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Abstract: The recent increase in processing power and in the number of sensors present in today’s mobile devices leads 

to a renewed interest in context-aware applications. This paper focuses on a particular type of context, the 

transportation mode used by a person or freight, and adequate methods for automatically classifying 

transportation mode from smartphone embedded sensors. This classification problem is generally solved by 

a searching process which, given a set of design choices relative to sensors, feature selection, classifier family 

and hyper parameters, etc., find an optimal classifier. This process can be very time consuming, due to the 

number of design choices, the number of training phases needed for a cross validation step and the time 

necessary for one training phase. In this paper, we propose to simplify this problem by applying three data 

mining tools - Principal Component Analysis, Mahalanobis distance and Linear Discriminant Analysis - in 

order to clean the data, simplify the problem and finally speed up the searching process. We illustrate the 

different tools on the transportation mode classification problem. 

1 INTRODUCTION 

The field of context recognition has gathered a lot of 

attention in recent years mostly thanks to the 

widespread of mobile devices (for e.g. smartphones 

and wearable). With the continuous integration of 

new sensors, their ever increasing computing power 

and their virtual omnipresence, these devices have 

become ideal tools for context recognition. More 

precisely, our interest here is the recognition of the 

transportation modes used by a person or freight. The 

applications are numerous: 

 Carbon footprint evaluation (Manzoni et al., 

2010), 

 Real-time door-to-door journey smart 

planning,  

 Smart mobility survey (Nitsche et al., 2014),  

 Driving analysis (Vlahogianni and 

Barmpounakis, 2017),  

 Road user analysis and collision prevention,  

 Goods mobility tracking 

 Traffic Management 

This classification problem is generally solved by 

a searching process which, given a set of design 

choices find an optimal classifier. 

A design choice involves 3 main aspects: 

 Sensors: modern mobile devices contain 

several different sensors, at least the 

following eight: accelerometer (ACC), 

magnetometer (MAG), gyroscope, 

barometer, GPS, Wifi, GSM, audio… Each 

of these sensor can be used for transportation 

mode classification. Most widely used are 

ACC and GPS (Wu et al., 2016), (Stenneth 

et al., 2011), (Hemminki et al., 2013), 

(Reddy et al., 2010), but some authors use 

only GSM (Anderson and Muller, 2006) or 

only barometer (Sankaran et al., 2014). The 

number of different sensor combinations 

(for 8 sensors) is already important 

(28=256). 

 Features: raw sensor data are rarely used 

directly, but are often pre-processed leading 

to features. E.g., given the accelerometer 

readings over a finite time window (E.g. 5 

seconds.) on can compute the mean value, 

the variance, the skewness, the number of 

zero crossings, the Fast Fourier Transform 

(FFT) coefficients, the energy for different 

frequency bands,… 

Given a set of sensors there is almost an 

infinite number of features that can be 

computed. 
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 Classifier family and associated hyper 

parameters: each classifier family (decision 

tree (DT), neural network (NN),…) has its 

own hyper parameters that need to be fixed 

before training: e.g., for DT, the maximum 

number of splits, for NN, the number of 

hidden layers and the number of neurons by 

layer,… 

Testing different combinations of sensors, fea-

tures, classifiers and hyper-parameters often lead to a 

rapid increase of the total number of design choices 

ND (phenomenon known as combinatorial explosion). 

Moreover, given a design choice, once a classifier 

is trained, its classification performance has to be 

evaluated. The most widely used technique is a  

K-fold cross validation approach (Arlot and Celisse, 

2010) which needs K+1 training phases, leading to a 

total number ~ND.K of training phases. 

Finally, the training phase duration is very 

sensitive to the problem dimension, i.e. the number of 

features (a.k.a. “curse of dimensionality”). 

In conclusion, the searching process becomes 

rapidly intractable.  

The aim of this article is to propose a method to 

simplify this problem. Section 2 describes the 

approach. In section 3 it is applied to real data 

concerning the transportation mode classification 

problem. Discussion and conclusions can be found in 

Section 4. 

