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Abstract: The purpose of this paper is to create and demonstrate a command line utility that uses freely available 

cloud images—typically intended for deployment within public and private cloud environments—to rapidly 

provision virtual machines on a local server, taking advantage of the ZFS file system. This utility, qvm, 

aims to provide syntactical consistency for both potential contributors and users alike—it is written in 

Python and uses YAML for all user configuration; exactly like cloud-init, the post-deployment 

configuration system featured in the cloud images used by qvm to allow its rapid provisioning. qvm itself 

does not use the libvirt API to create virtual machines, instead parsing pre-defined templates containing 

options for the commonly used virt-install tool, installed alongside virt-manager, the de facto graphical 

libvirt client. The utility is capable of importing cloud images into zvols and creating clones for each virtual 

machine using the pyzfs Python wrapper for the libzfs_core C library, as well as a custom recreation of 

pyzfs based on the zfs command line utility. qvm aims to introduce some basic IaC constructs to the 

provisioning of local virtual machines using the aforementioned common tools, requiring no prior 

experience beyond the usage of these tools. Its use of cloud-init allows for portability into existing cloud 

infrastructure, with no requirements on common Linux distributions, such as Red Hat Enterprise Linux, 

Debian, or SUSE, and their derivatives, beyond their base installation with virtualisation server packages 

and the prerequisite Python libraries required by qvm. 

1 INTRODUCTION 

With computers being as powerful as they are today 

and technologies such as hardware assisted 

virtualisation being commonplace, virtualisation has 

become an integral component of the testing and 

development processes for developers and system 

administrators alike. Whether this be to rapidly 

provision a software environment consistently as 

required, or to provide a temporary environment to 

test applications, virtualisation is a more cost and 

resource effective manner of providing a flexible 

development environment. 

Tools such as Vagrant are aimed at developers 

for the exact use case described above. However, 

such a tool could be argued to be limited and 

somewhat inaccessible for system administrators or 

“homelab" users who may not have experience 

coding in Ruby as Vagrant requires, may have 

cloud-init scripts that they currently deploy in cloud 

environments that they want to provision locally, or 

simply may briefly look at a tool like Vagrant and 

conclude it is too complicated for their use case. 

Such users frequently end up using graphical 

tools and installing operating systems on test virtual 

machines from scratch; just to complete an 

installation can take more than ten minutes, without 

factoring in any post-installation configuration. 

A solution for this problem is commonly used in 

the world of cloud computing. Cloud-init is a first-

boot configuration system that allows users to 

configure a new virtual machine instance with new 

user and group configurations, automatic software 

installations, and even run user scripts. If the 

administrator is willing to do so, it is possible to use 

cloud-init exclusively for all post-installation setup 

tasks, without the use of external configuration 

management or remote execution tools such as 

Ansible or Puppet. 

Increasingly common is the use of the ZFS file 

system: an extremely high performance, highly resili-

ent file system with built-in volume management, 

redundant array of independent/inexpensive disks 
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(RAID)-like redundancy and virtual block device 

capabilities. Such a backing file system is ideal for 

hosting virtual machine images, however at present 

there is no framework for managing virtual machines 

and ZFS volumes concurrently—all configuration 

must be performed manually by the administrator. 

This project aims to resolve this issue. Quick 

Virtual Machine (qvm) is a utility that takes 

advantage of preinstalled cloud images running 

cloud-init—available from all the major enterprise 

Linux distributions—ZFS volumes (zvols) (detailed 

in Appendix A) and the virt-install command line 

virtual machine provisioning utility, allowing system 

administrators to provision virtual machines in as 

little as fifteen seconds, all from a single 

configuration file. 

2 REQUIREMENTS 

The requirements covered here are prioritised using 

the MoSCoW method: Must or Should, Could or 

Won’t. These priorities are designated by the 

bracketed letters at the end of each requirement title. 

They are then grouped into related categories in the 

following sections: Basic functional requirements 

(2.1), Error state requirements (2.2), ZFS functional 

requirements (2.3). 

2.1 Basic Functional Requirements 

2.1.1 Importing of Cloud Images (M) 

The utility must be able to import an uncompressed 

cloud image in raw disk format to a new ZFS 

volume (zvol) specified by the user. This process 

must involve the automatic creation of the specified 

zvol, the creation of a base snapshot in the following 

format: 

(specified zvol)@base 

The process will not allow a user-definable set of 

zvol properties. Virtual machine zvol properties will 

be inherited from their parent cloud image zvols; 

thus allowing users to input unsuitable values will 

impact the performance of all virtual machines. The 

following defaults will be used: 

volblocksize: 16K The fixed block size of the 

zvol (the smallest transactional unit). This provides a 

reasonable balance between compression ratio and 

performance. 

refreservation: none Sparse allocation—only 

space consumed within the image will be allocated, 

rather than the full size of the raw image. 

Handling of error conditions must conform to the 

requirements specified in section 2.2. 

2.1.2 Virtual Machine Provisioning File 
Format (M) 

All the required configuration documents for 

provisioning a virtual machine must be contained in 

a single YAML file. The file must contain three 

documents: 

vm A document containing a single top-level 

YAML dictionary. This dictionary must contain top-

level options for virt-install as per its manual page 

(Red Hat, 2017). Second-level options must be 

specified in a nested dictionary in the same manner. 

