
qvm: A Command Line Tool for the Provisioning of Virtual

Machines

Emmanuel Kayode Akinshola Ogunshile
Department of Computer Science, University of the West of England, Bristol, U.K.

Keywords: Command Line Utility, Cloud Images, Virtual Machines, Public and Private Cloud Environments.

Abstract: The purpose of this paper is to create and demonstrate a command line utility that uses freely available

cloud images—typically intended for deployment within public and private cloud environments—to rapidly

provision virtual machines on a local server, taking advantage of the ZFS file system. This utility, qvm,

aims to provide syntactical consistency for both potential contributors and users alike—it is written in

Python and uses YAML for all user configuration; exactly like cloud-init, the post-deployment

configuration system featured in the cloud images used by qvm to allow its rapid provisioning. qvm itself

does not use the libvirt API to create virtual machines, instead parsing pre-defined templates containing

options for the commonly used virt-install tool, installed alongside virt-manager, the de facto graphical

libvirt client. The utility is capable of importing cloud images into zvols and creating clones for each virtual

machine using the pyzfs Python wrapper for the libzfs_core C library, as well as a custom recreation of

pyzfs based on the zfs command line utility. qvm aims to introduce some basic IaC constructs to the

provisioning of local virtual machines using the aforementioned common tools, requiring no prior

experience beyond the usage of these tools. Its use of cloud-init allows for portability into existing cloud

infrastructure, with no requirements on common Linux distributions, such as Red Hat Enterprise Linux,

Debian, or SUSE, and their derivatives, beyond their base installation with virtualisation server packages

and the prerequisite Python libraries required by qvm.

1 INTRODUCTION

With computers being as powerful as they are today

and technologies such as hardware assisted

virtualisation being commonplace, virtualisation has

become an integral component of the testing and

development processes for developers and system

administrators alike. Whether this be to rapidly

provision a software environment consistently as

required, or to provide a temporary environment to

test applications, virtualisation is a more cost and

resource effective manner of providing a flexible

development environment.

Tools such as Vagrant are aimed at developers

for the exact use case described above. However,

such a tool could be argued to be limited and

somewhat inaccessible for system administrators or

“homelab" users who may not have experience

coding in Ruby as Vagrant requires, may have

cloud-init scripts that they currently deploy in cloud

environments that they want to provision locally, or

simply may briefly look at a tool like Vagrant and

conclude it is too complicated for their use case.

Such users frequently end up using graphical

tools and installing operating systems on test virtual

machines from scratch; just to complete an

installation can take more than ten minutes, without

factoring in any post-installation configuration.

A solution for this problem is commonly used in

the world of cloud computing. Cloud-init is a first-

boot configuration system that allows users to

configure a new virtual machine instance with new

user and group configurations, automatic software

installations, and even run user scripts. If the

administrator is willing to do so, it is possible to use

cloud-init exclusively for all post-installation setup

tasks, without the use of external configuration

management or remote execution tools such as

Ansible or Puppet.

Increasingly common is the use of the ZFS file

system: an extremely high performance, highly resili-

ent file system with built-in volume management,

redundant array of independent/inexpensive disks

Kayode Akinshola Ogunshile, E.
qvm: A Command Line Tool for the Provisioning of Virtual Machines.
DOI: 10.5220/0006640902870298
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 287-298
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

287

(RAID)-like redundancy and virtual block device

capabilities. Such a backing file system is ideal for

hosting virtual machine images, however at present

there is no framework for managing virtual machines

and ZFS volumes concurrently—all configuration

must be performed manually by the administrator.

This project aims to resolve this issue. Quick

Virtual Machine (qvm) is a utility that takes

advantage of preinstalled cloud images running

cloud-init—available from all the major enterprise

Linux distributions—ZFS volumes (zvols) (detailed

in Appendix A) and the virt-install command line

virtual machine provisioning utility, allowing system

administrators to provision virtual machines in as

little as fifteen seconds, all from a single

configuration file.

2 REQUIREMENTS

The requirements covered here are prioritised using

the MoSCoW method: Must or Should, Could or

Won’t. These priorities are designated by the

bracketed letters at the end of each requirement title.

They are then grouped into related categories in the

following sections: Basic functional requirements

(2.1), Error state requirements (2.2), ZFS functional

requirements (2.3).

2.1 Basic Functional Requirements

2.1.1 Importing of Cloud Images (M)

The utility must be able to import an uncompressed

cloud image in raw disk format to a new ZFS

volume (zvol) specified by the user. This process

must involve the automatic creation of the specified

zvol, the creation of a base snapshot in the following

format:

(specified zvol)@base

The process will not allow a user-definable set of

zvol properties. Virtual machine zvol properties will

be inherited from their parent cloud image zvols;

thus allowing users to input unsuitable values will

impact the performance of all virtual machines. The

following defaults will be used:

volblocksize: 16K The fixed block size of the

zvol (the smallest transactional unit). This provides a

reasonable balance between compression ratio and

performance.

refreservation: none Sparse allocation—only

space consumed within the image will be allocated,

rather than the full size of the raw image.

Handling of error conditions must conform to the

requirements specified in section 2.2.

2.1.2 Virtual Machine Provisioning File
Format (M)

All the required configuration documents for

provisioning a virtual machine must be contained in

a single YAML file. The file must contain three

documents:

vm A document containing a single top-level

YAML dictionary. This dictionary must contain top-

level options for virt-install as per its manual page

(Red Hat, 2017). Second-level options must be

specified in a nested dictionary in the same manner.

