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Abstract: The Canadian Armed Forces periodically examines aircraft, ship or ground vehicle fleets to determine if they 

need to reduce, keep the same or increase the number of platforms in their fleets. We adapt previous work on 

fleet estimation and multi-objective optimization to compute a Pareto-optimal set of fleets at multiple 

locations, taking into account mission scheduling. We apply our model, which uses a genetic algorithm based 

on NSGA-II, to a sample of notional scenarios to demonstrate the effectiveness of the approach. 

1 INTRODUCTION 

A critical decision that military organizations are 

faced with is to decide whether to change the number 

of platforms (aircraft, ships or ground vehicles) in 

their fleets by examining the trade-off space between 

operational effectiveness and acquisition cost. 

Military procurement costs can be high. For example, 

for the acquisition of 63 F-35 fighters, the U.S 

Airforce estimated a cost of $10.1 billion (US DOD, 

2017), that is, approximately $160 million per 

aircraft. These high costs and the need to examine 

what capabilities are gained by acquisitions have 

motivated the development and application of 

optimization and simulation methods to address the 

problems of military fleet mix rationalization 

(Wojtaszek and Wesolkowski, 2012). 

There are many tasks (missions) in the military 

such as combat, search and rescue, and transportation 

of troops or cargo that require the use of a variety of 

platforms. We are concerned with determining the 

composition of a new fleet and estimating associated 

acquisition costs beyond the current number of 

platforms in the fleets. Consequently, we would like 

to provide decision makers enough information to 

determine whether to add, reduce or keep the same 

the number of platforms in the fleets by estimating 

how these changes would impact the operational 

effectiveness of the missions carried out by the fleets. 

Previously developed models such as the 

Stochastic Fleet Estimation - Robust (SaFER) 

(Wesolkowski and Wojtaszek, 2012) and Training 

Device Estimation (TraDE) (Wesolkowski et al., 

2014) have assessed similar procurement problems. 

The TraDE model produces a set of training device 

configurations (or solutions) that provide trade-offs 

between multiple objectives (acquisition cost, travel 

cost, operating cost and training time). These 

solutions include the number of devices needed, the 

device type and the proposed location of the devices, 

for a set of tasks to be completed by a number of 

troops, while minimizing costs and total training 

completion time. Solutions can also be used to 

identify redundant devices to reduce annual 

maintenance and operating costs. 

The SaFER model estimates the size and 

composition of aircraft fleets based on mission 

requirements and closure times (the maximum time 

allowed to complete a mission). SaFER uses a genetic 

algorithm (GA) and scheduling heuristics to 

effectively order all the missions. These schedules are 

then used to compute the minimum or best case core 

(steady state) fleet component and surge (transient 

state) fleet component requirements, resulting in fleet 

mix computations which allow decision makers to 

assess the risk of surge requirements for various 

aircraft fleet mixes. 

The proposed algorithm which is a simplification 

and amalgamation of TraDE and SaFER computes a 

Pareto-optimal set of vehicle fleets by considering the 

current fleet of vehicles at different locations, mission 

information, mission scheduling, platform 

capabilities, costs and operational effectiveness. The 

main advantage of our algorithm and SaFER over 
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TraDE is that they both incorporate scheduling, 

meaning that they take into account the order of 

missions that need to be carried out based on the 

frequency of mission occurrence and mission priority. 

TraDE does not account for specific task completion 

times and this may cause scheduling conflicts. 

However, TraDE considers the possibility that a 

device can be located at various locations. Our 

algorithm assumes that a platform cannot move 

between locations. SaFER does not take location into 

consideration and only uses mission information and 

closure times. In addition, TraDE can accommodate 

a large number of different locations whereas our 

algorithm considers a limited number of locations. On 

the other hand, faster results can be obtained with our 

algorithm due to its simplicity compared to the TraDE 

and SaFER models. 

The paper is organized as follows. Section II 

describes the problem and the proposed algorithm. In 

Section III, we apply the algorithm to an air force 

problem using notional data based on information 

provided by subject matter experts (SMEs) in the 

Royal Canadian Air Force. Finally, in Section IV, 

conclusions about the algorithm are made and future 

improvements are suggested. Although we have used 

an air force problem to demonstrate our model, this 

model can be applied to other services (i.e., the navy 

and the army). 