The top-level dictionary must contain a lower-level 

dictionary specifying disk settings as per the virt-

install manual, and a further nested zvol dictionary 

containing valid dictionary options as per the zfs CLI 

utility manual page. user-data A document 

containing the cloud-init user-data document as per 

the cloud-init documentation (Nocloud, 2017). 

meta-data A document containing the cloud-init 

meta-data document as per the cloud-init 

documentation (Nocloud, 2017). 

Each document shall be separated as per the 

YAML specification (Ben-Kiki et al., 2009): using 

“- - -" on a new line to mark the beginning of a new 

document and, optionally aside from the end of the 

final document, “. . ." on a new line to mark the end 

of a document. 

Each top-level document shall have a single 

identifier for the qvm utility; a key-value entry, 

where the key is “qvm" and the value is one of either 

“vm", “user-data" or “metadata" for each respective 

matching document. 

2.1.3  Provision New Virtual Machine (M) 

The utility must be able to provision a new virtual 

machine from the provided input file as specified 

above. A new zvol must be created from an exist 

cloud image snapshot, under the name specified by 

the user, conforming with the requirements specified 

in ZFS volume clone creation (M), section 2.3. 

Handling of error conditions must conform to the 

requirements specified in section 2.2. 

2.2 Error State Requirements 

2.2.1 Atomicity (M) 

During the occurrence of a failure after a persistent 

modification (i.e. one that is not temporary) has been 
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made, the utility must either revert these changes, or 

if this fails or cannot be performed, inform the user 

which changes failed to be reverted. Once the utility 

exits, it must leave the system in an unchanged 

persistent operational state on failure, or leave the 

system in the state changed by the successful 

completion of the intended task. 

The utility will be capable of making four types 

of change to a system in total: 

1) The creation of a zvol and snapshot for the 

purpose of importing a cloud image. 

2) The creation of a zvol cloned from an imported 

cloud image snapshot for the purpose of 

creating a disk for a new virtual machine. 

3) The creation of a new virtual machine. 

4) The creation of a cloud-init configuration image 

to be attached to the virtual machine for post-

creation configuration. 

Of these changes, only changes 1 and 2 shall be 

revertable by the utility. Change 3 is validated 

before being made; if validation fails, the virtual 

machine won’t be created. Change 4 places cloud-

init configuration data and creates the image in a 

subdirectory under /tmp, which will not impact the 

operational state of the system, and will be deleted 

on system reboot automatically. However, if change 

3 or 4 fail, changes 1 and 2 will be reverted. 

2.2.2 Error Reporting and Return Codes (S) 

The utility should print errors in the following 

format: 

Error task description: error description 

Errors should be written to the standard error 

stream, and error events should cause the utility to 

return 1 (nonzero). For all successful runs, the utility 

should return 0. 

While accurate error messages must be reported, 

this requirement is treated as “should" within the 

MoSCoW framework as certain external utilities 

used, such as the output of failed validation or the 

output of the ZFS CLI utility on failure will output 

errors in a different format. 

2.3 ZFS Functional Requirements 

2.3.1 ZFS Volume Creation (M) 

The utility must be able to create ZFS volumes 

(zvols) as specified by the user for the top-level 

requirement Import cloud image specified in section 

2.1. The zvol creation process must be able to 

configure new zvols with the properties specified by 

the processes defined by these requirements, or fall 

into an error state conforming to the requirements 

specified in section 2.2. 

Handling of error conditions must conform to the 

requirements specified in section 2.2. 

2.3.2 ZFS Volume Snapshot Creation (M) 

To meet the top-level requirement Import cloud 

image specified in section 2.1, the utility must be 

able to create a snapshot of the zvol by the process 

outlined in this top-level requirement. A zvol cannot 

be directly cloned; a snapshot is required to define a 

set, read-only state on which a clone can be based. 

As snapshots inherit properties from their source 

zvols, the utility will not accept any properties to 

fulfil this requirement. See the aforementioned top-

level requirement for specific details of the 

fulfilment of this requirement. 

Handling of error conditions must conform to the 

requirements specified in section 2.2. 

2.3.3 ZFS Volume Clone Creation (M) 

To meet the top-level requirement Provision new 

virtual machine specified in section 2.1, the utility 

must be able to clone the snapshot specified in the 

Import cloud image top-level requirement of the 

aforementioned section, provided that the specified 

cloud image snapshot exists. This process must be 

able to accept valid properties to be applied to the 

newly created clone. 

Handling of error conditions must conform to the 

requirements specified in section 2.2. 

3 NON-FUNCTIONAL 

REQUIREMENTS 

Due to the nature of this utility—a purely technical 

CLI utility that facilitates a technical process—the 

non-functional requirements are limited, and tie in 

closely with a number of functional requirements. 

3.1 Simple Command Line Input 
Format 

The utility should have a command line input format 

that is intuitive to follow. This means minimising 

configurable options that provide no realistic benefit, 

such as the capability of selecting zvol properties for 

the Import cloud image functional requirement 

specified in section 2.1. This will likely manifest as 

providing singular options on the command line, 

such as providing only “import" and “vm" top-level 
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options, and only allowing the relevant sub-options, 

such as the target zvol and the path of the image file 

to be imported in the aforementioned functional 

requirement. 

