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Abstract: Adaptive autonomy (AA) is a behavior that allows agents to change their autonomy levels by reasoning on their
circumstances. Previous work has modeled AA through the willingness to interact, composed of willingness
to ask and give assistance. The aim of this paper is to investigate, through computer simulations, the behavior
of agents given the proposed computational model with respect to different initial configurations, and level of
dependencies between agents. Dependency refers to the need for help that one agent has. Such need can be
fulfilled by deciding to depend on other agents. Results show that, firstly, agents whose willingness to interact
changes during run-time perform better compared to those with static willingness parameters, i.e. willingness
with fixed values. Secondly, two strategies for updating the willingness are compared, (i) the same fixed value
is updated on each interaction, (ii) update is done on the previous calculated value. The maximum number of
completed tasks which need assistance is achieved for (i), given specific initial configurations.

1 INTRODUCTION

Adaptive autonomy enables software agents to de-
cide, on the fly, on their autonomy levels, i.e. on
whether to be more or less autonomous in the context
of a task or a goal, with respect to other entities, such
as humans and other agents. There are several other
theories on autonomy and the way it can change (Ver-
non et al., 2007). Castelfranchi (Castelfranchi, 2000)
uses dependence theory to define autonomy. An agent
A which is trying to complete a task/goal x but lacks
any means to do so (e.g. knowledge, resources, or
functional ability), will depend on another agent B for
help, thus will become less-autonomous with respect
to task/goal x. Note that, this represents the social as-
pect of autonomy which deals with agent-agent inter-
action, and is to be distinguished from issues related
to an agent’s autonomy from an environment. John-
son et al. (Johnson et al., 2011) consider the descrip-
tive and prescriptive dimensions of autonomy, or also
referred to as self-sufficiency, i.e. being able to carry
out a task by oneself, and self-directedness, i.e. being
able to choose one’s own goals.

A 10 levels of autonomy model was proposed as
a guideline for understanding the concept of several
levels of autonomy which could be displayed by a sys-
tem in the context of human-robot interaction (Para-
suraman et al., 2000). This approach defines dis-

crete changes in the level of autonomy from tele-
operation to full autonomy. On the other hand, col-
laborative control (Fong et al., 2001) departed from
the dominant view of human/master - agent/slave, and
brought forward a perspective in which human and
agent are peers and use dialogue to resolve inconsis-
tencies. However, that is not to say that the agent is
able to decide on its own goals, it will still operate
under the goals defined by a human. Adjustable au-
tonomy, in some cases, is used for a system in which
the human decides on the autonomy levels (Hardin
and Goodrich, 2009), and in others as an umbrella
term that covers different ways in which autonomy is
shared between humans and agents (Johnson et al.,
2011). Mixed-initiative interaction allows for both
agent and human operator to decide on autonomy,
whilst adaptive autonomy places the decision-making
on the agent (Hardin and Goodrich, 2009). Usually,
the difference in these concepts lies on the party that
is increasing or decreasing agent autonomy. In adap-
tive autonomy, this decision lies with the agent itself.

In this paper, it is assumed that autonomy changes
when agents decide to become dependent on one an-
other. These decisions are taken continuously, based
on the circumstances. The willingness to interact
models the two facets of these interactions, through
the willingness to give, and ask for help (Frasheri
et al., 2017a). The behavior of the agents with dy-
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namic and static willingness to interact is compared.
The hypothesis is that agents with dynamic willing-
ness complete more tasks than agents with static will-
ingness. Moreover, two different strategies for up-
dating the willingness are considered in the dynamic
case, one in which the same initial value (base-line) is
updated on each interaction, and another in which the
update is done on the previous calculated value.

The rest of this paper is organized as follows. In
Section 2 related work found in the field is discussed.
Section 3 describes the agent model and in particular
the willingness to interact. The simulation setup is
described in Section 4, whilst the results are discussed
in Section 5. Finally, Section 6 provides a discussion
and future work directions.

2 RELATED WORK

Related work in the area is quite vast with respect
to the different theories and approaches to autonomy.
Johnson et al. (Johnson et al., 2011) assert that inter-
dependencies in joint-activity should be at the heart
of designing (software) systems with adjustable au-
tonomy. In this model, agents are inter-dependent if
they rely on each other during the execution of their
goals/tasks. Moreover inter-dependencies could be
soft, i.e. they are not necessary for the successful
outcome of a task but can improve performance, and
hard, i.e. they are in fact necessary for the success-
ful outcome of a task. They further propose a de-
sign methodology (Johnson et al., 2014), which aims
to provide concrete tools that can be used while im-
plementing a system with adjustable autonomy. The
method covers the following steps. In the beginning,
possible inter-dependencies in the system (between
tasks, and between humans and agents) are identified.
Afterwards, different mechanisms are designed in or-
der to support them. Lastly, it is analyzed how these
mechanisms affect the existing inter-dependent rela-
tionships. In the paper presented here, a higher level
of abstraction is considered, in which tasks are ab-
stract. Their other work has focused on policy sys-
tems, such as Kaa (Bradshaw et al., 2005), which al-
lows a central agent to change policies for some of
the agents during run-time, depending on the circum-
stances. The human will be put in the loop if Kaa
cannot reach a decision. In the paper presented here,
there is no central solution. Each agent makes deci-
sions on its own autonomy.