The top-level dictionary must contain a lower-level

dictionary specifying disk settings as per the virt-

install manual, and a further nested zvol dictionary

containing valid dictionary options as per the zfs CLI

utility manual page. user-data A document

containing the cloud-init user-data document as per

the cloud-init documentation (Nocloud, 2017).

meta-data A document containing the cloud-init

meta-data document as per the cloud-init

documentation (Nocloud, 2017).

Each document shall be separated as per the

YAML specification (Ben-Kiki et al., 2009): using

“- - -" on a new line to mark the beginning of a new

document and, optionally aside from the end of the

final document, “. . ." on a new line to mark the end

of a document.

Each top-level document shall have a single

identifier for the qvm utility; a key-value entry,

where the key is “qvm" and the value is one of either

“vm", “user-data" or “metadata" for each respective

matching document.

2.1.3 Provision New Virtual Machine (M)

The utility must be able to provision a new virtual

machine from the provided input file as specified

above. A new zvol must be created from an exist

cloud image snapshot, under the name specified by

the user, conforming with the requirements specified

in ZFS volume clone creation (M), section 2.3.

Handling of error conditions must conform to the

requirements specified in section 2.2.

2.2 Error State Requirements

2.2.1 Atomicity (M)

During the occurrence of a failure after a persistent

modification (i.e. one that is not temporary) has been

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

288

made, the utility must either revert these changes, or

if this fails or cannot be performed, inform the user

which changes failed to be reverted. Once the utility

exits, it must leave the system in an unchanged

persistent operational state on failure, or leave the

system in the state changed by the successful

completion of the intended task.

The utility will be capable of making four types

of change to a system in total:

1) The creation of a zvol and snapshot for the

purpose of importing a cloud image.

2) The creation of a zvol cloned from an imported

cloud image snapshot for the purpose of

creating a disk for a new virtual machine.

3) The creation of a new virtual machine.

4) The creation of a cloud-init configuration image

to be attached to the virtual machine for post-

creation configuration.

Of these changes, only changes 1 and 2 shall be

revertable by the utility. Change 3 is validated

before being made; if validation fails, the virtual

machine won’t be created. Change 4 places cloud-

init configuration data and creates the image in a

subdirectory under /tmp, which will not impact the

operational state of the system, and will be deleted

on system reboot automatically. However, if change

3 or 4 fail, changes 1 and 2 will be reverted.

2.2.2 Error Reporting and Return Codes (S)

The utility should print errors in the following

format:

Error task description: error description

Errors should be written to the standard error

stream, and error events should cause the utility to

return 1 (nonzero). For all successful runs, the utility

should return 0.

While accurate error messages must be reported,

this requirement is treated as “should" within the

MoSCoW framework as certain external utilities

used, such as the output of failed validation or the

output of the ZFS CLI utility on failure will output

errors in a different format.

2.3 ZFS Functional Requirements

2.3.1 ZFS Volume Creation (M)

The utility must be able to create ZFS volumes

(zvols) as specified by the user for the top-level

requirement Import cloud image specified in section

2.1. The zvol creation process must be able to

configure new zvols with the properties specified by

the processes defined by these requirements, or fall

into an error state conforming to the requirements

specified in section 2.2.

Handling of error conditions must conform to the

requirements specified in section 2.2.

2.3.2 ZFS Volume Snapshot Creation (M)

To meet the top-level requirement Import cloud

image specified in section 2.1, the utility must be

able to create a snapshot of the zvol by the process

outlined in this top-level requirement. A zvol cannot

be directly cloned; a snapshot is required to define a

set, read-only state on which a clone can be based.

As snapshots inherit properties from their source

zvols, the utility will not accept any properties to

fulfil this requirement. See the aforementioned top-

level requirement for specific details of the

fulfilment of this requirement.

Handling of error conditions must conform to the

requirements specified in section 2.2.

2.3.3 ZFS Volume Clone Creation (M)

To meet the top-level requirement Provision new

virtual machine specified in section 2.1, the utility

must be able to clone the snapshot specified in the

Import cloud image top-level requirement of the

aforementioned section, provided that the specified

cloud image snapshot exists. This process must be

able to accept valid properties to be applied to the

newly created clone.

Handling of error conditions must conform to the

requirements specified in section 2.2.

3 NON-FUNCTIONAL

REQUIREMENTS

Due to the nature of this utility—a purely technical

CLI utility that facilitates a technical process—the

non-functional requirements are limited, and tie in

closely with a number of functional requirements.

3.1 Simple Command Line Input
Format

The utility should have a command line input format

that is intuitive to follow. This means minimising

configurable options that provide no realistic benefit,

such as the capability of selecting zvol properties for

the Import cloud image functional requirement

specified in section 2.1. This will likely manifest as

providing singular options on the command line,

such as providing only “import" and “vm" top-level

qvm: A Command Line Tool for the Provisioning of Virtual Machines

289

options, and only allowing the relevant sub-options,

such as the target zvol and the path of the image file

to be imported in the aforementioned functional

requirement.

3.2 Simple Virtual Machine
Provisioning File Format

For the user, the only point of complexity should

exist in the virtual machine provisioning file; these

complexities are introduced by cloud-init and virt-

install as opposed to the utility itself. The utility

should existing cloud-init user-data and meta-data

documents to be simply copied into the file without

any modification beyond adding the required qvm

key/value entries specified in the Virtual machine

provisioning file format requirement (section 2.1).