3.2 Simple Virtual Machine 
Provisioning File Format 

For the user, the only point of complexity should 

exist in the virtual machine provisioning file; these 

complexities are introduced by cloud-init and virt-

install as opposed to the utility itself. The utility 

should existing cloud-init user-data and meta-data 

documents to be simply copied into the file without 

any modification beyond adding the required qvm 

key/value entries specified in the Virtual machine 

provisioning file format requirement (section 2.1). 

4 DESIGN 

There are a number of factors that ultimately make 

qvm’s design process fairly straightforward: 

Classes. There is no specific requirement in Python 

to use classes, unlike a language like Java 

where they are mandatory. Misuse of classes in 

Python is unfortunately extremely common; 

rather than using modules (files holding 

functions for the sake of modularity), many 

developers integrate these functions as methods 

of a class with no unique attributes, thus 

performing tasks that don’t apply to that class. 

The general consensus for class usage is to use 

them “where and when they make sense". In 

the case of qvm, the only scenario where this 

makes sense is when provisioning a new virtual 

machine, as the utility iterates over the same 

dictionaries in order to validate and create the 

components required for the virtual machine, 

namely the zvol and the virtual machine itself. 

As a result, there is only a single class in this 

utility (see section 5). 

Simplicity. qvm doesn’t aim to be an entirely new 

virtual machine lifecycle management tool. 

The primary caveats of virsh for the intended 

use case of qvm, which are covered in the 

Introduction (section) are the lack of ZFS 

support, the difficulty in creating XML files to 

define a libvirt domain (virtual machine), and 

the lengthy installation and post-installation 

setup times of virtual machines. qvm 

successfully alleviates these issues. There is 

little room for interpretation regarding the tasks 

it is required to perform, and the order in which 

these tasks are executed. qvm is therefore best 

considered as an automation tool for a 

particular workflow required by a common use 

case. 

“Vertical" Interaction. qvm doesn’t recursively or 

iteratively interact with external entities (or 

actors in Unified Modelling Language (UML) 

terminology) and process data from them. 

Taking the most complicated use case as an 

example, provisioning a new virtual machine: 

qvm imports all the data that it requires from a 

single file at the beginning of the process. 

Processing is performed iteratively on this data 

internally, only communicating with external 

subsystems to validate the virt-install command 

used to create the virtual machine, to run this 

command, to create the required zvols and 

cloud-init directories, files and images. 

As a result of the last point, tools such as sequence 

diagrams aren’t well suited to conveying the design 

of qvm, as the design would be conveyed as 

interacting almost entirely with itself aside from the 

interactions described above. 

4.1 Use Cases 

4.1.1 Import Cloud Image 

 

Figure 1: System-level UML use case diagram: Import 

cloud image. 

Provided that Check image exists is successful (the 

image is found) the actions represented by the rest of 

the use cases will be performed: first Process zvol 

properties (which can be fulfilled by one of either 

Process default zvol properties or Process input zvol 

properties) then Create zvol. Note that Process input 

zvol properties was not implemented as it was 

deemed to be unnecessary—see Importing of cloud 

images in section 2.1. 

The use case does not cover the failure of any 

stage. However, as stated in Error state 

requirements (2.2), the only possible change that is 

required to be reverted in this use case is the creation 
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of the zvol and snapshot for the cloud image. As all 

of the functionality required to implement this use 

case is exclusive (i.e. not conveniently 

implementable for use in other use cases), this use 

case will be implemented in a single function 

(import_cloud_img). 

4.1.2 Provision New Virtual Machine 

 

Figure 2: System-level UML use case diagram: Provision 

new virtual machine. 

The Provision new virtual machine use case 

detailed in Fig. 2 is the most prevalent use case in 

this project, representing the core functionality that 

gives the project value over existing approaches to 

virtual machine deployment. 

Aside from the Import qvm file secondary-level 

use case, to be implemented in the import_yaml 

function, all of the functions required to implement 

this use case are part of the VirtualMachine class; 

these functions are detailed in section 5 that follows. 

import_yaml will take the file path of a qvm file 

as an argument. It will extract the three documents 

(detailed in Virtual machine provisioning file format 

in section 2.1), remove any qvm identifiers, and 

return a dictionary containing four nested 

dictionaries: 

userdata and metadata Cloud-init user-data and 

meta-data dictionaries respectively. 

vm Dictionary containing arguments to virt-install to 

create a virtual machine. 

zvol Dictionary containing zvol options for the 

cloned zvol to be created for the new virtual 

machine. Originally stored in the vm dictionary 

but separated as the entries here are not valid 

arguments for virt-install. 

The import_yaml function could be implemented 

as a factory (an object that instantiates a class). 

Alternatively, Python’s special __new__ method 

could be used, though this is best avoided where 

possible as it overrides the default functionality of 

instantiating a new class. However, it will 

implemented as a separate function as the output it 

will return is not proprietary to the VirtualMachine 

class. 