Frameworks such as STEAM (Tambe, 1997), and
DEFACTO (Schurr et al., 2009), have been proposed
to target support for teamwork and adjustable auton-
omy, respectively. STEAM extends the Soar (Laird,

2012) by adding support for teamwork through team
operators. The agents also have their individual plans
which do not require teamwork. As a result, they
can reason for team and individual plans. The so-
lution covers a synchronization protocol, based on
whether communication is necessary (through the
likelihood that others have it already), the cost for
miss-coordination, and the threat that some event
poses to the joint plan. In the paper presented
here, the main assumption is that an activity (task)
that may start as an individual one, could turn out
to need support, thus it could become a team-task.
The DEFACTO framework aims at providing support
for transfers of control in continuous time, resolv-
ing human-agent inconsistencies, and making actions
interrupt-able for real-time systems.

Scenarios with static and dynamic autonomy are
compared (Martin and Barber, 2006). The authors use
different decision frameworks, such as master-slave,
peer to peer and locally autonomous, which are dy-
namically switched between each other based on the
specific conditions. The mapping between the right
decision framework and conditions is set in advance.
The authors aim to show the usefulness of dynamic
autonomy. Whereas, other work compares different
implementations (Hardin and Goodrich, 2009), such
as adaptive autonomy (agents change their own auton-
omy), mixed-initiative interaction (both human and
agent are able to change autonomy), and adjustable
autonomy (the human is able to change the auton-
omy). The implementation of mixed-initiative inter-
action performs better than the other two, measured
by the number of victims found in a search and res-
cue simulation environment. In their case, AA agents
would always try to maintain the highest-level auton-
omy. In the paper presented here, two different sce-
narios are considered. One in which, the agents go
back to a fixed level after each interaction, and an-
other in which agents adapt continuously.

Specific reasoning mechanisms have been pro-
posed that weigh the influence of outside stimuli (e.g.
order of a superior) on the agent, by considering
task urgency and dedication level to the organiza-
tion(van der Vecht et al., 2009). This paper extends
on the factors that shape agent reasoning as is detailed
in the following sections. Others allow the change
in autonomy to happen at the individual task level
(Brookshire et al., 2004), i.e. the agent can execute a
task autonomously, whilst being tele-operated for an-
other one. The scenario in the current paper assumes
that agents perform tasks sequentially, and that they
can delegate when assistance is needed. Another ap-
proach is to categorize tasks in two groups, i.e. tasks
which the robot is able to perform by itself, and tasks
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that need human supervision/assistance (Kim et al.,
2016). Algorithms are designed based on this clas-
sification. The current paper does not assume such
categorization done before hand, and any task can
turn out to need assistance. Moreover, the presence
of the human operator is not modeled. Silva et al.
(da Silva et al., 2017) propose an agent framework
for when to ask for and give advice to others, in a
multi-agent learning environment. These two behav-
iors are shaped from the confidence level an agent has
in its current state, i.e. an agent will ask for advise if
not confident in its current policies, or give advice if
it is confident in them. The concepts discussed in the
present paper are complementary to these ideas, but
the type of interactions assumed represent task dele-
gation from one agent to another.

3 THE AGENT MODEL

The agent model described in this section stems from
(Frasheri et al., 2017b), (Frasheri et al., 2017a). In
this model, the problem of embedding adaptive au-
tonomous behavior in an agent is addressed from two
perspectives. Firstly, a generic high-level agent model
models the internal operation of the agent. Secondly,
the willingness to interact is introduced, based on
which the agent can modify its autonomy as needed.
Willingness to interact is composed of two separate
relationships, to help and to ask for help. In order
to calculate the willingness, an initial computational
model has been proposed and is incorporated in the
general agent framework.

Figure 1: The proposed agent model composed of five
states.

The agent model is composed of five states, idle,
execute, interact, regenerative and out o f order
(Figure 1). It is also assumed to have the following
characteristics:

1. b: battery

2. e: equipment (sensors, motors, actuators)

3. a: abilities (2D vision, reasoning, planning, mov-
ing, object manipulation and so on)

4. t: tools

5. k: knowledge (with respect to a task, its environ-
ment, other agents)

These characteristics are implemented in an abstract
way, detailed in Section 4. Furthermore, the agent is
assumed to be able to estimate the following:
1. eR: environment risk factor

2. aR: potential collaborator risk

3. µ: its own performance

4. tP: progress of the task for which it is requiring
help (partially implemented)

5. tT : trade-off of adopting a new task and post-
poning/dropping the current task (not yet imple-
mented)
The general operation of the agent runs as follows.