4 DESIGN

There are a number of factors that ultimately make

qvm’s design process fairly straightforward:

Classes. There is no specific requirement in Python

to use classes, unlike a language like Java

where they are mandatory. Misuse of classes in

Python is unfortunately extremely common;

rather than using modules (files holding

functions for the sake of modularity), many

developers integrate these functions as methods

of a class with no unique attributes, thus

performing tasks that don’t apply to that class.

The general consensus for class usage is to use

them “where and when they make sense". In

the case of qvm, the only scenario where this

makes sense is when provisioning a new virtual

machine, as the utility iterates over the same

dictionaries in order to validate and create the

components required for the virtual machine,

namely the zvol and the virtual machine itself.

As a result, there is only a single class in this

utility (see section 5).

Simplicity. qvm doesn’t aim to be an entirely new

virtual machine lifecycle management tool.

The primary caveats of virsh for the intended

use case of qvm, which are covered in the

Introduction (section) are the lack of ZFS

support, the difficulty in creating XML files to

define a libvirt domain (virtual machine), and

the lengthy installation and post-installation

setup times of virtual machines. qvm

successfully alleviates these issues. There is

little room for interpretation regarding the tasks

it is required to perform, and the order in which

these tasks are executed. qvm is therefore best

considered as an automation tool for a

particular workflow required by a common use

case.

“Vertical" Interaction. qvm doesn’t recursively or

iteratively interact with external entities (or

actors in Unified Modelling Language (UML)

terminology) and process data from them.

Taking the most complicated use case as an

example, provisioning a new virtual machine:

qvm imports all the data that it requires from a

single file at the beginning of the process.

Processing is performed iteratively on this data

internally, only communicating with external

subsystems to validate the virt-install command

used to create the virtual machine, to run this

command, to create the required zvols and

cloud-init directories, files and images.

As a result of the last point, tools such as sequence

diagrams aren’t well suited to conveying the design

of qvm, as the design would be conveyed as

interacting almost entirely with itself aside from the

interactions described above.

4.1 Use Cases

4.1.1 Import Cloud Image

Figure 1: System-level UML use case diagram: Import

cloud image.

Provided that Check image exists is successful (the

image is found) the actions represented by the rest of

the use cases will be performed: first Process zvol

properties (which can be fulfilled by one of either

Process default zvol properties or Process input zvol

properties) then Create zvol. Note that Process input

zvol properties was not implemented as it was

deemed to be unnecessary—see Importing of cloud

images in section 2.1.

The use case does not cover the failure of any

stage. However, as stated in Error state

requirements (2.2), the only possible change that is

required to be reverted in this use case is the creation

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

290

of the zvol and snapshot for the cloud image. As all

of the functionality required to implement this use

case is exclusive (i.e. not conveniently

implementable for use in other use cases), this use

case will be implemented in a single function

(import_cloud_img).

4.1.2 Provision New Virtual Machine

Figure 2: System-level UML use case diagram: Provision

new virtual machine.

The Provision new virtual machine use case

detailed in Fig. 2 is the most prevalent use case in

this project, representing the core functionality that

gives the project value over existing approaches to

virtual machine deployment.

Aside from the Import qvm file secondary-level

use case, to be implemented in the import_yaml

function, all of the functions required to implement

this use case are part of the VirtualMachine class;

these functions are detailed in section 5 that follows.

import_yaml will take the file path of a qvm file

as an argument. It will extract the three documents

(detailed in Virtual machine provisioning file format

in section 2.1), remove any qvm identifiers, and

return a dictionary containing four nested

dictionaries:

userdata and metadata Cloud-init user-data and

meta-data dictionaries respectively.

vm Dictionary containing arguments to virt-install to

create a virtual machine.

zvol Dictionary containing zvol options for the

cloned zvol to be created for the new virtual

machine. Originally stored in the vm dictionary

but separated as the entries here are not valid

arguments for virt-install.

The import_yaml function could be implemented

as a factory (an object that instantiates a class).

Alternatively, Python’s special __new__ method

could be used, though this is best avoided where

possible as it overrides the default functionality of

instantiating a new class. However, it will

implemented as a separate function as the output it

will return is not proprietary to the VirtualMachine

class.

5 VirtualMachine CLASS

qvm features only a single class: the VirtualMachine

class. Classes in Python are not mandatory, but they

are frequently overused. Such a class is suitable in

this scenario because:

The class methods perform tasks operating only

within the context of the class (i.e. reading and

occasionally modifying data based on instance

variables). It is desirable to simply interaction with

an instance of a class to simple method calls

(detailed below). Simply, the use of a class in the

manner detailed below is easily understandable by

those reading the code.

The class methods, in order of execution, are

briefly covered in the following sections.

5.1 __init__()

In addition to the four dictionaries detailed in section

2.1.2 being imported as self.dict, the following

variables will be set:

self.zvol_base A variable to hold the name of the

cloud image snapshot that will be used as the

base for the cloned zvol for the virtual

machine, allowing this entry to be removed

from the zvol dictionary, which will then be

parsed for valid zvol properties.

self.zvol_vm The name of the zvol that will be

created from cloning the cloud image base

snapshot (the above item). This is used for the

zfs_cli.clone function (see section 7.2.1), and to

set the disk path for the virtual machine (see

below).