2 THE ALGORITHM 

2.1 Problem Overview 

In order to determine the composition of a military 

fleet, we need information about the different 

missions that the platforms need to complete. A 

mission has a particular frequency of occurrence 

(how often the mission occurs in a year), a priority 

value (“1” being the highest priority) and a closure 

time. Closure time refers to the time from the start of 

the mission within which the mission has to be 

completed. We also consider the various capabilities 

of the different platform types and how important 

each capability is to each mission. In addition, to 

perform a given capability at a specific level of 

effectiveness (low, medium or high), different 

numbers of platforms are needed. Capability scores 

(between 0 and 1) were assigned by SMEs to quantify 

low, medium or high capability levels. 

Cost and operational effectiveness are major 

factors in determining our fleet design. For this 

problem, we only consider platform capital 

acquisition costs and ignore maintenance and 

operating costs. Maintenance and operating costs are 

of course very important given that a fleet’s cost over 

its lifetime may be higher than the acquisition cost. 

Future adjustments to this model will allow us to take 

them into account. Operational effectiveness depends 

on critical/no-fail capabilities in each mission, 

mission scheduling, the number of each platform type 

required for each mission, and the effectiveness of 

each platform for a given capability. 

2.2 Algorithm Overview 

A multi-objective genetic algorithm is implemented 

to simultaneously optimize on two objectives: 

acquisition cost and operational effectiveness. Figure 

1 shows an overview of the algorithm which consists 

of three major parts: pre-processing (data input and 

scenario generation), the genetic algorithm, and post-

processing (combining results and generating trade-

off plots).  

 

Figure 1: Algorithm Overview. 

First, a set of scenarios is randomly generated for 

each location using mission occurrence (how many 

instances of each mission occur over a period of 1 

year?) and mission duration (how long do these 

missions last?) using triangular distributions based on 

the data provided in Appendix A. We then apply 

NSGA-II (Deb et al., 2002), an elitist GA to each 

scenario. In our adaptation of NSGA-II, parent 
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selection is carried out by first choosing one parent 

from the non-dominated front (NDF), and then 

choosing the other parent by selecting the fitter of two 

candidates via roulette selection. Superior solutions 

are obtained with this method compared to the 

original NSGA-II crossover which selects both 

parents by roulette selection (Deb et al., 2002). The 

solutions for the various locations are then 

combinatorically combined to create whole fleet 

solutions resulting in a large number of fleet mixes 

which can respond to a wide variety of multi-location 

scenarios. 

2.3 Chromosomes 

A chromosome (an individual solution) consist of two 

parts: the fleet configuration and the mission 

schedule. The fleet configuration chromosome part 

contains a matrix assigning a number of platforms of 

each type to each mission. The bounds on the 

configuration are given by minimum fleet and 

maximum fleet input (minimum and maximum 

number of each platform that can be assigned to a 

mission). We also ensure that all capabilities required 

for a mission can be assigned at least one platform 

type. The schedule chromosome part contains an 

ordering of all the mission occurrences (based on 

mission frequency). When the schedule is initialized, 

the missions with higher priority missions are always 

scheduled before lower priority missions. 

2.4 Fitness Evaluation 

The total number of platforms in the fleet is calculated 

by using the fleet configuration and mission ordering 

by applying a bin packing algorithm to schedule the 

missions (explained in Section II.F). The total number 

of platforms corresponds to the number of individual 

platforms in each bin (one bin per platform type). The 

fitness values (acquisition cost and operational 

effectiveness) are then calculated. The non-

dominated front is calculated based on the fitness 

values. 

2.5 Crossover and Mutation 

NSGA-II applies crossover and mutation operators to 

the set of solutions (or parents). For the crossover, one 

parent is selected from the current non-dominated 

front of the parent population. To select the second 

parent, two individuals are first randomly chosen 

from the entire parent population, and the fittest one 

is chosen. We apply a standard crossover operator 

which picks, with equal probability, a fleet 

configuration from the two parents and assigns it to 

the child. When the crossover operator is applied to 

the mission schedule, a random swath of consecutive 

chromosome values is selected from the first parent 

and placed in the same position in the child. These 

values are removed from the second parent. The 

remaining chromosome values from the second 

parent are then used to fill the child chromosome in 

order starting from the left. 