2 PROPOSED APPROACH 

2.1 Overview 

Instead of trying to blindly investigate various 

combinations among all possible ones, the proposed 

approach consists in focussing on sensors and 

features, and not on classification aspects.  

Using two simple data mining tools, the aim is to  

 Clean the data,  

 Simplify the problem. 

Once it is done, a searching process involving 

only classifier family and associated hyper 

parameters can be conducted more easily. 

To do so, we use 3 data mining tools:  

 Principal Component Analysis (PCA) 

 Mahalanobis distance (MD) 

 Linear Discriminant Analysis (LDA) 

As the first two tools are related, they will be 

presented in the same Section 2.2, whereas LDA will 

be explained in Section 2.3. 

2.2 Principal Component Analysis 

PCA is a widely used procedure (Wikipedia, 2017) 

and (Martinez and Kak, 2001).  

It computes an orthogonal transformation to 

convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated 

variables called principal components. This 

transformation is defined in such a way that each 

component has the largest possible variance, under 

the constraint that it is orthogonal to the preceding 

components. The resulting vectors are an 

uncorrelated orthogonal basis set.  

Note that PCA is an unsupervised technique in the 

sense that the data class is not taken into account in 

the process. 

In the following, we will summarize the PCA 

implementation and present 3 interesting 

applications: 

 detecting outliers, 

 checking linear dependency between 

features, 

 reducing dimension. 

2.2.1 PCA Implementation 

Let X be the data in the original space, a matrix Nxp, 

with N instances and p predictors. The 

implementation is the following: 

 As PCA is very sensitive to outliers, remove 

the outliers 

 As PCA is very sensitive to the relative 

scaling of the original variables, normalize 

data (e.g., so each column of X has mean 0 

and standard deviation 1); let Xn be the 

normalized matrix (same size as X). 

 Let Cn be the covariance matrix of Xn. 

 Apply the PCA; it outputs (P, D) the 

eigenvectors and eigenvalues of Cn, so we 

have Cn.P = P.D. The columns of the 

orthogonal p*p matrix P (P.PT = Ip with Ip 

the identity p*p matrix) are the principal 

components (PC), whereas the p*p diagonal 

matrix D (let Djj be the jth diagonal element) 

represents the variance of data on each axis 

of the new basis. 

 Data in the new PC space are 

 𝑌 = 𝑋𝑛. P (1) 

 They are uncorrelated as it can be easily 

shown that the covariance of Y is matrix D. 
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2.2.2 Detecting Outliers 

In the original space, because of the correlation of the 

predictors, computing a Euclidean distance (ED) 

between 2 points is inappropriate. E.g., on the Figure 

1, we generate synthetic centered correlated data in a 

2D space (blue circles). One can see that probably the 

blue stars and the data are coming from the same 

distribution, whereas it is much less likely for the 

yellow stars. 

By using Euclidean distance, with respect to the 

centre of the data (0, 0), the 4 stars would be at the 

same distance (√2). Therefore ED is not appropriate 

to measure distance between points and detect 

outliers. 

 

Figure 1: Synthetic data. 

This is why Mahalanobis distance (MD) (De 

Maesschalck et al., 2000), (Li et al., 2011) was 

introduced. The idea was to de-correlate the data 

before computing a Euclidean distance. 

Let xi be an instance (1xp) in the original space, µ 

the mean vector (1xp) of the p predictors and C the 

covariance matrix of the data X. The squared 

Mahalanobis distance 𝑑𝑖
2 is defined by: 

 𝑑𝑖
2 = (𝑥𝑖 − 𝜇)𝐶−1(𝑥𝑖 − 𝜇)𝑇 (2) 

It measures how many variances away, the 

instance is from the centre of the cloud. 

Now we are going to demonstrate how MD is 

linked to PCA. 

Let V be the diagonal p*p matrix, such as 

diag(V)=diag(C) (i.e. with the variance of each 

predictor in the original space on the diagonal), and 

let M be the Nxp matrix with identical row equal to 

µ. 