For virt-install validation to pass, the following

variables in the vm dictionary will need to be set in

advance:

cdrom The path to the cloud-init image to be

attached to the virtual machine.

disk > path The path to the actual zvol block device

to be used by the virtual machine, located at

/dev/zvol/self.zvol_vm.

5.2 create_cloudinit_iso()

A subdirectory will be created in /tmp/ of the format

“qvmrandint". The contents of the self.userdata and

qvm: A Command Line Tool for the Provisioning of Virtual Machines

291

self.metadata dictionaries will be written to user-

data and meta-data files respectively. The

genisoimage utility (in reality a symlink to mkisofs

in most Linux distributions) will be called to create

an image named “seed.iso" as per cloudinit’s

instructions (Nocloud, 2017).

5.3 clone_base_zvol()

This function will call zfs_cli.clone() to create the

zvol specified in variable self.zvol_vm, or print a

failure.

All of the functions including and succeeding

this one will be required to destroy the zvol created

here on failure in order to meet the Atomicity

requirement specified in section 2.2.

5.4 build_cmd()

This function will iterate over the self.vm dictionary,

creating and populating the self.cmd list of

arguments as required by the subprocess module that

will run the validation and creation virt-install

commands. This function will need to handle three

types of virt-install options:

Basic functional booleans - -switch

Basic functional options - -switch option

Bottom-level options switch=option,...,switch-

n=option-n

This will process regardless of the input without

returning errors, as any errors will be validated in

the following function.

5.5 create()

This function will perform two runs of virt-install

with self.cmd: the first with the --dry-run option,

which will validate and return errors if any invalid

options have been specified; the second without the -

-dry-run option provided that validation has passed.

6 TESTS

It has been ensured that the submitted utility has

passed all of the tests specified in this section prior

to submission. Tests have been divided into two

types: Success states (6.1) and Error states (6.2),

with descriptions of passing criteria specified below

for each test. As many of the failure tests are

identical in nature, merely running at different points

in execution, the conditions for these tests have been

grouped together.

Performance tests have not been created for this

project, as the performance of the utility is entirely

dependent on the performance of external utilities

and the system on which qvm is executed.

6.1 Success States

6.1.1 Import Cloud Image

A new zvol with the name specified by the user must

be created along with a snapshot of the same name

named “base". The zvol must contain a bootable

cloud image, tested with either a manually

provisioned virtual machine running a clone of the

base snapshot, or a virtual machine provisioned with

qvm. The utility must provide clear messages of the

current activity being executed, and a message on

completion, written to the standard out stream.

6.1.2 Provision New Virtual Machine

A new zvol with the name and properties specified

by the user must be created. A virtual machine

matching the specifications input by the user in the

qvm file must be created. The virtual machine must

boot, and the machine must be configured or show

evidence of execution of the tasks specified by the

user (found running ps -ef once logged in to the

virtual machine).

The virtual machine must provide clear

messages of the current activity being executed, and

notify the user on completion.

6.2 Error States

6.2.1 Error Importing Cloud Image

The utility should return 1 and provide relevant error

messages provided the following conditions are met

while attempting to import a cloud image:

Image could not be

found. Image size could

not be retrieved. zvol

could not be created.

The utility should additionally destroy the zvol

created if the following errors occur:

zvol device could not be opened.

zvol device file does not exist.

zvol snapshot could not be created.

If any of the above destruction attempts fail, the

utility should inform the user that manual deletion of

the zvol is required.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

292

6.2.2 Error Importing Qvm File

The utility should return 1 and provide relevant error

messages provided the following conditions are met

while attempting to import a qvm file:

qvm file not found. qvm file is any

userdata, metadata or vm documents. vm

dictionary is missing a nested disk

dictionary. disk dictionary is missing a

nested zvol dictionary. zvol dictionary is

missing a base key and value.

6.2.3 Error Provisioning Virtual Machine

The utility should return 1 and provide relevant error

messages provided the following conditions are met

while attempting to provision a virtual machine:

Cloud-init directory could not be created.

Command to create cloud-init image failed.

zvol clone failed.

The utility should additionally destroy the zvol

created if validation for the virtual machine has

failed.

6.2.4 Invalid Command Line Input Format

If invalid, too many or too few command line

options are entered when executing the utility, a

message describing how to use the utility should be

written to the standard error stream.

7 IMPLEMENTATION

7.1 Development Environment

The implementation phase of this project was

performed on a system running Arch Linux, a rolling

release Linux distribution that is continuously

updated, as opposed to a set release distribution

more commonly used with servers. This was largely

trouble free but still not recommended for the

average user, as such a distribution is theoretically

more likely to encounter issues with “bleeding edge"

software that have not been tested for long enough

durations to be considered stable in terms of features

and reliability. The only issue that occurred was the

release of libvirt 3.0.0, which broke support for

using symbolic links to block devices as disks for

virtual machines (Red Hat, 2017). However, this

was fixed in the following 3.1.0 release, and would

have been easy to workaround in this utility by

passing the disk file path to the os.readlink() Python

function (Python Software Foundation, 2017).

Python was the chosen language for this project

primarily as Python is the de facto scripting

language for system administrators after shell

scripting. Many projects, such as libvirt (prioritise

their Python library over their API implementations

in other languages. This project was implemented

using Python 2 (specifically the latest release,

2.7.13). The only reason for this was pyzfs’ lack of

support for Python 3 (ClusterHQ, 2016).