Each parent’s chromosome can be mutated in two 

ways: the fleet configuration and the schedule. The 

mutation operator has only one mutation parameter µ, 

which is the probability that the fleet configuration is 

changed. Mutation of the fleet configuration is carried 

out by randomly picking a fleet configuration 

between the minimum fleet and maximum fleet. The 

schedule is mutated by randomly assigning missions 

while preserving priority-based ordering. 

Once a set of children has been produced and 

mutated, they are combined with the parents to obtain 

a set of individuals that is twice the size of the initial 

population. Non-dominated front sorting is applied to 

this set to select the next generation of population 

members. However, if the last front to be placed in 

the new population exceeds the remaining space in 

the new population (this can occur for the first front 

if the number of individuals in the first front exceeds 

the population size), the individuals are sorted by 

crowding distance to preserve diversity in the solution 

set. The crowding distance of an individual is defined 

as the sum (over all objectives) of the distance 

between its two closest neighbours (Deb et al., 2002). 

The process of removing the “most crowded” 

individuals from the front is called truncation of the 

front. 

2.6 Objective Functions 

The objective functions are to minimize acquisition 

cost and maximize operational effectiveness. 

2.6.1 Acquisition Cost 

To calculate the total acquisition cost, we need to 

compute the total number of platforms in the fleet f, 

by scheduling all the missions as follows: 

1. Iterate through the mission occurrences using the 

mission ordering. 

2. Calculate “investment” (i.e., the number of 

platforms in configuration * platform cost * 

mission duration) that is used to decide which 

platforms to schedule first. 

3. Number the platforms from highest to lowest in 

priority and exclude platforms with an investment 
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of 0 (meaning that the platform cannot perform 

the mission). 

4. Find the platform type with the highest 

investment, as it has the highest priority ranking. 

5. Schedule the mission occurrence on that platform 

type with as many platforms as indicated by the 

configuration. 

6. Schedule the mission occurrence at the same time 

on other platform types with as many platforms as 

indicated by the configuration. 

7. Add more platforms as needed. 

The number of platforms of different type that we 

obtain at the end of this process is our fleet. To 

calculate the acquisition cost, we then minimize the 

following equation: 

∑ max(0,  (𝑓𝑖 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖))  ∙  𝐴𝑖 

𝑃

𝑖=1

 

where P is the total number of platform types, fi is the 

number of platforms of type i in the calculated fleet, 

currenti is the number of platforms of type i in the 

existing (current) fleet and Ai is the acquisition cost of 

one platform of type i. 

2.6.2 Operational Effectiveness 

To calculate operational effectiveness, the algorithm 

uses the fleet configuration as follows:  

1. For each combination of mission, platform type, 

and capability, we first consider how many 

platforms of that type are used for the mission. 

Then, we look at how many platforms are needed 

to obtain a low/medium/high score for that 

capability on that mission. A score is assigned 

based on these two observations. 

2. For each combination of mission and capability, 

take the maximum platform score. 

3. For each combination of mission and capability, 

if the capability is no-fail for that mission and the 

score is 0, assign the mission a score of 0. 

Otherwise, if the capability is required, add the 

score for the mission and capability to the mission 

score. 

4. Normalize the mission scores by how many 

capabilities are required for each mission. 

5. Take a weighted average of the mission scores 

using priority values. 

To be clear, this formulation of operational 

effectiveness which amalgamates evaluations of very 

different capabilities into one score is carried out to 

simplify the problem. Once candidate fleets are 

identified, a more detailed process examining the 

capability trade-offs that come with each solution 

would be undertaken. 

2.7 Combinations 

After running the GA for each location, the solutions 

for each location are combined by permuting each 

solution from one location with all solutions from the 

other locations. The fleets and costs are added 

together, and the operational effectiveness scores are 

averaged using mission occurrences as weights as 

follows: 

∑ (𝑜𝑒𝑓𝑓𝑖 ∙ 𝑜𝑐𝑐𝑢𝑟𝑖)
𝐿
𝑖=1

∑ 𝑜𝑐𝑐𝑢𝑟𝑖
𝐿
𝑖=1

 

where L is the total number of locations. oeffi is the 

operational effectiveness for one fleet from location i, 

and occuri is the total number of mission occurrences 

from location i. This allows the final combined 

solution to be a set of combined fleets from all 

locations of interest. We note that the bounds on the 

range of values produced by the function are 0 and 1. 