The agent starts its operation in the idle state. In idle,
the agent has not committed to any goal. The impli-
cation of this is that the agent might be doing nothing
(simply waiting for a request), or it might decide to
adopt a goal. When an agent commits to a goal, it
is added into its FIFO queue, switches to the execute
state and performs the task related to that goal. Dur-
ing the execution, the agent will evaluate if it needs
to ask another agent for assistance (based on the will-
ingness to ask for help). When the task is complete,
the agent will return to idle. If the agent is in idle or
execute, when a request is received, it will switch to
the interact state. The latter is not possible to inter-
rupt, and by the end of this state the agent will decide
(based on the willingness to give help) whether to ac-
cept the received request. If accepted, the correspond-
ing task is put into the agent’s FIFO queue, otherwise
the request will be discarded. Multiple requests are
handled sequentially, depending on the incoming or-
der. If accepted they are put into the queue, otherwise
they are discarded. If an agent’s battery level goes
below the threshold, it will switch to out o f order.
Thresholds are taken the same for each agent for sim-
plicity, but it is not necessary that they are so. As a re-
sult, the agent will immediately switch to regenerate,
in which the recharge takes place. Afterwards the
agent returns to idle. The switch from regenerate
to idle happens immediately. Once more, this choice
was for simplicity. A time delay could be introduced
to make the process more realistic.

3.1 Willingness to Interact

In this paper an agent’s willingness to interact shapes
its autonomy and is composed of two elements which
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are willingness to give help δ and willingness to ask
for help γ. The reasoning of the agent on its willing-
ness is explained in the following scenario.

Assume an agent A which decides to do a task
t. At first, A will need to consider if it has enough
energy before continuing with the pursuit. Then, it
needs to make sure that it has all the required abili-
ties in its repertoire. Moreover, agent A might have
different levels of expertise for its abilities. After-
wards, the agent needs to make sure it has all the re-
quired resources, in the necessary quantity and qual-
ity. Resources are composed of internal and external
resources. Internal resources include energy/battery,
sensors, motors, actuators, knowledge that are part of
the agent. External resources include physical objects
in the environment and other agents (individually and
as groups). Whether the agent has the needed levels
of energy, abilities, and resources will depend upon
the specific requirements of the task. Assume that A
has an ability ai with level of expertise q. It might
be that even though the value of q is above a specific
threshold for a task t1, the same value may not be ac-
ceptable for another task t2. If agent A complies well
with what is needed for the task, it could in principle
conduct the activity autonomously on its own.

However, other factors might be taken into con-
sideration. Agent A has a performance value deter-
mined by its past successes and failures. The lower
the performance, the higher the inclination to ask for
help might be. Furthermore, the agent might be more
inclined to ask for help if it has not progressed by it-
self with respect to the task, or if the environment it
is operating within is highly threatening. However, if
the agent knows no one, or if it lives among unhelpful
agents, it might be inclined otherwise. When agent
A decides to require assistance, it will forward its re-
quest to some agent B. It is reasonable to assume that
B is not chosen at random, but based on past history
of collaboration between A and B and the correspond-
ing successes. Naturally, when there is not any of the
latter, the agent might choose at random between the
agents it knows. Agent B will then need to process the
request of agent A. The reasoning of B will be similar,
with the added consideration of the trade-off between
dropping or postponing its current activities in order
to help A. The influence of each of the factors on
the components of the willingness is captured in Fig-
ures 2 and 3. In Figure 2 it is shown that if the agent
misses any of the required internal resources, then it
cannot perform the task, thus it will ask for help. This
is deterministic. On the other hand, the other factors
model the probabilistic nature of the willingness to
ask for help. If the perceived environmental risk in-
creases, then the willingness to ask increases, other-

Figure 2: Influence diagram for the willingness to ask for
help, γ.

wise it decreases. If the perceived risk from another
agent increases, then the willingness to ask decreases,
otherwise it increases. If the agent’s own performance
increases, then the willingness increases, otherwise it
decreases. Finally, if the task progress increases, the
willingness to ask decreases (if the agent progresses,
the need for assistance decreases), otherwise it in-
creases. In Figure 3 it is shown that missing the in-

Figure 3: Influence diagram for the willingness to give help,
δ.

ternal resources will decrease the willingness to give
help, otherwise the willingness increases. It is clear
in this case, that if the agent still accepts to help, it
will in turn ask for help another agent, thus creating
a chain reaction (Frasheri et al., 2017b). Another ap-
proach could be to have the agent directly reject any
request if it misses any of the internal resources, and
let the agent in need figure out what to do next. If the
environmental risk decreases, then the willingness to
give increases, otherwise it decreases. If the agent risk
increases, then the willingness decreases, otherwise it
increases. If the agent’s own performance increases,
then the willingness increases, otherwise it decreases.
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Finally, if the task trade-off is in favor of the new task,
then the willingness will increase, otherwise it will
decrease.