The project uses the PyYAML library for

importing the virtual machine document and

exporting the cloud-init user-data and meta-data files

for the configuration image. It uses the pyzfs library

for some operations: this is detailed in the ZFS

challenges (7.2) section below.

7.2 ZFS Challenges

The original intention for this project was to use the

pyzfs Python bindings for the libzfs_core C library.

However, while testing as part of the research phase

of this project became apparent that the C library

was incomplete. pyzfs’ documentation portrays the

library as featurecomplete, with no reference to any

particular capabilities not being implemented. This

is to be expected; pyzfs aims to provide a stable

interface, with immediate compatibility if the C

library provides an implementation later. pyzfs

provides the libzfs_core.is_supported() function to

determine whether the C library provides a

corresponding implementation, but not whether this

implementation is featurecomplete.

Testing prior to implementation for this project

using pyzfs to perform numerous operations on

zvols (create, clone, and snapshot) raised a

NotImplementedError exception. There have been

several updates to ZFS on Linux (ZOL) since this

project was implemented, and it seems that these

capabilities have been implemented in the C library.

However, this project still uses a workaround

reimplementation (created as part of this project) of

the required subset of functions in the pyzfs library

using the zfs CLI utility. Its library can be found in

the zfs_cli directory of the provided CD, and is

implemented as the zfs_cli library.

7.2.1 zfs_cli

zfs_cli aims to replicate the functionality of the pyzfs

library as closely as possible. Thus, arguments it

accepts are mostly the same. However, the

properties dict can use the same strings as the

qvm: A Command Line Tool for the Provisioning of Virtual Machines

293

command line argument, allowing users to specify

size-based properties such as volblocksize and

volsize in abbreviated 2x size formats (e.g. “K" for

kibibyte, “M" for mebibyte, “G" for gibibyte and so

on; note that these units differ from 10x units—

gigabyte, megabyte and so on— with these latter

units often being misused to represent the former).

The library raises the same exceptions as pyzfs,

and thus requires it as a dependency. zfs_cli module

is made up of four parts:

Command Builders The create, clone and destroy

functions build valid commands for the zfs CLI

utility.

run_cmd. Function that uses

subprocess.checkoutput() to run the command

and handle the CalledProcessError exception

during an error, passing the output to the

raise_exception function.

raise_exception. Parses the output of run_cmd.

Raises pyzfs’ ZFSIntializationFailed error if

the user doesn’t have the appropriate

permissions to perform an action (i.e. they

aren’t root or they have not been given

adequate permissions using zfs allow).

Otherwise, passes the output to

exception_mapper. Raises the error, or raises

ZFSGenericError with the output from the zfs

CLI utility.

exception_mapper Maps the errors returned by the

zfs CLI utility to the appropriate pyzfs errors, or

returns ZFSGenericError if no mapping could

be found.

The use of the zfs CLI utility allows for more
verbose, accurate output than would otherwise be
presented by pyzfs. However, this does mean that the
error output of zfs_cli is inconsistent; if this library
were to be completed, developers would be required
to parse strings to handle certain specific errors
rather than exceptions or error codes, which is
theoretically detrimental for performance and would
make development with it a frustrating experience.
However, for this particular project this is sufficient;
on error, qvm will simply destroy the create zvol.

8 EVALUATION

This project successfully provided a solution to the

outlined problem, and the solution for the end user is

as elegant as envisioned. However, it would have

been desirable to have implemented pyzfs properly

as opposed to relying on a fragile custom API

reimplementation; this would have simplified the

code base even further, and allowed for more

accurate error reporting from the ZFS C API itself as

opposed to having a collection mappings, which is

created effectively using guess work during testing.

There are a couple of features that would have

been worth considering:

Automatic configuration of the selected

virtual network to provide network

configuration settings via Dynamic Host

Configuration Protocol (DHCP), allowing the

host, or any system using the host for Domain

Name Service (DNS) resolution. Ability to

delete virtual machines and their

corresponding zvols within the utility.

However, implementing such features would not

be without their drawbacks. The first item alone

would require libvirt to be queried to get the Media

Access Control (MAC) address of the network

interface, configure the network XML file and

restart the network device prior to starting the virtual

machine; it doesn’t seem that it is possible to use

virt-install to define a virtual machine without

starting it, and cloud-init will only configure on first

boot unless the instance identifier is changed,

making implementing this potentially convoluted.

The alternative would be to force users to generate

and specify MAC address explicitly, introducing

complexity that the tool was created to avoid.

Integrating this tool within a workflow that

configures an external DHCP and DNS service such

as dnsmasq, perhaps driven by Ansible, is a possible

solution.

For the latter of the aforementioned features—

the deletion of virtual machines and zvols—as libvirt

does not provide zvol support, the disk device path

would need to be parsed separately from the virtual

machine, outside of libvirt. If the zvol directory were

to be changed (by the ZFS on Linux project), this

method would fail. Regardless, it is inconsistent, and

it is possible to instead simply delete a virtual

machine using the following command:

for i in destroy undefine; do

virsh $i VM_NAME

done zfs destroy VM_ZVOL

This fits in well with the overall aim of this

utility: to provide a convenient method of creating

virtual machines, rather than providing a full

management solution.