This enables operational effectiveness to be 

represented as a percentage of a theoretical maximum 

possible operational effectiveness and allows for an 

easy way to compare the operational effectiveness of 

different fleet mixes. 

3 RESULTS 

3.1 Experimental Set Up 

We consider an air force problem for illustration 

purposes. Data on missions, required capabilities for 

each mission and related platform capabilities for 

various aircraft are notional and are based in part of 

information provided by SMEs from the Royal 

Canadian Air Force. 

Twenty five annual scenarios were tested with 

each scenario having a computer runtime of 

approximately 3 hours. A scenario is a different 

combination of missions (including different mission 

durations) at each of the considered base locations. 

Due to time limitations for this study, we were only 

able to use 25 scenarios at each location resulting in 

effectively 15,625 global scenarios. A large number 

of scenarios is usually desirable when dealing with 

problems with high degrees of uncertainty 

(Wesolkowski and Wojtaszek, 2012). We apply 

NSGA-II to each scenario at each of the three 

locations. We set the mutation rate, µ, to 0.35 and use 

a population (individuals) size of 400 iterated over 

800 generations. 
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Figure 2: Air fleet mix rationalization trade-off. 

The solutions for all scenarios were combined into 

a super front, a notional Pareto front, eliminating all 

duplicate solutions. The Pareto front, in this case, 

represents the solutions to the scenarios which are the 

toughest to satisfy (fleet mixes proposed by 

dominated solutions would be able to address less 

demanding scenarios). Therefore, we use this super 

front in our analysis. 

3.2 Data 

We consider scenarios at each of the three locations: 

Loc1, Loc2 and Loc3. Each scenario comprises 

various combinations of three missions: M1, M2 and 

M3. Four platforms (AC1 to AC4) were considered 

for each mission and were assessed on 29 capabilities 

(Cap1 to Cap29). Each of the AC1 to AC4 platforms 

has an acquisition cost of 22, 87, 78 and 32 million 

dollars respectively. We assume that the bases 

already had a total of 85 AC1’s, 12 AC2’s, 22 AC3’s 

and 12 AC4’s. Low, medium and high capability 

scores are set to 0.3, 0.7 and 1 respectively. Finally 

we set the Yearly Flying Rate (YFR) per fleet to 4000 

hours. Tables 3 to 7 in Appendix A show the notional 

data. 

 

 

3.3 Results and Discussion 

Figure 2 shows the trade-off space between 

acquisition cost and operational effectiveness. After 

running NSGA-II on each location, we 

combinatorically combined solutions from each 

scenario at one location with solutions from scenarios 

run for other locations. In this manner, we obtained a 

total of 597,608 unique solutions and 35,120 

solutions on the Pareto front for all multi-location 

scenarios combined. The selected values in Table 1 

are represented by squares in Figure 2. The solutions 

on the Pareto front represent fleet mixes which are 

able to carry out the most demanding multi-location 

scenarios. 

Most solutions have a high number of AC1’s and 

a low number of AC2’s and AC4’s (see Table 1). We 

also observe that as the acquisition cost increases, the 

operational effectiveness increases as well. 

Furthermore, since all platform types were used in all 

the solutions, this particular problem set did not find 

any solutions which reduced the number of fleets. The 

correlation coefficients between acquisition cost and 

operational effectiveness in the Pareto front and the 

total set of solutions are 0.8422 and 0.8211 

respectively. 
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Table 1: Selected points from the Pareto front. 
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A 56 4 18 5 0 0.5651 

B 55 4 21 5 78 0.6337 

C 54 5 24 7 312 0.6546 

D 74 5 25 6 468 0.7403 

E 67 3 28 5 546 0.8089 

F 68 2 29 6 624 0.8343 

G 74 1 33 4 858 0.8553 

H 64 1 38 9 1326 0.8830 

I 87 5 62 8 3318 0.9591 

J 77 4 87 20 5499 1.0000 

 

Table 2 shows the correlation coefficients 

between each platform type and the objective 

function values. It also shows the correlation 

coefficients for each pair of platform types. We can 

see that AC1, AC2 and AC4 have very weak or 

negligible relationships with acquisition cost and 

operational effectiveness. AC3 has a very strong 

positive relationship with both objective functions. 

This would mean that the number of AC3’s plays a 

key role in increasing the operational effectiveness of 

the fleet and consequently in increasing the 

acquisition cost. On the other hand, the relationships 

between each pair of platform types are negligible 

meaning that their numbers are uncorrelated and 

potentially independent of each other. 