5 VirtualMachine CLASS 

qvm features only a single class: the VirtualMachine 

class. Classes in Python are not mandatory, but they 

are frequently overused. Such a class is suitable in 

this scenario because: 

The class methods perform tasks operating only 

within the context of the class (i.e. reading and 

occasionally modifying data based on instance 

variables). It is desirable to simply interaction with 

an instance of a class to simple method calls 

(detailed below). Simply, the use of a class in the 

manner detailed below is easily understandable by 

those reading the code. 

The class methods, in order of execution, are 

briefly covered in the following sections. 

5.1 __init__() 

In addition to the four dictionaries detailed in section 

2.1.2 being imported as self.dict, the following 

variables will be set: 

self.zvol_base A variable to hold the name of the 

cloud image snapshot that will be used as the 

base for the cloned zvol for the virtual 

machine, allowing this entry to be removed 

from the zvol dictionary, which will then be 

parsed for valid zvol properties. 

self.zvol_vm The name of the zvol that will be 

created from cloning the cloud image base 

snapshot (the above item). This is used for the 

zfs_cli.clone function (see section 7.2.1), and to 

set the disk path for the virtual machine (see 

below). 

For virt-install validation to pass, the following 

variables in the vm dictionary will need to be set in 

advance: 

cdrom The path to the cloud-init image to be 

attached to the virtual machine. 

disk > path The path to the actual zvol block device 

to be used by the virtual machine, located at 

/dev/zvol/self.zvol_vm. 

5.2 create_cloudinit_iso() 

A subdirectory will be created in /tmp/ of the format 

“qvmrandint". The contents of the self.userdata and 
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self.metadata dictionaries will be written to user-

data and meta-data files respectively. The 

genisoimage utility (in reality a symlink to mkisofs 

in most Linux distributions) will be called to create 

an image named “seed.iso" as per cloudinit’s 

instructions (Nocloud, 2017). 

5.3 clone_base_zvol() 

This function will call zfs_cli.clone() to create the 

zvol specified in variable self.zvol_vm, or print a 

failure. 

All of the functions including and succeeding 

this one will be required to destroy the zvol created 

here on failure in order to meet the Atomicity 

requirement specified in section 2.2. 

5.4 build_cmd() 

This function will iterate over the self.vm dictionary, 

creating and populating the self.cmd list of 

arguments as required by the subprocess module that 

will run the validation and creation virt-install 

commands. This function will need to handle three 

types of virt-install options: 

Basic functional booleans - -switch 

Basic functional options - -switch option 

Bottom-level options switch=option,...,switch-

n=option-n 

This will process regardless of the input without 

returning errors, as any errors will be validated in 

the following function. 

5.5 create() 

This function will perform two runs of virt-install 

with self.cmd: the first with the --dry-run option, 

which will validate and return errors if any invalid 

options have been specified; the second without the -

-dry-run option provided that validation has passed. 

6 TESTS 

It has been ensured that the submitted utility has 

passed all of the tests specified in this section prior 

to submission. Tests have been divided into two 

types: Success states (6.1) and Error states (6.2), 

with descriptions of passing criteria specified below 

for each test. As many of the failure tests are 

identical in nature, merely running at different points 

in execution, the conditions for these tests have been 

grouped together. 

Performance tests have not been created for this 

project, as the performance of the utility is entirely 

dependent on the performance of external utilities 

and the system on which qvm is executed. 

6.1 Success States 

6.1.1 Import Cloud Image 

A new zvol with the name specified by the user must 

be created along with a snapshot of the same name 

named “base". The zvol must contain a bootable 

cloud image, tested with either a manually 

provisioned virtual machine running a clone of the 

base snapshot, or a virtual machine provisioned with 

qvm. The utility must provide clear messages of the 

current activity being executed, and a message on 

completion, written to the standard out stream. 

6.1.2 Provision New Virtual Machine 

A new zvol with the name and properties specified 

by the user must be created. A virtual machine 

matching the specifications input by the user in the 

qvm file must be created. The virtual machine must 

boot, and the machine must be configured or show 

evidence of execution of the tasks specified by the 

user (found running ps -ef once logged in to the 

virtual machine). 

The virtual machine must provide clear 

messages of the current activity being executed, and 

notify the user on completion. 

6.2 Error States 

6.2.1 Error Importing Cloud Image 

The utility should return 1 and provide relevant error 

messages provided the following conditions are met 

while attempting to import a cloud image: 

Image could not be 

found. Image size could 

not be retrieved. zvol 

could not be created. 

The utility should additionally destroy the zvol 

created if the following errors occur: 

zvol device could not be opened. 

zvol device file does not exist. 

zvol snapshot could not be created. 

If any of the above destruction attempts fail, the 

utility should inform the user that manual deletion of 

the zvol is required. 
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6.2.2  Error Importing Qvm File 

The utility should return 1 and provide relevant error 

messages provided the following conditions are met 

while attempting to import a qvm file: 

qvm file not found. qvm file is any 

userdata, metadata or vm documents. vm 

dictionary is missing a nested disk 

dictionary. disk dictionary is missing a 

nested zvol dictionary. zvol dictionary is 

missing a base key and value. 

