the
levels of how would they break down the problem
and how would they solve each element or how
do they choose a protocol so which in effective is
the algorithm path […], Or abstracting by saying
this protocol functions like this and that – so
that’s not how am thinking about it when I am
designing or assessing students (Lec3)

8 ANALYSIS

From the online survey, one-to-one interviews and
focus groups it became clear that neither the students
nor lecturers in this study were aware what
computational thinking is. Several of them indicated
that they had to use internet searches to understand
what the term computational thinking means. It was,
therefore, not surprising that lecturers said that they
are neither conscious of, nor focus on, computational

thinking when teaching and assessing students.
The results have shown that the use of simulation

software in designing computer networks helps
students breakdown complex problems into smaller,
manageable tasks. This is decomposition. Simulation
software allows visual representation (Janitor et al.,

2010) of the enterprise network infrastructure. The
students found it easier to understand the abstract
concepts of network design once they had this
representation. Working back from their abstractions
students were able to produce a new functional
network infrastructure. The ability of simulation
software to provide visual representation of their
entire design let students focus more closely on the
problem (Zhang et al., 2012) so that new ideas
emerged when solving problems. These results are
consistent with Galan et al., (2009); Hwang et al.,
(2014); and Ruiz-Martinez et al., (2013).

Students reported that they were able to identify
the security vulnerabilities and inherent errors in the
design they were given, and hence, work to solve
those problems. However, students found that they
were unable to apply some solutions because of
limitations with the software. Expósito, Trujillo and
Gamess, (2010) reported that simulation software,
particularly Packet tracer, has limitations compared
to physical devices in that some commands cannot
be applied.

It became clear that although students were able to
explain in their reflective report how they identified
patterns, similarities and commonalities in problems,
they were not aware that in doing so they were
applying the concept of computational thinking.

The results show that participants in this study
have little understanding and application of
computational thinking. The results show that
students consistently applied one aspect of
computational thinking: decomposition. At Sheffield
Hallam University teaching and learning in the area
of networking is skills-based which may explain
why the students are able to decompose problems.

Focus-group responses show that stuednts think
that computational thinking helps them understand
abstract concepts and produce concrete solutions.
During their demonstrations of their problem-
solving tasks they were not clear how they applied
computational thinking. Their interest was to solve
problems in any way that worked, including through
trial and error. This observation is in line with the
comments from some of the lecturers when asked
about the strategies they use when teaching and
assessing students when designing networks.

9 CONCLUSION

This study has demonstrated that students are able to
apply the ideas that together form computational
thinking even when they have not formally been
taught those ideas. The students who participated in

Students’ Understanding of Computational Thinking with a Focus on Decomposition in Building Network Simulations

251

this study were able to break complex problems into
smaller sub-problems, build solutions to those sub-
problems and compose them into simulations that
solved the whole problem. Teaching staff who said
that they were more engaged with the use of
technology than with approaches to problem-solving
were actually giving their students the types of
advanced thinking skill that is usually included in a
definition of computational thinking. The study
shows that simulation software is a very important
tool in the teaching of network design. It provides
visual representations of computer networks that can
be manipulated at different levels. By manipulating
the levels of abstraction in their simulations,
students are able to decompose problems. This helps
them to develop their understanding of both
problems and solutions. The use of simulations
within networking courses is recommended because
not only are students able to solve the immediate
problems that they face, their use of the software
improves their ability to apply some of the principles
of computational thinking. It is also recommendable
that lecturers familarise themselves with the
concepts of computational thnking so that they are
able to consciously teach and assess students when
designing simulation networks. Further work is
needed to investigate whether, and how, other
aspects of computational thinking may be developed
implicitly through this and other aspects of
education in computer networking.

REFERENCES

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A.,
Engelhardt, K. (2016). Developing computational
thinking in compulsory education – Implications
for policy and practice; EUR 28295 EN;
doi: 10.2791/792158

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S.,
Ng, T., Selby, C., & Woollard, J. (2015).
Computational thinking, a guide for teachers.
Computing at school, Digital Schoolhouse. Available
from http://computingatschool.org.uk/computational
thinking [access on 02/03/2016]

Expósito, J., Trujillo, V., & Gamess, E. (2010). Using
visual educational tools for the teaching and learning
of EIGRP. In Proceedings of the World Congress on
Engineering and Computer Science (Vol. 1).

Galán, F., Fernández, D., Fuertes, W., Gómez, M., & de
Vergara, J. E. L. (2009). Scenario-based virtual
network infrastructure management in research and
educational testbeds with VNUML. Annals of
telecommunications-annales des télécommunications,
64(5-6), 305-323.

Grover, S., & Pea, R. (2013). Computational thinking in
K–12. A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Hwang, W.Y., Kongcharoen, C., & Ghinea, G. (2014). To
enhance collaborative learning and practice network
knowledge with a virtualization laboratory and online
synchronous discussion. The International Review of
Research in Open and Distributed Learning, 15(4),
113-137.

Janitor, J., Jakab, F., & Kniewald, K. (2010). Visual
learning tools for teaching/learning computer
networks: Cisco networking academy and packet
tracer. In Networking and Services (ICNS), Sixth
International Conference on IEEE, 351-355.

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A
framework for computational thinking based on a
systematic research review. Baltic Journal of Modern
Computing, 4(3), 583–596.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York, NY: BasicBooks.

Ruiz-Martinez, A., Pereniguez-Garcia, F., Marin-Lopez,
R., Ruiz-Martínez, P.M., & Skarmeta-Gomez, A.F.
(2013). Teaching advanced concepts in computer
networks: Vnuml-um virtualization tool. Learning
Technologies, IEEE Transactions, 6 (1), 85-96.

Wing, J. M. (2011). Computational thinking. In VL/HCC
(p.3). Available from: https://csta.acm.org/Curriculum/
sub/CurrFiles/WingCTPrez.pdf [access on
12/02/2016]

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 366(1881), 3717-3725.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Zhang, Y., Liang, R., & Ma, H. (2012). Teaching
innovation in computer network course for
undergraduate students with packet tracer. IERI
Procedia, 2, 504-510.

CSEDU 2018 - 10th International Conference on Computer Supported Education

252