From $0 – $1000 million, we observe a steep 

gradient among the points on the Pareto front (see 

Figure 2). This means that for a small increase in 

acquisition cost, there is a high gain in operational 

effectiveness. We can speak of a “knee” in the Pareto 

front at approximately $1000 million, since from 

$1000 - $6000 million, the Pareto points have a much 

smaller slope, thereby, indicating that for a large 

increase in acquisition cost, there is only a small gain 

in operational effectiveness. 

These observations would play a major role in 

deciding a new configuration for the aircraft fleet. For 

a military organization on a limited budget, Solution 

F (624, 0.8343) consisting of 68 AC1’s, 2 AC2’s, 29 

AC3’s and 6 AC4’s could be a cost effective solution 

providing operational effectiveness for a 

“reasonably” demanding multi-location scenario (see 

Figure 2). Deviations from that point can be 

considered based on the military organization’s 

budget and risk tolerance (higher risk at lower cost 

and vice versa). For example, for a lower budget, we 

can consider solution E. 

Table 2: Correlation coefficients. 

 AC1 AC2 AC3 AC4 

Acq. Cost -0.167 0.078 0.991 0.198 

Op. Eff -0.104 0.005 0.838 0.047 

AC1 1.000 -0.021 0.064 -0.143 

AC2 0.021 1.000 -0.125 -0.061 

AC3 -0.176 0.064 1.000 0.117 

AC4 -0.222 -0.143 0.117 1.000 

 

However if we decrease the acquisition budget too 

much, it would cause a drastic loss in operational 

effectiveness which might not be acceptable to 

decision makers. On the other hand, if the 

organization needs an operational effectiveness 

higher than 0.8343, they would require a much higher 

budget. Increasing operational effectiveness to 

0.8830 (Solution H) would increase the acquisition 

budget to $1326 million, which is more than double 

the $624 million for Solution F. 

4 CONCLUSIONS 

We have proposed an algorithm to solve a notional air 

fleet mix rationalization problem based on a number 

of mission scenarios. We applied NSGA-II to solve 

this problem. Solutions based on scenarios for three 

different locations were combined to create multi-

location fleet mix solutions. These solutions suggest 

different fleet mixes to decision makers based on their 

risk tolerance and budget. The algorithm is adaptable 

to other kinds of fleets such as ground vehicles.  

Several improvements could be implemented in 

the future. First, maintenance and operational costs 

should be considered, as well as training simulations 

and required personnel. The algorithm for operational 

effectiveness should be investigated in greater detail 

to ensure that the values correspond to perceived 

capabilities of the resulting fleets. Finally, multi-

scenario experiments should be run multiple times to 

assess how well the genetic algorithm converges to a 

combined non-dominated front. 
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APPENDIX 

Table 3 shows the information pertaining to each 

mission. A priority value of “1” refers to a mission 

with the highest priority. Closure time refers to the 

time within which the mission has to be completed. 

Frequency shows how often a mission occurs. Table 

4 shows the capability requirements for each mission 

where “0” means unnecessary, “1” means required 

and “2” means no-fail (critical). Tables 5 to 7 show 

the number of aircraft needed to perform each 

capability at a specific level (low, medium or high). 

“0” means the capability is not possible with that 

aircraft. 

Table 3: Mission information. 

Location 1 

Mission ID Mission1 Mission2 Mission3 

Priority 1 2 3 

Min. Freq 400 25 20 

Avg. Freq 400 25 20 

Max. Freq 400 25 20 

Closure Time Min 120 1000 1400 

Closure Time Avg 120 1000 1400 

Closure Time 

Max 
120 1000 1400 

Location 2 

Priority 1 2 3 

Min. Freq 300 30 40 

Avg. Freq 300 30 40 

Max. Freq 300 30 40 

Closure Time Min 120 1000 1400 

Closure Time Avg 120 1000 1400 

Closure Time 

Max 
120 1000 1400 

Location 3 

Priority 1 2 3 

Min. Freq 700 5 5 

Avg. Freq 700 5 5 

Max. Freq 700 5 5 

Closure Time Min 120 1000 1400 

Closure Time Avg 120 1000 1400 

Closure Time 

Max 
120 1000 1400 

Table 4: Mission requirements. 