6.2.3  Error Provisioning Virtual Machine 

The utility should return 1 and provide relevant error 

messages provided the following conditions are met 

while attempting to provision a virtual machine: 

Cloud-init directory could not be created. 

Command to create cloud-init image failed. 

zvol clone failed. 

The utility should additionally destroy the zvol 

created if validation for the virtual machine has 

failed. 

6.2.4 Invalid Command Line Input Format 

If invalid, too many or too few command line 

options are entered when executing the utility, a 

message describing how to use the utility should be 

written to the standard error stream. 

7 IMPLEMENTATION 

7.1 Development Environment 

The implementation phase of this project was 

performed on a system running Arch Linux, a rolling 

release Linux distribution that is continuously 

updated, as opposed to a set release distribution 

more commonly used with servers. This was largely 

trouble free but still not recommended for the 

average user, as such a distribution is theoretically 

more likely to encounter issues with “bleeding edge" 

software that have not been tested for long enough 

durations to be considered stable in terms of features 

and reliability. The only issue that occurred was the 

release of libvirt 3.0.0, which broke support for 

using symbolic links to block devices as disks for 

virtual machines (Red Hat, 2017). However, this 

was fixed in the following 3.1.0 release, and would 

have been easy to workaround in this utility by 

passing the disk file path to the os.readlink() Python 

function (Python Software Foundation, 2017). 

Python was the chosen language for this project 

primarily as Python is the de facto scripting 

language for system administrators after shell 

scripting. Many projects, such as libvirt (prioritise 

their Python library over their API implementations 

in other languages. This project was implemented 

using Python 2 (specifically the latest release, 

2.7.13). The only reason for this was pyzfs’ lack of 

support for Python 3 (ClusterHQ, 2016). 

The project uses the PyYAML library for 

importing the virtual machine document and 

exporting the cloud-init user-data and meta-data files 

for the configuration image. It uses the pyzfs library 

for some operations: this is detailed in the ZFS 

challenges (7.2) section below. 

7.2 ZFS Challenges 

The original intention for this project was to use the 

pyzfs Python bindings for the libzfs_core C library. 

However, while testing as part of the research phase 

of this project became apparent that the C library 

was incomplete. pyzfs’ documentation portrays the 

library as featurecomplete, with no reference to any 

particular capabilities not being implemented. This 

is to be expected; pyzfs aims to provide a stable 

interface, with immediate compatibility if the C 

library provides an implementation later. pyzfs 

provides the libzfs_core.is_supported() function to 

determine whether the C library provides a 

corresponding implementation, but not whether this 

implementation is featurecomplete. 

Testing prior to implementation for this project 

using pyzfs to perform numerous operations on 

zvols (create, clone, and snapshot) raised a 

NotImplementedError exception. There have been 

several updates to ZFS on Linux (ZOL) since this 

project was implemented, and it seems that these 

capabilities have been implemented in the C library. 

However, this project still uses a workaround 

reimplementation (created as part of this project) of 

the required subset of functions in the pyzfs library 

using the zfs CLI utility. Its library can be found in 

the zfs_cli directory of the provided CD, and is 

implemented as the zfs_cli library. 

7.2.1 zfs_cli 

zfs_cli aims to replicate the functionality of the pyzfs 

library as closely as possible. Thus, arguments it 

accepts are mostly the same. However, the 

properties dict can use the same strings as the 
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command line argument, allowing users to specify 

size-based properties such as volblocksize and 

volsize in abbreviated 2x size formats (e.g. “K" for 

kibibyte, “M" for mebibyte, “G" for gibibyte and so 

on; note that these units differ from 10x units—

gigabyte, megabyte and so on— with these latter 

units often being misused to represent the former). 

The library raises the same exceptions as pyzfs, 

and thus requires it as a dependency. zfs_cli module 

is made up of four parts: 

Command Builders The create, clone and destroy 

functions build valid commands for the zfs CLI 

utility. 

run_cmd. Function that uses 

subprocess.checkoutput() to run the command 

and handle the CalledProcessError exception 

during an error, passing the output to the 

raise_exception function. 

raise_exception. Parses the output of run_cmd. 

Raises pyzfs’ ZFSIntializationFailed error if 

the user doesn’t have the appropriate 

permissions to perform an action (i.e. they 

aren’t root or they have not been given 

adequate permissions using zfs allow). 

Otherwise, passes the output to 

exception_mapper. Raises the error, or raises 

ZFSGenericError with the output from the zfs 

CLI utility. 

exception_mapper Maps the errors returned by the 

zfs CLI utility to the appropriate pyzfs errors, or 

returns ZFSGenericError if no mapping could 

be found. 

The use of the zfs CLI utility allows for more 
verbose, accurate output than would otherwise be 
presented by pyzfs. However, this does mean that the 
error output of zfs_cli is inconsistent; if this library 
were to be completed, developers would be required 
to parse strings to handle certain specific errors 
rather than exceptions or error codes, which is 
theoretically detrimental for performance and would 
make development with it a frustrating experience. 
However, for this particular project this is sufficient; 
on error, qvm will simply destroy the create zvol. 