Agents are assumed to start their operation with
predefined values 〈δ0, γ0〉, and corresponding chang-
ing steps 〈∆δ, ∆γ〉. Moreover, they are equipped with
a set of abstract sensors, actuators, motors, knowledge
and abilities. Also, there are no restrictions assumed
as to whether they change in time, e.g. an agent could
have an initial minimal amount of knowledge which
expands during the operation through learning, or the
agent might be updated to support new abilities and
so on. Agents are assumed to be able to compute a
risk factor for the environment they operate in and for
each other agent in that environment. In addition, they
are able to compute a performance measure for them-
selves. An agent can generate a task ti to do, or can
receive a request from another agent for another task
t j. The task comes with specific execution require-
ments such as: estimated amount of energy required,
equipment, knowledge, abilities, tools. It is worth
noting that the functions used to determine each of
the variables that affect willingness may vary. For the
purposes of this paper, they are computed in simple
terms (Section 4). Currently the following limitations
hold. (i) The degree to which an agent has an ability,
or a resource is not considered, i.e. these properties
take binary values. (ii) An agent checks if it needs
assistance at the beginning of each task. (iii) A task
is simulated as an atomic step, as such the trade-off
between tasks is not simulated in the current work.

4 SIMULATIONS

The behavior of the agents was investigated through
computer simulations. One trial was conducted, and
is composed of two separate computer simulations,
referred to as phases. In the first phase, the values of
δ and γ are static throughout the whole time. Sim-
ulations are repeated for the following combinations
of 〈δ,γ〉: 〈0.0,0.0〉 〈0.5,0.0〉, 〈1.0,0.0〉, 〈0.0,0.5〉,
〈0.5,0.5〉, 〈1.0,0.5〉, 〈0.0,1.0〉, 〈0.5,1.0〉, 〈1.0,1.0〉,
〈0.2,0.2〉 〈0.5,0.2〉, 〈0.8,0.2〉, 〈0.2,0.5〉, 〈0.8,0.5〉,
〈0.2,1.0〉, 〈0.5,0.8〉, and 〈0.8,0.8〉. These values are
chosen as representatives of extreme and average self-
ish/unselfish agent behavior. In the second phase,
their values will change during run-time according to
the scheme shown in Figures 2 and 3 with ∆δ = ∆γ =
0.05. Simulations are repeated for all combinations
of 〈δ0,γ0〉: 〈0.0,0.0〉 〈0.5,0.0〉, 〈1.0,0.0〉, 〈0.0,0.5〉,
〈0.5,0.5〉, 〈1.0,0.5〉, 〈0.0,1.0〉, 〈0.5,1.0〉, 〈1.0,1.0〉,
〈0.2,0.2〉 〈0.5,0.2〉, 〈0.8,0.2〉, 〈0.2,0.5〉, 〈0.8,0.5〉,
〈0.2,1.0〉, 〈0.5,0.8〉, and 〈0.8,0.8〉, in which δ0 and

γ0 are the initial values for δ and γ. Moreover, for the
second phase of simulations, two update strategies for
δ and γ are investigated. In one strategy, the values
for δ and γ will always be calculated from δ0 and γ0.
In the other strategy, the values for δ and γ will be
calculated based on values calculated on the previous
interaction.

All experiments are repeated for three levels of
difficulty. Difficulty refers to the probability (PD) that
an agent lacks any of the abilities, knowledge, equip-
ment, or tools. The higher this probability, the higher
the chances that an agent will ask for help. The val-
ues taken for PD are 0.2,0.5,0.8, which means that
for PD = 0.2, the probability that the agent will ask
for help is 0.2, and the difficulty of the simulation is
low. The size of the population is 30, and remains
fixed across phases.

Each simulation runs for circa 20 minutes. Within
this amount of time, the agents are able to attempt and
complete a considerable amount of tasks, in the range
of hundreds. Consequently, it is possible to identify
a trend for the number of tasks completed over those
attempted. This choice was considered adequate for
the purposes of this paper. Naturally, it is possible to
let the agents run for a longer time.

Each agent is composed of a set of ROS (Quigley
et al., 2009) nodes. The communication between
agents happens by broadcast (when agents make
themselves known to each other), and by a tailored
action-server mechanism (when agents make one to
one help requests to each other). All agents in the
simulation start in their idle state. Each time they are
in this state, a task could be generated with a proba-
bility P = 0.6.

In the current state of the implementation an agent
reasons at the beginning of each task on whether it
needs assistance. If it does not, then it is supposed to
always succeed by itself. Moreover, the execution of
each task is simulated by having the system pause for
a specific amount of time ∆t which corresponds to a
predefined completion time of a task. This is a sim-
plified scenario that was deemed adequate for the pur-
poses of the simulations described here. The success
criterion for the static case is defined as follows. An
agent fails when it attempts a task while lacking any
of the following internal resources: abilities, knowl-
edge, battery, equipment, and tools. Otherwise it will
succeed. The presence of any of the abilities, knowl-
edge, equipment, and tools, is decided by the diffi-
culty of the simulation.