There is also an argument as to whether YAML

dictionaries are suitable for describing virtual

machines in this project. The use of dictionaries

means that only a single entry for a particular device

type can be specified, leaving users with only a

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

294

single network device or disk. However, there is a

strong argument that such configurations should be

substituted for Virtual LANs (VLANs) on a single

interface, and disk partitioning and/or Virtio’s file

sharing capabilities should be used instead. The

former two of these features can be deployed within

qvm. Additionally, virt-install makes certain

presumptions when it comes to creating virtual

machines with multiple disks; the first disk will be

used as the boot disk. This introduces ambiguity into

the tool; an inexperienced user is unlikely to realise

these implications, nor the dictionary behaviour in

these circumstances. These complexities stretch

beyond this tool: network configuration with

multiple interfaces becomes increasingly difficult to

manage unless addressing is specified statically

within qvm.

REFERENCES

G. J. Popek and R. P. Goldberg, ‘Formal requirements for

virtualizable third generation architectures’, Commun.

ACM, vol. 17, no. 7, pp. 412–421, Jul. 1974, ISSN:

0001-0782. DOI: 10.1145/361011.361073. [Online].

Available: http://doi.acm.org.ezproxy.uwe.ac.uk/10.11

45/361011.361073.

QEMU., [Online]. Available: http://wiki.qemu.org/Main_

Page (visited on 18/01/2017).

libvirt. (2017). libvirt Application Development Guides,

[Online]. Available: https://libvirt.org/devguide.html

(visited on 19/01/2017).

 Domain XML format, [Online]. Available: https://

libvirt.org/formatdomain.html (visited on 02/04/2017).

Canonical Ltd. (27th Mar. 2017). Summary, [Online].

Available: https://cloudinit.readthedocs.io/en/latest/in

dex.html (visited on 03/04/2017).

Nocloud, [Online]. Available: https://cloudinit.readthe

docs.io/en/latest/topics/datasources/nocloud.html

(visited on 03/04/2017).

HashiCorp. (27th Mar. 2017). Introduction to Vagrant,

[Online]. Available: https://www.vagrantup.com/intro/

index.html (visited on 02/04/2017).

Providers, [Online]. Available: https://www.vagrantup.

com/docs/providers/ (visited on 02/04/2017). [9] Red

Hat, Inc. (27th Mar. 2017). virt-install(1), [Online].

Available: https://github.com/virt-manager/virt-mana

ger/blob/master/man/virt-install.pod (visited on

03/04/2017).

O. Ben-Kiki, C. Evans and I. döt Net, Yaml ain’t markup

language (yamlTM), 3rd ed., version 1.2, 1st Oct. 2009.

[Online]. Available: http://yaml.org/spec/1.2/spec.html

(visited on 03/04/2017).

Red Hat, Inc. (16th Jan. 2017). Bug 1413773 - new

regression on GIT: Error:An error occurred, but the

cause is unknown, [Online]. Available: https://bug

zilla.redhat.com/show_bug.cgi?id= 1413773 (visited

on 04/04/2017).

Python Software Foundation, The Python Standard

Library, 1.5.1.4. Files and Directories, 27th Mar.

2017. [Online]. Available: https://docs.python.org/2/

library/os.html#files-and-directories (visited on

04/04/2017).

ClusterHQ. (12th Mar. 2016). dataset names not accepted,

[Online]. Available: https://github.com/ClusterHQ/

pyzfs/issues/ 26 (visited on 04/04/2017).

OpenZFS. (27th Feb. 2017). History, [Online].

Available: http://open-zfs.org/wiki/History (visited on

27/02/2017).

Welcome to OpenZFS, [Online]. Available: http://open-

zfs.org/wiki/Main_Page (visited on 27/02/2017).

ZFS on Linux. (20th Jan. 2013). ZFS on Linux issue

#1225: Explain “The pool is formatted using a legacy

on-disk format." status message, [Online]. Available:

https://github.com/zfsonlinux/zfs/issues/1225#issueco

mment- 12555909 (visited on 27/02/2017).

APENDIX A–ZFS

ZFS is a file system originally created by Sun

Microsystems. Originally open-sourced as part of

OpenSolaris in 2005, contributions to the original

ZFS project were discontinued following Oracle’s

acquisition of Sun Microsystems in 2010 (OpenZFS,

2017). The OpenZFS project succeeds the original

open-source branch of ZFS, bringing together the

ports for illumos, FreeBSD, Linux and OS X

(Welcome to OpenZFS, 2017). While OpenZFS and

ZFS are distinct projects, the term ZFS may refer to

either or both of them depending on context.

However, there are no guarantees to maintain

compatibility between the on-disk format of the two

(ZFS on Linux, 2013). In this instance and indeed

most instances, ZFS refers to the ZFS on Linux

(ZOL) port. The OpenZFS project is still in its

infancy, however its ZFS ports have already been

proven to successfully address a large number of

issues with current storage solutions.

A.1 Overview

Unlike traditional file system, RAID and volume

manager layers, ZFS incorporates of these features.

Some ZFS primitives relevant to the discussion of

the proposed solution include:

Virtual Device (VDEV) Built from one or more

block devices, VDEVs can be standalone,

mirrored, or configured in a RAID-Z array.

Once created a VDEV cannot be expanded

qvm: A Command Line Tool for the Provisioning of Virtual Machines

295

aside from adding a mirror to a single disk

VDEV.