8 EVALUATION 

This project successfully provided a solution to the 

outlined problem, and the solution for the end user is 

as elegant as envisioned. However, it would have 

been desirable to have implemented pyzfs properly 

as opposed to relying on a fragile custom API 

reimplementation; this would have simplified the 

code base even further, and allowed for more 

accurate error reporting from the ZFS C API itself as 

opposed to having a collection mappings, which is 

created effectively using guess work during testing. 

There are a couple of features that would have 

been worth considering: 

Automatic configuration of the selected 

virtual network to provide network 

configuration settings via Dynamic Host 

Configuration Protocol (DHCP), allowing the 

host, or any system using the host for Domain 

Name Service (DNS) resolution. Ability to 

delete virtual machines and their 

corresponding zvols within the utility. 

However, implementing such features would not 

be without their drawbacks. The first item alone 

would require libvirt to be queried to get the Media 

Access Control (MAC) address of the network 

interface, configure the network XML file and 

restart the network device prior to starting the virtual 

machine; it doesn’t seem that it is possible to use 

virt-install to define a virtual machine without 

starting it, and cloud-init will only configure on first 

boot unless the instance identifier is changed, 

making implementing this potentially convoluted. 

The alternative would be to force users to generate 

and specify MAC address explicitly, introducing 

complexity that the tool was created to avoid. 

Integrating this tool within a workflow that 

configures an external DHCP and DNS service such 

as dnsmasq, perhaps driven by Ansible, is a possible 

solution. 

For the latter of the aforementioned features—

the deletion of virtual machines and zvols—as libvirt 

does not provide zvol support, the disk device path 

would need to be parsed separately from the virtual 

machine, outside of libvirt. If the zvol directory were 

to be changed (by the ZFS on Linux project), this 

method would fail. Regardless, it is inconsistent, and 

it is possible to instead simply delete a virtual 

machine using the following command: 

for i in destroy undefine; do 

virsh $i VM_NAME 

done zfs destroy VM_ZVOL 

This fits in well with the overall aim of this 

utility: to provide a convenient method of creating 

virtual machines, rather than providing a full 

management solution. 

There is also an argument as to whether YAML 

dictionaries are suitable for describing virtual 

machines in this project. The use of dictionaries 

means that only a single entry for a particular device 

type can be specified, leaving users with only a 
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single network device or disk. However, there is a 

strong argument that such configurations should be 

substituted for Virtual LANs (VLANs) on a single 

interface, and disk partitioning and/or Virtio’s file 

sharing capabilities should be used instead. The 

former two of these features can be deployed within 

qvm. Additionally, virt-install makes certain 

presumptions when it comes to creating virtual 

machines with multiple disks; the first disk will be 

used as the boot disk. This introduces ambiguity into 

the tool; an inexperienced user is unlikely to realise 

these implications, nor the dictionary behaviour in 

these circumstances. These complexities stretch 

beyond this tool: network configuration with 

multiple interfaces becomes increasingly difficult to 

manage unless addressing is specified statically 

within qvm. 
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APENDIX A–ZFS 

ZFS is a file system originally created by Sun 

Microsystems. Originally open-sourced as part of 

OpenSolaris in 2005, contributions to the original 

ZFS project were discontinued following Oracle’s 

acquisition of Sun Microsystems in 2010 (OpenZFS, 

2017). The OpenZFS project succeeds the original 

open-source branch of ZFS, bringing together the 

ports for illumos, FreeBSD, Linux and OS X 

(Welcome to OpenZFS, 2017). While OpenZFS and 

ZFS are distinct projects, the term ZFS may refer to 

either or both of them depending on context. 

However, there are no guarantees to maintain 

compatibility between the on-disk format of the two 

(ZFS on Linux, 2013). In this instance and indeed 

most instances, ZFS refers to the ZFS on Linux 

(ZOL) port. The OpenZFS project is still in its 

infancy, however its ZFS ports have already been 

proven to successfully address a large number of 

issues with current storage solutions. 

A.1 Overview 

Unlike traditional file system, RAID and volume 

manager layers, ZFS incorporates of these features. 

Some ZFS primitives relevant to the discussion of 

the proposed solution include: 

Virtual Device (VDEV) Built from one or more 

block devices, VDEVs can be standalone, 

mirrored, or configured in a RAID-Z array. 

Once created a VDEV cannot be expanded 
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aside from adding a mirror to a single disk 

VDEV. 

RAID-Z ZFS has built-in RAID functionality. In a 

basic configuration it has the same caveats by 

default. However, the biggest difference is the 

capability of triple parity (RAID-Z3), with an 

additional performance cost still. 

zpool Built from one or more VDEVs, a ZFS file 

system resides on a zpool. To expand a zpool, 

we can add VDEVs. ZFS will write data 

proportionately to VDEVs in a zpool based on 

capacity; the trade-off is space efficiency 

versus performance. 

Datasets A user-specified portion of a file system. 

Datasets can have individual settings: block 

sizes, compression, quotas and many others. 

Adaptive Replacement Cache (ARC) In-memory 

cache of data that has been read from disk, with 

the primary benefits being for latency and 

random reads, areas where mechanical disk 

performance suffers greatly. 