The normalized matrix Xn can be rewritten: 

 𝑋𝑛 = (𝑋 − 𝑀). 𝑉−1/2 (3) 

And for the particular instance i: 

 𝑥𝑖𝑛 = (𝑥𝑖 − µ). 𝑉−1/2 (4) 

From the basic properties of covariance operation 

(cov(X.A+a)=AT.cov(X).A) and as V is diagonal, we 

have:  

 𝐶𝑛 = 𝑉−
1

2

𝑇

. 𝐶. 𝑉−
1

2 = 𝑉−1. C (5) 

Using (2), (3), (4) and (5), we get 

 𝑑𝑖
2 = 𝑥𝑖𝑛𝐶𝑛

−1𝑥𝑖𝑛
𝑇

 (6) 

Let yi be the particular instance i in the PC space. 

From (1), we have 

 𝑦𝑖 = 𝑥𝑖𝑛 . P (7) 

and 

 𝐶𝑜𝑣(𝑌) = 𝑃𝑇 . 𝐶𝑛. 𝑃 = 𝐷 (8) 

Using (6), (7), (8), it comes 

 𝑑𝑖
2 = 𝑦𝑖 . 𝐷−1. 𝑦𝑖

𝑇
 (9) 

Let yi,j be the jth component of yi. (9) can be 

rewritten as: 

 𝑑𝑖
2 = ∑

𝑦𝑖,𝑗
2

𝐷𝑗𝑗
𝑗=1..𝑝  (10) 

The Mahalanobis distance appears to be, in the PC 

space, a simple sum of squares weighted by the 

inverse of variances on each PC. 

Finally, in a similar way to the original space, it is 

interesting to define a normalized PC space, in which 

the data Yn are: 

 𝑌𝑛 = 𝑌. 𝐷−1/2 (11) 

Using the same reasoning, it comes that the 

covariance matrix of Yn is the identity matrix and that 

the Mahalanobis distance is simply equal to the 

Euclidean distance in the normalized PC space. 

 𝑑𝑖
2 = 𝑦𝑖𝑛 . 𝑦𝑖𝑛

𝑇  (12) 

Which can be rewritten: 

 𝑑𝑖
2 = ∑ 𝑦𝑖𝑛,𝑗

2
𝑗=1..𝑝  (13) 

In conclusion, there are 4 different spaces: the 

original one (X), the normalized one (Xn), the PC 

space (Y) and the normalized PC space (Yn). Each 

space is defined from the previous by a simple 

operation (translation, stretching and rotation) – see 

equations (3), (1) and (11). In each of these spaces, 

the Mahalanobis distance can be expressed, see 

equations (2), (6), (9) and (12). The writing is more 

or less complex, depending on the covariance matrix. 

The last writing, in the normalized PC space is the 

simplest and is interesting because it is a simple ED. 
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The outlier detection procedure is therefore: 

 Run a PCA and get D, P and Y. 

 Using (11) project the data in the normalized 

PC space, and compute for each instance the 

MD using the simple ED (12). 

 An instance will be considered as an outlier 

if its MD (or its squared MD) is above a 

given threshold t: 𝑑𝑖
2 > t. 

The choice of the threshold t is not straightforward 

and could be sometimes arbitrary. It may be helpful 

to compute and plot the empirical cumulated 

distribution function of the squared MD. 

Once the outliers detected, it becomes possible to 

identify which components are responsible for the 

instances being classified as outliers. This can be 

done by computing a normalized contribution of each 

principal component (j=1..p) to the squared MD (14) 

and looking if some components are more important 

than the others: 

 𝑦𝑖𝑛𝑟,𝑗
2 =  

𝑦𝑖𝑛,𝑗
2

𝑑𝑖
2  (14) 

Once some particular components have been 

identified, it is sometimes possible to come back to 

the original space (see the application example 3.2.1). 