All agents start with the same level of battery
b = 4000 of energy units, which decreases after every
finished task by the amount of energy required by that
task. If b becomes lower than a threshold blow = 300,
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then the agent goes into the out o f order state. Pa-
rameters b and blow are not bound to these specific
values. These were chosen for running the simula-
tion. The energy level required by tasks is generated
at random at task generation as follows. First, a task
difficulty is selected randomly between low, medium,
and high. If the task is of low difficulty, then the en-
ergy required for it, is chosen randomly in the range
1−30. Whereas, if the difficulty is medium, then the
energy is taken in the range 31− 60. Finally, for the
high difficulty, energy is chosen in the range 61−90.
When giving help, the agent always checks whether
its current battery level minus the energy required by
the task is above the threshold blow.

The agent to ask for help is the one with the high-
est perceived helpfulness with probability p= 0.6 and
randomly otherwise. Perceived helpfulness in this
case is interpreted as the least amount of risk, calcu-
lated as in Equation 1.

β = max({ph1, ...phi, ...phn}) (1)

where phi - perceived helpfulness of agent i, n - num-
ber of agents.

Agents keep track of how many tasks they are at-
tempting, completing, and also whether they needed
help for a task or not. Tasks for which help is ei-
ther needed or asked for, are called dependent tasks.
A task is by default dependent if the agent lacks any
of the following: battery, abilities, resources, knowl-
edge, external resources. The performance for each
agent is expressed in terms of completed tasks over
attempted tasks, as follows.

µ =
Tasks Completed
Tasks Attempted

(2)

Factors such as environmental risk and task
progress are kept constant throughout the simulation,
therefore they affect the willingness to interact in the
same way on each interaction. The environmental risk
is fixed to a low value equal to 0.2, and affects γ by
−∆γ, and δ by +∆δ. This means that, when environ-
mental risk is perceived as low, the willingness to ask
for help will get lower, whilst the willingness to give
help will get higher. Furthermore, since the reasoning
for asking for help is done at the beginning of the task
and the agent cannot yet have a sense of progress, the
task-progress affect is by −∆γ over γ.

5 RESULTS

The simulations were run in order to investigate the
following hypothesis. Agents which change their
willingness to interact during run-time are able to
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Figure 4: Task completion percentages for PD = 0.2. The
x-axis contains different configurations for 〈δ, γ〉. sA refers
to the completion degree for all tasks in the static phase,
whereas sD corresponds to completion degree of dependent
tasks. The interpretation of the subscript is the same for d1
and d2. Both refer to the dynamic case, d1 to the base-line
update, and d2 to the continuous update respectively.

complete more tasks (as a population) compared to
the agent population with static willingness. This
problem was partially targeted in (Frasheri et al.,
2017b) by considering only the willingness to give
help. Moreover, two different methods of updat-
ing the willingness are compared, (i) agents update
their willingness based on previous calculated values,
(ii) agent update their willingness from fixed base-
line values. Each separate simulation was run 10
times, thereafter the mean and standard deviation val-
ues were calculated.

The results are shown in graphic, Figures 4-6, and
tabular form, Tables 1-3, (where the standard devi-
ation values are shown as well in round brackets).
In each graph, the different combinations 〈δ0,γ0〉 are
displayed along the x-axis, whereas the percentages
of completed tasks are along the y-axis (results corre-
spond to the population as a whole). Two completion
degrees are considered: on one hand the one with re-
spect to all tasks computed as in Equation 2, on the
other hand the one with respect to dependent tasks
(tasks that cannot be achieved without help) com-
puted as in Equation 3.

µd =
Dependent Tasks Completed
Dependent Tasks Attempted

(3)

5.1 Static vs. Dynamic Willingness

It is possible to observe from Figures 4-6 that agents
with dynamic willingness perform better in most
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Figure 5: Task completion percentages for PD = 0.5. Nota-
tion interpretation as in Figure 4.
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Figure 6: Task completion percentages for PD = 0.8. Nota-
tion interpretation as in Figure 4.

cases than their static counterpart. Thus the hypoth-
esis holds across the three difficulty levels for most
combinations of 〈δ,γ〉, considering the completion of
both dependent and all tasks. Obviously, as the proba-
bility of failure (PD) increases, the performance of the
agents degrades independently of whether the will-
ingness is static or dynamic. Moreover, in Figure
6, it is also possible to observe that static combina-
tions of willingness such as 〈1.0,0.5〉, 〈0.8,0.2〉, and
〈0.8,0.5〉 perform slightly better than the dynamic
counterparts.