Level 2 Adaptive Replacement Cache (L2ARC) 

SSD-based cache, used where additional RAM 

for ARC becomes cost-prohibitive. As with 

ARC, the primary benefit is performance; a 

single decent SSD will be capable of random 

read I/O operations per second (IOPS) 

hundreds to thousands of times higher and 

latency hundreds to thousands of times lower 

than a mechanical disk. 

ZFS Intent Log (ZIL) and Separate Intent Log 

(SLOG) ZFS approximate equivalents of 

journals; the differences are briefly detailed in 

A.4. 

Other ZFS features include: compression, 

recommended for most modern systems with 

hardware-assisted compression usually being of 

inconsequential CPU performance cost with the 

benefit of marginally reduced disk activity; dynamic 

variable block sizing; ZFS send/receive, which 

creates a stream representation of file system or 

snapshot, which can be piped to a file or command 

(such as ssh), allowing for easy and even 

incremental backups. Fundamental to qvm are ZFS 

volumes (zvols). These are virtual block devices 

analogous to raw volumes in LVM configurations. 

zvols can take advantage of most of the features ZFS 

has to offer; they can be sent and received via ZFS 

send/receive, they use copy-on-write semantics to 

write data, and can be snapshotted and cloned at no 

performance cost. This last fact alone makes ZFS 

viable in configurations at any scale, unlike LVM 

(see section A.5). The block size of zvols are fixed, 

unlike standard ZFS datasets; higher block size 

equate to higher compression ratios (and thus 

reduced space utilisation on disk) but reduced 

performance when dealing with smaller IO. It is 

possible to specify whether space is sparsely 

allocated (allocated as space is used) or fully 

allocated (pre-allocated based on the configured 

volume size). 

A.2 Basic Operations 

ZFS’ on-disk structure is a Merkle tree, where a leaf 

node is labelled with the hash of the data block it 

points to, and each branch up the tree is labelled 

with the concatenation of the hashes of its 

immediate children (Fig. 3), making it self-

validating. 

 

Figure 3: Merkle Tree [18]. 

During write operations, the block pointers are 

updated and the hashes are recalculated up the tree, 

up to and including the root node, known as the 

uberblock. Additionally, ZFS is a CoW file 

system—for all write operations, both metadata and 

data are committed to new blocks. All write 

operations in ZFS are atomic; they either occur 

completely or not at all. 

As detailed in the following text, these three 

attributes are directly responsible for many of the 

benefits in performance and data integrity that ZFS 

offers. 

A.3 Consistency 

On modification, traditional file systems overwrite 

data in place. This presents an obvious issue: if a 

failure—most commonly power—occurs during 

such an operation, the file system is guaranteed to be 

in an inconsistent state and not guaranteed to be 

repaired, i.e. brought back to a consistent state. 

When such a failure occurs, non-journalled file 

systems require an file system check (fsck) to scan 

the entire disk to ensure metadata and data 

consistency. However, in this instance, there is no 

reference point, so it is entirely possible and 

common for an fsck to fail. 
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Most of the file systems used today use 

journaling in order to ensure file system consistency. 

This involves writing either metadata alone or both 

metadata and data to a journal prior to making 

commits to the file system itself. In the occurrence 

described previously, the journal can be “replayed" 

in an attempt to either finish committing data to 

disk, or at least bring the disk back to a previous 

consistent state, with a higher probability of success. 

Such a safety mechanism isn’t free, nor does it 

completely avert risks. Ultimately, the heavier the 

use of journalling (i.e. for both metadata and data) 

the lower the risk of unrecoverable inconsistency, at 

the expense of performance. 

As mentioned previously, ZFS is a CoW file 

system; it doesn’t ever overwrite data. Transactions 

are atomic. As a result, the on-disk format is always 

consistent, hence the lack of fsck tool for ZFS. 

The equivalent feature to journalling that ZFS 

has is the ZIL. However, they function completely 

differently; in traditional file systems, data held in 

RAM is typically flushed to a journal, which is then 

read when its contents is to be committed to the file 

system. As a gross oversimplification of the 

behaviour of ZFS, the ZIL is only ever read to replay 

transactions following a failure, with data still being 

read from RAM when committed to disk. It is 

possible to store replace the ZIL with a dedicated 

VDEV, called a SLOG, though there are some 

important considerations to be made. 

A.4 Silent Corruption 

Silent corruption refers to the corruption of data 

undetected by normal operations of a system and in 

some cases unresolvable with certainty. It is often 

assumed that servergrade hardware is almost 

resilient to errors, with errorcorrection code (ECC) 

system memory on top of common ECC and/or 

cyclic redundancy check (CRC) capabilities of 

various components and buses within the storage 

subsystem. However, this is far from the case in 

reality. In 2007, Panzer-Steindel at CERN released a 

study which revealed the following errors under 

various occurrences and tests (though the sampled 

configurations are not mentioned): 

Disk Errors. Approximately 50 single-bit errors and 

50 sector-sized regions of corrupted data, over 

a period of five weeks of activity across 3000 

systems 

RAID-5 Verification. Recalculation of parity; 

approximately 300 block problem fixes across 

492 systems over four weeks 

CASTOR Data Pool Checksum Verification. 