RAID-Z ZFS has built-in RAID functionality. In a

basic configuration it has the same caveats by

default. However, the biggest difference is the

capability of triple parity (RAID-Z3), with an

additional performance cost still.

zpool Built from one or more VDEVs, a ZFS file

system resides on a zpool. To expand a zpool,

we can add VDEVs. ZFS will write data

proportionately to VDEVs in a zpool based on

capacity; the trade-off is space efficiency

versus performance.

Datasets A user-specified portion of a file system.

Datasets can have individual settings: block

sizes, compression, quotas and many others.

Adaptive Replacement Cache (ARC) In-memory

cache of data that has been read from disk, with

the primary benefits being for latency and

random reads, areas where mechanical disk

performance suffers greatly.

Level 2 Adaptive Replacement Cache (L2ARC)

SSD-based cache, used where additional RAM

for ARC becomes cost-prohibitive. As with

ARC, the primary benefit is performance; a

single decent SSD will be capable of random

read I/O operations per second (IOPS)

hundreds to thousands of times higher and

latency hundreds to thousands of times lower

than a mechanical disk.

ZFS Intent Log (ZIL) and Separate Intent Log

(SLOG) ZFS approximate equivalents of

journals; the differences are briefly detailed in

A.4.

Other ZFS features include: compression,

recommended for most modern systems with

hardware-assisted compression usually being of

inconsequential CPU performance cost with the

benefit of marginally reduced disk activity; dynamic

variable block sizing; ZFS send/receive, which

creates a stream representation of file system or

snapshot, which can be piped to a file or command

(such as ssh), allowing for easy and even

incremental backups. Fundamental to qvm are ZFS

volumes (zvols). These are virtual block devices

analogous to raw volumes in LVM configurations.

zvols can take advantage of most of the features ZFS

has to offer; they can be sent and received via ZFS

send/receive, they use copy-on-write semantics to

write data, and can be snapshotted and cloned at no

performance cost. This last fact alone makes ZFS

viable in configurations at any scale, unlike LVM

(see section A.5). The block size of zvols are fixed,

unlike standard ZFS datasets; higher block size

equate to higher compression ratios (and thus

reduced space utilisation on disk) but reduced

performance when dealing with smaller IO. It is

possible to specify whether space is sparsely

allocated (allocated as space is used) or fully

allocated (pre-allocated based on the configured

volume size).

A.2 Basic Operations

ZFS’ on-disk structure is a Merkle tree, where a leaf

node is labelled with the hash of the data block it

points to, and each branch up the tree is labelled

with the concatenation of the hashes of its

immediate children (Fig. 3), making it self-

validating.

Figure 3: Merkle Tree [18].

During write operations, the block pointers are

updated and the hashes are recalculated up the tree,

up to and including the root node, known as the

uberblock. Additionally, ZFS is a CoW file

system—for all write operations, both metadata and

data are committed to new blocks. All write

operations in ZFS are atomic; they either occur

completely or not at all.

As detailed in the following text, these three

attributes are directly responsible for many of the

benefits in performance and data integrity that ZFS

offers.

A.3 Consistency

On modification, traditional file systems overwrite

data in place. This presents an obvious issue: if a

failure—most commonly power—occurs during

such an operation, the file system is guaranteed to be

in an inconsistent state and not guaranteed to be

repaired, i.e. brought back to a consistent state.

When such a failure occurs, non-journalled file

systems require an file system check (fsck) to scan

the entire disk to ensure metadata and data

consistency. However, in this instance, there is no

reference point, so it is entirely possible and

common for an fsck to fail.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

296

Most of the file systems used today use

journaling in order to ensure file system consistency.

This involves writing either metadata alone or both

metadata and data to a journal prior to making

commits to the file system itself. In the occurrence

described previously, the journal can be “replayed"

in an attempt to either finish committing data to

disk, or at least bring the disk back to a previous

consistent state, with a higher probability of success.

Such a safety mechanism isn’t free, nor does it

completely avert risks. Ultimately, the heavier the

use of journalling (i.e. for both metadata and data)

the lower the risk of unrecoverable inconsistency, at

the expense of performance.

As mentioned previously, ZFS is a CoW file

system; it doesn’t ever overwrite data. Transactions

are atomic. As a result, the on-disk format is always

consistent, hence the lack of fsck tool for ZFS.

The equivalent feature to journalling that ZFS

has is the ZIL. However, they function completely

differently; in traditional file systems, data held in

RAM is typically flushed to a journal, which is then

read when its contents is to be committed to the file

system. As a gross oversimplification of the

behaviour of ZFS, the ZIL is only ever read to replay

transactions following a failure, with data still being

read from RAM when committed to disk. It is

possible to store replace the ZIL with a dedicated

VDEV, called a SLOG, though there are some

important considerations to be made.

A.4 Silent Corruption

Silent corruption refers to the corruption of data

undetected by normal operations of a system and in

some cases unresolvable with certainty. It is often

assumed that servergrade hardware is almost

resilient to errors, with errorcorrection code (ECC)

system memory on top of common ECC and/or

cyclic redundancy check (CRC) capabilities of

various components and buses within the storage

subsystem. However, this is far from the case in

reality. In 2007, Panzer-Steindel at CERN released a

study which revealed the following errors under

various occurrences and tests (though the sampled

configurations are not mentioned):

Disk Errors. Approximately 50 single-bit errors and

50 sector-sized regions of corrupted data, over

a period of five weeks of activity across 3000

systems

RAID-5 Verification. Recalculation of parity;

approximately 300 block problem fixes across

492 systems over four weeks

CASTOR Data Pool Checksum Verification.