In the static scenario, it is clear that for δ= 0.0, the
agents will never help one another, thus no dependent
tasks will be achieved. Also, for γ = 1.0, all agents
will always ask one another, and will not accomplish
any tasks. When γ = 0.0, agents will never ask, so the
outcome will be the same as in the previous cases. For
other combinations, some dependent tasks are accom-

plished. As mentioned previously, if the agent does
not ask for help when a task is necessarily dependent
(i.e. either battery, ability, knowledge, equipment, or
external resources lack), then it will fail. Asking for
help is determined with fixed probabilities, which are
the initial values for γ. In the dynamic case, this is
not probabilistic. If an agent determines a task to be
dependent (based on the difficulty level of the simu-
lation PD), then it will for sure ask for help, thus in-
creasing the chances of the task being completed.

5.2 Base-line Update vs. Continuous

The comparison between the cases with base-line up-
date and continuous update can be made from sev-
eral perspectives. For low difficulty of the simulation
(Figure 4), it is possible to observe that the best per-
formance (dependent tasks) is achieved in the base-
line update for the configuration 〈δ0 = 0.8,γ0 = 0.2〉,
followed by 〈δ0 = 1.0,γ0 = 0.0〉.

In Figure 5, best performance in base-line up-
date is achieved for the configurations 〈δ0 = 0.5,γ0 =
0.0〉, 〈δ0 = 0.5,γ0 = 0.2〉, and 〈δ0 = 0.8,γ0 = 0.2〉.
Whereas, in the static update, the performance peaks
are for 〈δ0 = 0.8,γ0 = 0.2〉, and 〈δ0 = 1.0,γ0 = 0.5〉.
The maximum performance, with respect to depen-
dent tasks, is achieved for static update with 〈δ0 =
0.8,γ0 = 0.2〉. Nevertheless, with respect to all con-
figurations the base-line update does slightly better.

In Figure 6, there are three peaks for static up-
date, 〈δ0 = 1.0,γ0 = 0.5〉, 〈δ0 = 0.8,γ0 = 0.2〉, and
〈δ0 = 0.8,γ0 = 0.5〉. The difference with the base-
line update is higher than in Figure 5. The base-line
update does better for other configurations.

The continuous case does always worse, and is
overall better than the static case only for PD =
0.2, (Figure 4), with maximums achieved for 〈δ0 =
0.5,γ0 = 0.0〉, 〈δ0 = 0.5,γ0 = 1.0〉, and 〈δ0 =
0.5,γ0 = 0.8〉. For the other values of PD, the con-
tinuous update has overall the worst performance out-
comes, with no clear peaks. It is also noticeable
that for the continuous update, all the agents, inde-
pendently of their start seem to reach a stable state,
i.e. the range of values for the performance is small,
around 0.2% for low difficulty level of the simulation.
This phenomenon is true for both dependent and total
tasks completed rates (Figure 4).

Finally, it is possible to observe that the same pat-
terns for static, base-line, and continuous update, hold
across difficulty levels. Furthermore, the base-line
and static updates follow similar patterns across dif-
ferent combinations of 〈δ,γ〉.
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Table 1: Task completion percentages for PD = 0.2. sA refers to the completion degree for all tasks in the static phase, whereas
sD corresponds to completion degree of dependent tasks. The interpretation of the subscript is the same for d1 and d2. Both
refer to the dynamic case, d1 to the base-line update, and d2 to the continuous update respectively.

Static Base-line Continuous

〈δ0,γ0〉 sA sD d1A d1D d2A d2D
<0.0,0.0> na 0 0.833 (0.005) 0.158 (0.009) 0.711 (0.023) 0.203 (0.050)
<0.5,0.0> na 0 0.877 (0.016) 0.430 (0.062) 0.742 (0.024) 0.249 (0.049)
<1.0,0.0> na 0 0.882 (0.017) 0.483 (0.068) 0.687 (0.031) 0.191 (0.044)
<0.0,0.5> na 0 0.726 (0.009) 0.111 (0.017) 0.718 (0.020) 0.216 (0.050)
<0.5,0.5> 0.477 (0.015) 0.113 (0.010) 0.829 (0.009) 0.344 (0.022) 0.727 (0.017) 0.223 (0.024)
<1.0,0.5> 0.493 (0.012) 0.146 (0.017) 0.754 (0.013) 0.296 (0.032) 0.696 (0.031) 0.211 (0.049)
<0.0,1.0> na 0 0.311 (0.016) 0.027 (0.005) 0.709 (0.021) 0.216 (0.046)
<0.5,1.0> na 0 0.323 (0.019) 0.062 (0.010) 0.732 (0.021) 0.243 (0.041)
<1.0,1.0> na 0 0.306 (0.029) 0.046 (0.009) 0.695 (0.023) 0.223 (0.040)
<0.2,0.2> 0.673 (0.008) 0.067 (0.008) 0.861 (0.006) 0.326 (0.019) 0.704 (0.022) 0.193 (0.028)
<0.5,0.2> 0.701 (0.006) 0.166 (0.008) 0.908 (0.008) 0.581 (0.033) 0.722 (0.022) 0.215 (0.032)
<0.8,0.2> 0.731 (0.006) 0.258 (0.014) 0.920 (0.013) 0.654 (0.051) 0.697 (0.025) 0.201 (0.034)
<0.2,0.5> 0.435 (0.014) 0.049 (0.008) 0.756 (0.009) 0.207 (0.015) 0.700 (0.014) 0.203 (0.017)
<0.8,0.5> 0.488 (0.008) 0.136 (0.008) 0.776 (0.019) 0.303 (0.024) 0.703 (0.019) 0.206 (0.032)
<0.2,1.0> 0.193 (0.017) 0.019 (0.005) 0.492 (0.015) 0.086 (0.011) 0.696 (0.022) 0.200 (0.027)
<0.5,0.8> 0.199 (0.017) 0.032 (0.006) 0.525 (0.015) 0.133 (0.012) 0.734 (0.026) 0.243 (0.064)
<0.8,0.8> 0.208 (0.015) 0.033 (0.006) 0.492 (0.015) 0.118 (0.018) 0.691 (0.028) 0.202 (0.052)