2.2.3 Checking Linear Dependency Between 
Features 

PCA helps to reveal the sometimes hidden, simplified 

structures that underlie the data; an extreme case is 

the linear dependency between features. In that 

situation, the pth eigenvalue is very small Dpp≈0, 

meaning that the data projected on the associated 

Principal Component pp have almost no variance; 

using the fact that data are centered, this implies that: 

 𝑋𝑛. p𝑝 ≈ 0 (15) 

pp represents the linear combination of the data in 

normalized space. If we want to come back to the 

original space, we use (3) and define a new (px1) 

vector: 

 𝑞𝑝 = 𝑉−
1

2. p𝑝 (16) 

Such as 

 𝑋. 𝑞𝑝 ≈ 𝑀. 𝑞𝑝 ≈ 𝑐𝑠𝑡 (17) 

Therefore, the vector qp represents the linear 

combination of the data in the original space. 

2.2.4 Dimension Reduction 

The most popular use of the PCA is to find the dimen- 

sion of the data and/or reduce the dimension without 

losing too much variance. The idea is to compute the 

cumulated variance vk, k=1..p in the PC space: 

 𝑣𝑘 = ∑ 𝐷𝑗𝑗𝑗=1..𝑘  (18) 

And determine when its normalized value wk (19) 

exceeds a given threshold t (between 0 and 1); let q 

be the number of components. 

 𝑤𝑘 =
𝑣𝑘

𝑣𝑝
  (19) 

The intrinsic dimension is therefore q≤p and the 

data can be represented in the PC space by only the 

first q PCs. 

After these three steps, outliers from the data have 

been removed, linear dependency between features 

has been studied and data dimension has been 

reduced. 

2.3 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is also called 

Fisher Linear Discriminant (FDA) (Duda et al., 2001) 

or Fisher Score (Gu et al., 2012). Contrary to PCA, it 

is a supervised technique, which given some data, 

searches for a linear combination of original variables 

that best discriminates among classes (rather than best 

describe the data as with PCA). 

In the following, we will summarize the LDA 

implementation and present an interesting 

applications: feature selection. 

2.3.1 LDA Implementation 

Let us define some notations: 

 X: data in the original space, a matrix Nxp, 

with N instances and p predictors. 

 K: number of different classes 

 Dk: the subset of samples belonging to class 

k,  

 nk: cardinal of Dk 

 mk: the p-dimensional mean of samples of 

Dk. 

 m: the p-dimensional mean of all samples. 

The implementation is the following: 

 Compute the within-class scatter matrix SW 

which is the sum of scatter matrices Sk: 

 𝑆𝑊 = ∑ 𝑆𝑘
𝐾
𝑘=1  (20) 

 𝑆𝑘 = ∑ (𝑥 − 𝑚𝑘)(𝑥 − 𝑚𝑘)𝑇
𝑥∈𝐷𝑘

 (21) 

 Compute the between-class scatter matrix 

SB: 
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 𝑆𝐵 = ∑ 𝑛𝑘(𝑚𝑘 − 𝑚)(𝑚𝑘 − 𝑚)𝑇𝐾
𝑘=1  (22) 

One can show that the total scatter matrix ST 

defined by (23) is the sum of SW and SB. 

 𝑆𝑇 = ∑ (𝑥 − 𝑚)(𝑥 − 𝑚)𝑇
𝑥  (23) 

 Solve for the eigenvalues and the 

eigenvectors of SW
-1SB matrix; it leads to p 

eigenvectors cj, j=1..p and p eigenvalues ej, 

j=1..p. It can be shown SB is of rank K-1 at 

most; therefore, there are K-1 nonzero 

eigenvalues at most. 

 The eigenvectors, also called discriminant 

axis, are linear combination of original 

vectors and define a new ‘C space’ that 

maximizes the class separability.  

 Let define a separability criteria SC as the 

sum the eigenvalues (also equal to  

tr(SW
-1SB). It gives an idea of how well the 

classes are separated in the new C space. 

 𝑆𝐶 = ∑ 𝑒𝑗𝑗=1..𝑝 =Tr(𝑆𝑊
−1𝑆𝐵) (24) 

2.3.2 LDA for Feature Selection 

LDA is very useful for feature selection. Given a set 

of p features,  

 We apply the LDA procedure and get an 

initial separability criteria SC0.  

 We remove each feature j=1..p one by one 

and compute the new separability criteria 

SCj and the impact on class separability  

rj=1- SCj/SC0. 