Mission/ 

Capability 
Mission1 Mission2 Mission3 

Cap1 1 1 1 

Cap2 1 1 1 

Cap3 0 1 1 

Cap4 0 1 1 

Cap5 0 1 1 

Cap6 0 1 1 

Cap7 0 0 1 

Cap8 0 1 0 

Cap9 0 1 1 

Cap10 0 2 0 

Cap11 0 2 0 

Cap12 0 0 2 

Cap13 0 0 2 

Cap14 0 0 2 

Cap15 0 0 2 

Cap16 0 1 0 

Cap17 0 1 0 

Cap18 0 1 1 

Cap19 1 1 1 

Cap20 1 1 1 

Cap21 2 0 0 

Cap22 1 0 0 

Cap23 0 1 1 

Cap24 0 0 2 

Cap25 0 2 0 

Cap26 0 1 1 

Cap27 0 1 1 

Cap28 0 1 1 

Cap29 2 0 0 
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Table 5: Platform capabilities at the low level. 

Platform/ Capability AC1 AC2 AC3 AC4 

Cap1 0 0 1 0 

Cap2 1 1 1 1 

Cap3 1 1 1 0 

Cap4 1 1 1 0 

Cap5 1 1 1 0 

Cap6 1 1 1 0 

Cap7 0 0 1 0 

Cap8 1 1 1 1 

Cap9 0 0 1 0 

Cap10 0 0 1 0 

Cap11 0 0 1 0 

Cap12 0 0 1 0 

Cap13 0 0 1 0 

Cap14 0 0 1 0 

Cap15 0 0 1 0 

Cap16 1 1 1 1 

Cap17 1 1 1 0 

Cap18 1 1 1 1 

Cap19 1 1 1 1 

Cap20 1 1 1 1 

Cap21 1 1 1 1 

Cap22 1 1 1 1 

Cap23 0 0 1 0 

Cap24 0 0 1 0 

Cap25 0 0 1 0 

Cap26 0 0 1 0 

Cap27 0 0 1 0 

Cap28 0 0 1 0 

Cap29 1 1 1 1 

Table 6: Platform capabilities at the medium level. 

Platform/ Capability AC1 AC2 AC3 AC4 

Cap1 0 0 1 0 

Cap2 1 1 1 1 

Cap3 1 1 1 0 

Cap4 1 1 1 0 

Cap5 1 1 1 0 

Cap6 1 1 1 0 

Cap7 0 0 2 0 

Cap8 2 2 2 2 

Cap9 0 0 1 0 

Cap10 0 0 2 0 

Cap11 0 0 2 0 

Cap12 0 0 2 0 

Cap13 0 0 2 0 

Cap14 0 0 2 0 

Cap15 0 0 2 0 

Cap16 1 1 1 1 

Cap17 1 1 1 0 

Cap18 1 1 1 1 

Cap19 1 1 1 1 

Cap20 1 1 1 1 

Cap21 2 2 1 2 

Cap22 1 1 1 1 

Cap23 0 0 1 0 

Cap24 0 0 2 0 

Cap25 0 0 2 0 

Cap26 0 0 1 0 

Cap27 0 0 1 0 

Cap28 0 0 1 0 

Cap29 2 1 1 1 

Table 7: Platform capabilities at the high level. 

Platform/ Capability AC1 AC2 AC3 AC4 

Cap1 0 0 1 0 

Cap2 1 1 1 1 

Cap3 2 2 2 0 

Cap4 2 2 2 0 

Cap5 2 2 2 0 

Cap6 2 2 2 0 

Cap7 0 0 3 0 

Cap8 3 3 3 3 

Cap9 0 0 1 0 

Cap10 0 0 2 0 

Cap11 0 0 2 0 

Cap12 0 0 3 0 

Cap13 0 0 3 0 

Cap14 0 0 3 0 

Cap15 0 0 3 0 

Cap16 1 1 1 1 

Cap17 1 1 1 0 

Cap18 1 1 1 1 

Cap19 1 1 1 1 

Cap20 1 1 1 1 

Cap21 3 2 3 2 

Cap22 1 1 1 1 

Cap23 0 0 1 0 

Cap24 0 0 3 0 

Cap25 0 0 2 0 

Cap26 0 0 1 0 

Cap27 0 0 1 0 

Cap28 0 0 1 0 

Cap29 4 1 2 2 
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