Table 2: Task completion percentages for PD = 0.5. Notation interpretation as in Table 1.

Static Base-line Continuous

〈δ0,γ0〉 sA sD d1A d1D d2A d2D
<0.0,0.0> na 0 0.605 (0.016) 0.053 (0.009) 0.323 (0.021) 0.042 (0.008)
<0.5,0.0> na 0 0.581 (0.015) 0.129 (0.017) 0.313 (0.033) 0.048 (0.012)
<1.0,0.0> na 0 0.542 (0.016) 0.118 (0.014) 0.302 (0.019) 0.033 (0.015)
<0.0,0.5> na 0 0.512 (0.019) 0.041 (0.007) 0.314 (0.012) 0.041 (0.016)
<0.5,0.5> 0.345 (0.019) 0.070 (0.013) 0.505 (0.021) 0.095 (0.010) 0.302 (0.025) 0.043 (0.013)
<1.0,0.5> 0.355 (0.017) 0.092 (0.012) 0.447 (0.024) 0.085 (0.012) 0.295 (0.054) 0.032 (0.008)
<0.0,1.0> na 0 0.218 (0.016) 0.011 (0.003) 0.331 (0.051) 0.039 (0.007)
<0.5,1.0> na 0 0.204 (0.023) 0.024 (0.004) 0.295 (0.022) 0.043 (0.012)
<1.0,1.0> na 0 0.186 (0.018) 0.019 (0.004) 0.306 (0.034) 0.033 (0.010)
<0.2,0.2> 0.483 (0.009) 0.035 (0.004) 0.602 (0.019) 0.091 (0.011) 0.315 (0.030) 0.045 (0.016)
<0.5,0.2> 0.510 (0.008) 0.085 (0.007) 0.595 (0.023) 0.127 (0.020) 0.301 (0.030) 0.034 (0.011)
<0.8,0.2> 0.532 (0.005) 0.133 (0.009) 0.547 (0.023) 0.120 (0.022) 0.306 (0.017) 0.044 (0.015)
<0.2,0.5> 0.312 (0.013) 0.027 (0.003) 0.502 (0.023) 0.071 (0.009) 0.302 (0.018) 0.039 (0.012)
<0.8,0.5> 0.345 (0.011) 0.086 (0.009) 0.466 (0.033) 0.089 (0.017) 0.289 (0.024) 0.037 (0.011)
<0.2,1.0> 0.133 (0.019) 0.013 (0.004) 0.336 (0.021) 0.039 (0.007) 0.295 (0.024) 0.039 (0.011)
<0.5,0.8> 0.142 (0.014) 0.020 (0.006) 0.204 (0.023) 0.024 (0.004) 0.295 (0.022) 0.043 (0.012)
<0.8,0.8> 0.151 (0.023) 0.024 (0.008) 0.300 (0.037) 0.041 (0.005) 0.292 (0.037) 0.037 (0.008)

6 DISCUSSION

In this paper, the feature defined as willingness to in-
teract has been investigated through multi-agent sim-
ulations. The evaluation is defined as the percent-
age of completed tasks. The results show the benefit
of dynamic willingness to interact, using a base-line
update strategy, as compared to its static counterpart
in the implemented scenario. Thus, the simulations
show that the performance of the agents improves, i.e.

percentage of completed tasks, when willingness be-
comes a dynamic function, in all difficulty levels. In
this context, difficulty level refers to the fraction of
tasks that require assistance from other agents to be
finished. Moreover, the effects of the update strat-
egy on the dynamic willingness to interact were in-
vestigated. The results show that, in the case of base-
line update, it is possible to reach a maximum perfor-
mance under specific initial conditions. Whilst in the
case of continuous update, the performance is con-
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Table 3: Task completion percentages for PD = 0.8. Notation interpretation as in Table 1.