 We remove features whose impact is low, 

i.e. |rj| below a threshold (typ. 0.05). 

3 RESULTS 

In a first section, we present the data relative to the 

transportation mode problem. 

Then, we apply the proposed approach. 

3.1 The Data 

Details about data collection, data pre-processing and 

feature extraction are given in (Lorintiu and Vassilev, 

2016). 

A smartphone application for Android based 

smartphones was developed to perform the data 

collection. The application stores the raw sensor data 

such as GPS, accelerometer and magnetometer. The 

subjects were asked to install the developed 

application on a compatible smartphone and use it 

during their commute to work or any other trip. They 

were also asked to choose the travel mode they are 

using during the recording process. The subjects 

weren’t imposed any position for their smartphone.  

22 subjects participated to the database setup, 

using 12 different smartphones. About 400 trips were 

recorded, representing 225 hours of recording. 

Three sensors, ACC, MAG and GPS were taken 

into account. From the raw sensor data, signals were 

segmented using a 5 seconds non overlapping 

window, leading to an initial number NI = 161489 

instances. On each window, a pre-processing was 

applied to ACC whose steps are: 

 Estimate gravity, and subtract it from 

acceleration measured, leading to the linear 

acceleration 

 Decompose the linear acceleration into a 

vertical acceleration APV and a horizontal 

one APH, 

 Decompose the horizontal acceleration APH 

into a longitudinal (or forward) H1 and a 

lateral H2 acceleration. 

Then, 14 a priori relevant features were computed 

(see Table 1). Note that the 4 features whose name 

starts with ‘ACC_V_BAND’ are defined so their sum is 

equal to 1. 

Table 1: The 14 features. 

 

Seven different transportation modes were 

considered: ‘bike’, ‘plane’, ‘rail’, ‘road’, ‘run’, ‘still’, 

‘walk’. An additional class named ‘other’ contains 

activities that are irrelevant for this study. 

‘rail’ class regroups transportation modes such as 

tramway, subway, train and high speed train, whereas 

‘road’ assembles transportation modes such as ‘car’ 

and ‘bus’. 

It is important to note that GPS sensor is 

unavailable 42.3% of the time, representing 68316 

(resp. 93173) instances unavailable (resp. available). 

This quite surprising result can be explained by the 

fact that as GPS is a sensor that relies on a radio wave 

communication with a set of satellites, the quality of 

this communication depends on  

ID Name Unit Description

1 MAG_NORM_STD µT Standard deviation of magnetic field norm

2 ACC_STD_V m/s² Standard deviation of APV

3 ACC_STD_H1 m/s² Standard deviation of H1

4 ACC_STD_H2 m/s² Standard deviation of H2

5 ACC_V_BAND_EN_1 - Relative energy of APV in the band [0.7-3.5 Hz]

6 ACC_V_BAND_EN_2 - Relative energy of APV in the band [3.5-8.5 Hz]

7 ACC_V_BAND_EN_3 - Relative energy of APV in the band [8.5-18.5 Hz]

8 ACC_V_BAND_EN_4 - Relative energy of APV in the band [18.5-45 Hz]

9 ACC_SPEC_CENTROID_V Hz Spectral centroid of APV

10 MAG_SPEC_CENTROID Hz Spectral centroid of magnetic field norm

11 ACC_SPEC_SPREAD_V Hz² Spectral spread of APV

12 MAG_SPEC_SPREAD Hz² Spectral spread of magnetic field norm

13 GPS_SPD_MED m/s Median of GPS speed

14 ACC_NORM_VAR (m/s²)² Variance of accelerometer norm
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 the GPS receiver sensitivity (often poor for 

low cost GPS chip embedded in mobile 

devices), 

  Radio wave attenuation due to aircraft or 

train cabin or car body. 

 Relative position of satellites with respect to 

the GPS receiver. 

3.2 Application of PCA on the Data 

3.2.1 Detecting Outliers 

Given the available data (93173 instances), after 

removing the 6615 irrelevant annotations (e.g., 

instances corresponding to ‘other’ annotations), it 

remains 86558 instances.  