Approximately “one bad file in 1500 files" in 

8.7TB of data, with an estimated “byte error 

rate of 3 10 7" 

Conventional RAID and file system 

combinations have no capabilities in resolving the 

aforementioned errors. In a RAID-1 mirror, the array 

would not be able to determine which copy of the 

data is correct, only that there is a mismatch. A 

parity array would arguably be even worse in this 

situation: a consistency check would reveal 

mismatching parity blocks based on parity 

recalculations using the corrupt data. 

In this instance, CASTOR (CERN Advanced 

STORage manager) and it’s checksumming 

capability coupled with data replication is the only 

method that can counter silent corruption; if the 

checksum of a file is miscalculated on verification, 

the file is corrupt and can be rewritten from the 

replica. There are two disadvantages to this 

approach: at the time of the report’s publication, this 

validation process did not run in real-time; and this 

is a file-level functionality, meaning that the process 

of reading a large file to calculate checksums and 

rewriting the file from a replica if an error is 

discovered, will be expensive in terms of disk 

activity, as well as CPU time at a large enough scale. 

As stated in A.2, ZFS’s on-disk structure is a 

Merkle tree, storing checksums of data blocks in 

parent nodes. Like CASTOR, it is possible to run a 

scrub operation to verify these checksums. However, 

ZFS automatically verifies the checksum for a block 

each time it is read and if a copy exists it will 

automatically copy that block only, as opposed to an 

entire file.  

All the aforementioned points apply to both 

metadata and data. A crucial difference between a 

conventional file system combined with RAID and 

ZFS is that these copies, REFERENCES known as ditto 

blocks, can exist anywhere within a zpool (allowing 

for some data-level resiliency even on a single disk), 

and can have up to three instances. ZFS tries to 

ensure ditto blocks are placed at least 1/8 of a disk 

apart as a worst case scenario. Metadata ditto blocks 

are mandatory, with ZFS increasing the replication 

count higher up the tree (these blocks have a greater 

number of children, thus are more critical to 

consistency). 

Another form of silent corruption associated 

with traditional RAID arrays is the “write hole"; the 

same type of occurrence as outlined above but on 

power failure. In production this is rare due to the 

use of uninterpretable power supplys (UPSs) to 

prevent system power loss and RAID controllers 
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with battery backup units (BBUs) to fix 

inconsistencies by restoring cached data on power 

restoration. However, the problems remain the same 

as Panzer-Steindel outlined in arrays without power 

resiliency; there is no way of determining whether 

the parity or data is correct, or which copy of data is 

correct. ZFS’ consistent on-disk format and atomic 

operations mean that data will either be committed 

from ZIL or won’t be committed at all, with no 

corruption taking place either way. 

There are additional complexities regarding 

ZFS’ data integrity capabilities; Zhang, Rajimwale, 

Arpaci-Dusseau et al. released a very thorough study 

in 2010, finding that provided a copy was held in 

ARC, ZFS could actually resolve even the most 

extreme metadata corruption as a secondary benefit 

to performance, as it would restore consistent 

metadata on commits to disk. However, they also 

found that ZFS does make assumptions that memory 

will be free of corruption, which could result in 

issues for systems with faulty memory or non-ECC 

memory. This is beyond the scope of this paper, 

however the general consensus is that single-bit 

errors are common enough to warrant the use of 

ECC memory; most servers sold today do.All of this 

is of particular importance with the gradually 

reducing cost of disks and proportional reduction in 

power consumption as capacities increase causing 

many organisations to keep “cold" and “warm" 

data—accessed infrequently and occassionally 

respectively—on their primary “hot" storage 

appliances and clusters for longer periods of time. 

A.5 Snapshots 

LVM snapshotting allows any logical volume to 

have snapshotting capabilities by adding a copy-on-

write layer on top of an existing volume. Presuming 

volume group vgN exists containing logical volume 

lvN and snapshot snpN is being taken, the following 

devices are created: 

vgN-lvN virtual device mounted to read/write to the 

volume 

vgN-snpN virtual device mounted to read/write to 

the snapshot This allows snapshots to be taken, 

modified and deleted rapidly, as opposed to 

modifying vgN-lvN and restoring later 

vgN-lvN-real actual LVM volume; without 

snapshots, this would be named vgN-lvN, 

would be mounted directly and would be the 

only device to exist vgN-lvN-cow actual copy-

on-write snapshot volume 

When a block on volume vgN-lvN-real is 

modified for the first time following the creation of 

snapshot vgN-snpN, a copy of the original block 

must first be taken and synchronously written in 

lvN-cow. In other words, LVM effectively tracks the 

original data in the snapshot at modification time, 

and the first modification of the block guarantees a 

mandatory synchronous write to disk. This is hugely 

expensive in terms of write performance; some tests 

yield a six-time reduction in performance, while 

others claim to have “witnessed performance 

degradation between a factor of 20 to 30". 

Furthermore, the performance degradation 

introduced by snapshots is cumulative—the 

aforementioned tasks need to be performed for each 

snapshot. LVM snapshots should be considered 

nothing more than a temporary solution allowing 

backups to be taken from a stable point in time. 

For native copy-on-write file systems such as 

ZFS, snapshots are a zero-cost operation. They 

simply use block pointers like any other data, 

therefore there is no impact on performance. 
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