Static Base-line Continuous

〈δ0,γ0〉 sA sD d1A d1D d2A d2D
<0.0,0.0> na 0 0.425 (0.019) 0.023 (0.005) 0.156 (0.017) 0.014 (0.006)
<0.5,0.0> na 0 0.361 (0.019) 0.044 (0.008) 0.155 (0.021) 0.013 (0.004)
<1.0,0.0> na 0 0.297 (0.025) 0.033 (0.002) 0.150 (0.022) 0.012 (0.006)
<0.0,0.5> na 0 0.353 (0.015) 0.013 (0.004) 0.179 (0.038) 0.013 (0.007)
<0.5,0.5> 0.238 (0.017) 0.041 (0.008) 0.318 (0.022) 0.037 (0.006) 0.149 (0.033) 0.010 (0.004)
<1.0,0.5> 0.251 (0.016) 0.065 (0.011) 0.257 (0.021) 0.029 (0.008) 0.146 (0.024) 0.012 (0.004)
<0.0,1.0> na 0 0.157 (0.024) 0.005 (0.003) 0.167 (0.039) 0.013 (0.004)
<0.5,1.0> na 0 0.127 (0.017) 0.010 (0.002) 0.147 (0.035) 0.011 (0.004)
<1.0,1.0> na 0 0.107 (0.012) 0.009 (0.003) 0.143 (0.022) 0.011 (0.004)
<0.2,0.2> 0.336 (0.005) 0.017 (0.002) 0.399 (0.018) 0.035 (0.005) 0.166 (0.030) 0.011 (0.006)
<0.5,0.2> 0.350 (0.010) 0.045 (0.005) 0.376 (0.013) 0.048 (0.007) 0.162 (0.033) 0.013 (0.003)
<0.8,0.2> 0.363 (0.013) 0.068 (0.005) 0.318 (0.018) 0.041 (0.008) 0.152 (0.027) 0.009 (0.004)
<0.2,0.5> 0.220 (0.009) 0.016 (0.004) 0.343 (0.016) 0.030 (0.005) 0.164 (0.029) 0.013 (0.006)
<0.8,0.5> 0.244 (0.014) 0.054 (0.009) 0.266 (0.024) 0.033 (0.006) 0.150 (0.026) 0.009 (0.005)
<0.2,1.0> 0.096 (0.008) 0.008 (0.002) 0.220 (0.013) 0.018 (0.006) 0.157 (0.024) 0.013 (0.004)
<0.5,0.8> 0.102 (0.015) 0.013 (0.005) 0.127 (0.017) 0.010 (0.002) 0.147 (0.035) 0.011 (0.004)
<0.8,0.8> 0.108 (0.011) 0.019 (0.003) 0.174 (0.016) 0.016 (0.005) 0.141 (0.019) 0.012 (0.004)

sistently worse. The simulation results seem to point
to the conclusion that a high willingness to ask for
help hinders the performance of the agents. Thus, the
best configuration for the agents is the one in which
〈δ0 = 0.8,γ0 = 0.2〉, and 〈δ0 = 1.0,γ0 = 0.0〉 (for
low difficulty level), which change on run-time with a
base-line update strategy. If all agents start with these
configurations, it is possible to predict results similar
to the ones presented here.

The agent model discussed in this paper is rele-
vant for different application domains, both as soft-
ware (distributed software services, social/behavioral
population models), and hardware solutions (search
and rescue, precision agriculture, collaborative indus-
trial robots). The latter explains why battery is taken
as a factor in the reasoning of the agent, which could
be a robot. Thus, the intention is to keep the model
as general as possible. In these scenarios heteroge-
neous agents/robots need to interact to exchange in-
formation or assist each other. It might not always
be the case that human operators are available to take
control or give advice. When agents/robots are dis-
patched far from the operators, communication links
can become unreliable. In such cases, the agents will
need to solve the problems by relying and helping one
another in order to complete their tasks. Adaptive au-
tonomy, realized through the willingness to interact,
can be a mean to approach the issues of when and
with whom to interact, given specific circumstances.

Future work will address the following issues.
First, the computational model of the willingness to
interact needs to be refined in order to include dif-
ferent weights for the different factors. It might

be that different application domains, require differ-
ent weights for these factors. This paper consid-
ered such weights to be equal to each other for the
sake of simplicity. Secondly, as mentioned in Sec-
tion 3, an agent could map an ability to a value be-
tween 0 and 1, which could reflect the accuracy for
such ability (similar reasoning could be applied to re-
sources as well). This means that, either the agent
has an ability which it can use with accuracy x%, or
it does not have the ability at all. Whether the x%
value is acceptable depends on the particular task, and
it should have an appropriate influence on the will-
ingness to interact. Therefore, this granularity needs
to be taken into account. Also, the impact of fac-
tors such as: environmental risk, task trade-off, and
task progress need to be investigated further with ded-
icated simulations, while keeping the other factors
fixed.
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APPENDIX

The source code to reproduce the simulations
described in this paper is publicly available
on github: htt ps : //github.com/gitting −
around/gitagent 18.git. The simulations were
conducted using the Microsoft Azure Cloud services,
with machines with the following characteristics:
Ubuntu 14.04 LTS, Standard B4ms (4 vcpus, 16 GB
memory).
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