Sensor readings can be erroneous, leading to non-

physical value; below, on a 1D scatterplot (see Figure 

2), it is easy to see 3 outliers, 2 relative to 

MAG_NORM_STD (above 5000 µT) and one 

relative to ACC_NORM_VAR (>6e12 m²/s4).  

 

Figure 2: Outliers due to erroneous sensor readings. 

It is very important to remove these 3 evident 

outliers because, otherwise they would have distorted 

the computation of mean and standard deviation when 

normalizing the data for PCA computation. 

Out of the 86555 remaining instances, some other 

outliers are harder to discover, as each instance is 

defined in a 14 dimensions feature space. To do so, 

we applied the procedure presented in 0, i.e., running 

a PCA and computing a MD. 

The PCA computation leads to a 14th eigenvalue 

~1000 times smaller than the others (see Figure 3 

where the eigenvalues normalized have been plotted).  

 

Figure 3: PCA normalized variances on the 14 features 

data. 

As explained in 2.2.3, this reveals a linear 

dependency between features. From the linear 

combination q14 (see Table 2), given by the associated 

principal component (see equation 16), we can 

conclude that 4 features (ID between 5 and 8), 

corresponding to relative energy of APV in different 

frequency bands are linearly dependent. This is not 

surprising given how these 4 features have been 

computed (see 3.1). 

Table 2: Linear combination of the 14 features. 

 

Therefore, we remove one of the 4 features; we 

arbitrary chose to remove the last one, 

‘ACC_V_BAND_EN_4’. We run again a PCA in the 

13th dimensional space. Figure 4 displays the matrix 

P. Columns correspond to principal components and 

rows to features (The “_N” added at the end of each 

feature name reminds that the PCA is done on 

normalized data). We can see, e.g., that the 2nd PC 

(column 2) involves mainly the 2 features, 

‘MAG_SPEC_CENTROID’ and ‘MAG_SPEC_SPREAD’ 

which are the relative spectral energy of the magnetic 

field.  

ID Name q14

1 MAG_NORM_STD 0.000

2 ACC_STD_V 0.000

3 ACC_STD_H1 0.000

4 ACC_STD_H2 0.000

5 ACC_V_BAND_EN_1 2.174

6 ACC_V_BAND_EN_2 2.174

7 ACC_V_BAND_EN_3 2.174

8 ACC_V_BAND_EN_4 2.174

9 ACC_SPEC_CENTROID_V 0.000

10 MAG_SPEC_CENTROID 0.004

11 ACC_SPEC_SPREAD_V 0.000

12 MAG_SPEC_SPREAD 0.000

13 GPS_SPD_MED 0.000

14 ACC_NORM_VAR 0.000
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Figure 4: Principal Components on the 13 features data. 

Then, for each of the 86555 instances, we 

compute the squared MD according to equations 11 

and 12.  

Considering the empirical cumulated distribution 

function of the squared MD (Figure 5), we decided to 

set a relatively high threshold (equal to 700) in order 

to remove a small number of outliers. 

For the resulting 41 outliers, we compute the 

normalized contribution of each principal component 

to the squared MD (see equation 14). Figure 6 shows 

2 distinct groups of outliers, the first one due to high 

values on components 2 and 13, the 2nd one due to 

high values on components 5 and 6. 

 

Figure 5: Empirical cumulated distribution function of 

the squared MD. 

Regarding the 1st group, Figure 4 shows that 

principal components 2 and 13 involve mainly the 

two previously mentioned features relative to spectral 

energy of the magnetic field. Plotting the outliers in 

this 2D space is therefore relevant as Figure 7 shows 

it. 

 

Figure 6: Normalized contribution of each PC to squared 

MD for the 41 outliers. 

 

Figure 7: 41 outliers displayed in a 2D original space. 

This procedure to automatically locate the outliers 

can be applied either on the global dataset, as it has 

been done, or for each of the seven classes. It leads to 

the removal of a total of 504 outliers. 