Approximately “one bad file in 1500 files" in

8.7TB of data, with an estimated “byte error

rate of 3 10 7"

Conventional RAID and file system

combinations have no capabilities in resolving the

aforementioned errors. In a RAID-1 mirror, the array

would not be able to determine which copy of the

data is correct, only that there is a mismatch. A

parity array would arguably be even worse in this

situation: a consistency check would reveal

mismatching parity blocks based on parity

recalculations using the corrupt data.

In this instance, CASTOR (CERN Advanced

STORage manager) and it’s checksumming

capability coupled with data replication is the only

method that can counter silent corruption; if the

checksum of a file is miscalculated on verification,

the file is corrupt and can be rewritten from the

replica. There are two disadvantages to this

approach: at the time of the report’s publication, this

validation process did not run in real-time; and this

is a file-level functionality, meaning that the process

of reading a large file to calculate checksums and

rewriting the file from a replica if an error is

discovered, will be expensive in terms of disk

activity, as well as CPU time at a large enough scale.

As stated in A.2, ZFS’s on-disk structure is a

Merkle tree, storing checksums of data blocks in

parent nodes. Like CASTOR, it is possible to run a

scrub operation to verify these checksums. However,

ZFS automatically verifies the checksum for a block

each time it is read and if a copy exists it will

automatically copy that block only, as opposed to an

entire file.

All the aforementioned points apply to both

metadata and data. A crucial difference between a

conventional file system combined with RAID and

ZFS is that these copies, REFERENCES known as ditto

blocks, can exist anywhere within a zpool (allowing

for some data-level resiliency even on a single disk),

and can have up to three instances. ZFS tries to

ensure ditto blocks are placed at least 1/8 of a disk

apart as a worst case scenario. Metadata ditto blocks

are mandatory, with ZFS increasing the replication

count higher up the tree (these blocks have a greater

number of children, thus are more critical to

consistency).

Another form of silent corruption associated

with traditional RAID arrays is the “write hole"; the

same type of occurrence as outlined above but on

power failure. In production this is rare due to the

use of uninterpretable power supplys (UPSs) to

prevent system power loss and RAID controllers

qvm: A Command Line Tool for the Provisioning of Virtual Machines

297

with battery backup units (BBUs) to fix

inconsistencies by restoring cached data on power

restoration. However, the problems remain the same

as Panzer-Steindel outlined in arrays without power

resiliency; there is no way of determining whether

the parity or data is correct, or which copy of data is

correct. ZFS’ consistent on-disk format and atomic

operations mean that data will either be committed

from ZIL or won’t be committed at all, with no

corruption taking place either way.

There are additional complexities regarding

ZFS’ data integrity capabilities; Zhang, Rajimwale,

Arpaci-Dusseau et al. released a very thorough study

in 2010, finding that provided a copy was held in

ARC, ZFS could actually resolve even the most

extreme metadata corruption as a secondary benefit

to performance, as it would restore consistent

metadata on commits to disk. However, they also

found that ZFS does make assumptions that memory

will be free of corruption, which could result in

issues for systems with faulty memory or non-ECC

memory. This is beyond the scope of this paper,

however the general consensus is that single-bit

errors are common enough to warrant the use of

ECC memory; most servers sold today do.All of this

is of particular importance with the gradually

reducing cost of disks and proportional reduction in

power consumption as capacities increase causing

many organisations to keep “cold" and “warm"

data—accessed infrequently and occassionally

respectively—on their primary “hot" storage

appliances and clusters for longer periods of time.

A.5 Snapshots

LVM snapshotting allows any logical volume to

have snapshotting capabilities by adding a copy-on-

write layer on top of an existing volume. Presuming

volume group vgN exists containing logical volume

lvN and snapshot snpN is being taken, the following

devices are created:

vgN-lvN virtual device mounted to read/write to the

volume

vgN-snpN virtual device mounted to read/write to

the snapshot This allows snapshots to be taken,

modified and deleted rapidly, as opposed to

modifying vgN-lvN and restoring later

vgN-lvN-real actual LVM volume; without

snapshots, this would be named vgN-lvN,

would be mounted directly and would be the

only device to exist vgN-lvN-cow actual copy-

on-write snapshot volume

When a block on volume vgN-lvN-real is

modified for the first time following the creation of

snapshot vgN-snpN, a copy of the original block

must first be taken and synchronously written in

lvN-cow. In other words, LVM effectively tracks the

original data in the snapshot at modification time,

and the first modification of the block guarantees a

mandatory synchronous write to disk. This is hugely

expensive in terms of write performance; some tests

yield a six-time reduction in performance, while

others claim to have “witnessed performance

degradation between a factor of 20 to 30".

Furthermore, the performance degradation

introduced by snapshots is cumulative—the

aforementioned tasks need to be performed for each

snapshot. LVM snapshots should be considered

nothing more than a temporary solution allowing

backups to be taken from a stable point in time.

For native copy-on-write file systems such as

ZFS, snapshots are a zero-cost operation. They

simply use block pointers like any other data,

therefore there is no impact on performance.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

298