The last source of outliers was wrong user 

annotation. E.g., each time the subject was moving 

and stopped for any reason (for e.g., when walking to 

look to a map, or to wait for the red-light, or in a train 

that stops at a station), the user annotation should be 

changed to ‘still’; obviously, we could not ask the 

volunteer to do so, because it would have been too 

cumbersome. The consequence is that some instances 

are not correctly annotated. After checking the 

instances thanks to the GPS speed, we discard 3251 

outliers; most are due to walking at very low speed 

(<1 km/h). 

Finally, after removing the different outliers 

(3+504+3251), it remains 82000 instances, i.e. 89% 

of the 93173 original instances. 
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3.2.2 Dimension Reduction 

After the outliers were removed, a 3rd and last PCA 

was performed. Eigenvalues are displayed in the 2nd 

column of Table 3. The 3rd column corresponds to the 

ratio between each eigenvalue and the sum of the 

eigenvalues in percentage. Finally, the last column is 

the cumulated sum of the previous one. This table 

shows that 8 components explains 96 % of the 

variance of the data.  

Table 3: Eigenvalues. 

 

Therefore the dimension of the data can be 

reduced from 13 to 8 and the next steps, such as 

classifier training could be done on the 8 components 

in the PC space: p1, p2, …, p8. But working with data 

in the PC space is less intuitive and more complex. 

This is why, it is often better practice, if possible, to 

remove original variables. To do so, we focussed on 

the first 2 columns of the P matrix. In Figure 8, each 

of the 13th original variables was plotted with a blue 

line starting from the origin, in the 2D plane formed 

by the first 2 PCs. 

 

Figure 8: Identifying clusters of original variables. 

Three main clusters stick out from Figure 8 (resp. 

displayed in red, blue and green), with resp. 2, 2 and 

4 features. 

Therefore, one feature by cluster can be kept, 

removing 1+1+3=5 features. The problem could 

therefore be simplified to 8 dimensions. Table 4 

summarizes the 8 features finally kept. 

Table 4: 8 features after dimension reduction. 

 

3.3 Application of LDA on the Data 

We apply a LDA on the database obtained after PCA 

application (see 3.2), which has 82800 samples and 8 

features. Among the 8 eigenvalues, 6 are non-null 

(see Table 5). For this nominal configuration, the 

separability criteria is 5.05. 

Table 5: Eigenvalues of the LDA. 

 

Figure 9 presents the 8 eigenvectors (in column) 

which are linear combination of the 8 original 

variables (in row). E.g., the first eigenvector, i.e. the 

vector that best linearly separates the classes appears 

to be a combination of the GPS speed and the 

accelerometer variance. 

 

Figure 9: Eigenvectors. 

In this case, it is also meaningful to represent the 

data in the 2D spaced formed the first two 

ID Name

1 MAG_NORM_STD

2 ACC_V_BAND_EN_1

3 ACC_V_BAND_EN_2

4 ACC_V_BAND_EN_3

5 ACC_SPEC_CENTROID_V

6 MAG_SPEC_CENTROID

7 GPS_SPD_MED

8 ACC_NORM_VAR

ID 1 2 3 4 5 6 7 8 Sum

Eigenvalue 3.00 1.60 0.19 0.17 0.08 0.01 0.00 0.00 5.05

LDA - Eigenvalues
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eigenvectors. As there may be confusions between 

some classes, instead of plotting each sample, we 

draw, for each class an ellipse representing the 

dispersion. The ellipse’s centre stands for the mean, 

whereas the semi axis length is equal to the standard 

deviation. On Figure 10, one can see, that ‘run’ and 

‘plane’ are well separated in this space, whereas there 

is some confusion between ‘bike’ and ‘walk’ and 

even more confusion between the 3 remaining classes 

‘rail’, ‘road’ and ‘still’. 

 

Figure 10: Class separability with 8 features. 

Now, if we remove one feature, e.g. 

‘ACC_NORM_VAR’, and do again a LDA, we get a new 

set of eigenvectors and eigenvalue. Compared to the 

previous nominal configuration, the separability 

criteria highly decreases to 2.51 (-50%). Figure 11 is 

a good illustration: ‘plane’ is still an isolated class 

(thanks to the GPS speed), but it is no more the case 

for ‘run’ which is now confused with ‘walk’. We can 

conclude that ‘ACC_NORM_VAR’ is an important 

feature. 

 

Figure 11: Class separability with 7 features 

(ACC_NORM_VAR removed). 

On the contrary if we remove the feature 

‘MAG_NORM_STD’, the separability criteria is very few 

changed: 4.97, compared to 5.05. 

3.4 Validation 

To validate the results obtained after the previous 

processing, we considered the 82000 instances 

database obtained after outliers’ removal. We built 4 

classification models (M1, M2, M3 and M4), the first 

one M1 using the 13 features, M2 the 8 ones after 

dimension reduction, M3 and M4 7 features. In M3, 

with respect to M2, we removed one feature: 

‘ACC_NORM_VAR’, whereas in M4 we removed 

‘MAG_NORM_STD’. 
These classifiers were all based on decision trees 

constrained by a maximum number of splits of 32 

(this figure represents a good compromise between 

classifier’s performance and complexity). 

Performance assessment for each model is done 

via a Leave-One-Subject-Out Cross Validation 

(LOSO CV) procedure (Arlot and Celisse, 2010), 

which involves the partition of the database into K 

folds, each fold representing a subject. The 

performance metric used is the F-measure (harmonic 

mean of precision and recall) averaged over the 

different classes. 

The results are summarized in Table 6. 

Table 6: performance for the different models. 

 

Comparing M1 and M2, it appears that reducing 

the dimension using a PCA even improves the 

performance: 0.714 instead of 0.689, i.e. +0.025. This 

can be explained by the fact that removing 5 features 

might have simplified the problem. 

Comparing M3 and M4 with respect to M2 shows 

that the separability criteria seems to be a good 

indicator of the importance of a feature and its impact 

on classification performance; so, removing 

‘ACC_NORM_VAR’ reduces SC by 50% and 

performance drops by ~0.1 whereas removing 

‘MAG_NORM_STD’ decreases only slightly the SC  

(-1.6%) and performance (-0.01). 

The resulting decision trees have a number of 

nodes comprised between 53 and 61, which is too 

high if one wants to display the trees. Nevertheless, 

comparing them shows that M2 and M4 are quite 

similar (their 2 most important variables are 

M1 M2 M3 M4

Number of predictors 13 8 7 7

Predictor removed w.r.t M2 ACC_NORM_VAR MAG_NORM_STD  

Important variables

ACC_STD_V,

ACC_NORM_VAR,

GPS_SPD_MED

ACC_NORM_VAR,

GPS_SPD_MED
GPS_SPD_MED

ACC_NORM_VAR,

GPS_SPD_MED

Performance (Avg. F-measure) 0.689 0.714 0.612 0.703

Separability Criteria (SC) 5.05 2.51 4.97

impact on SC -50.3% -1.6%
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ACC_NORM_VAR and GPS_SPD_MED), whereas the 

other 2 models M1 and M3 are different: M1 differs 

because it involves ACC_STD_V which brings the same 

information as ACC_NORM_VAR. M3 differs because it 

does not have access to ACC_NORM_VAR. 

4 CONCLUSIONS 

Given a classification (or regression) problem, due to 

the number of different possible combinations of 

sensors, features, classifiers and hyper-parameters, 

finding an optimal classifier is a very time consuming 

task.  

This is why, simplifying the problem, using quick 

data mining tools is very interesting. 

In this study, we present three simple data mining 

tools: Principal Component Analysis, Mahalanobis 

distance and Linear Discriminant Analysis.  

We apply them on real data concerning the 

transportation mode classification problem and show 

that we are able to  

 clean the data: we remove outliers 

representing 11% of the samples 

 simplify the problem: we reduce data 

dimension from 14 to 8 and this 

simplification even improves the classifier 

performance 

 study the importance of each of 8 features; 

it turns out that feature ‘ACC_NORM_VAR’ is 

very important whereas ‘MAG_NORM_STD’ can 

be removed with a small effect on 

performance (-0.01). 
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