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Abstract: A challenging question in Stochastic Periodic Inventory Routing Problem (SPIRP) is how to deal with 

stochastic demand rates, while minimizing the costs (transportation, inventory, and storage) and finding the 

best routing system. In this paper, we reformulate the SPIRP model to a safety stock-based SPIRP where the 

inventory storage capacity at the retailers are considered as variables and retailer’s demand rate is stochastic. 

The supply chain planner needs to find the best routing system to replenish the retailers with the most optimum 

level of inventory, while the service level is satisfied in a long term planning horizon. Four different policies 

for storage capacity optimization are presented, evaluated, and compared in an illustrative example. The 

impact of storage capacity limitation is considered based on the defined policies to measure their compatibility 

for different situations. 

1 INTRODUCTION 

Inventory-Routing Problem (IRP) integrates 

inventory management and vehicle routing decisions 

over several periods and has received increased 

attention in recent years (Aghezzaf, 2007, Bertazzi et 

al., 2013, Yadollahi et al., 2017, Federgruen and 

Zipkin, 1984, Bell et al., 1983). Bell et al., (1983) are 

one of the first researchers who used VRP and 

inventory management together to deal with the case 

where only transportation costs are included, demand 

is stochastic, and customer inventory levels must be 

met. Demand stochasticity means that shortages may 

occur since the supplier only knows a probabilistic 

distribution of demand for the retailer. To avoid 

having stock-outs, a penalty is imposed whenever a 

retailer runs out of stock, and this penalty is usually 

paid with the unsatisfied demand (negative 

inventory). Unsatisfied demand is either considered 

as lost-sale or backlogged. More explanation about 

IRP and SPIRP can be found in (Coelho et al., 2014a, 

Coelho et al., 2014b). 

Variability of service, uncertainty in demand, and 

delay are the well-known characteristics of SPIRP. 

The trade-off between costs (transportation and 

inventory) and products’ availability makes SPIRP a 

hard problem to solve. Even though there is a 

noticeable body of literature about IRP and SPIRP, 

only few studies have involved capacity limitation as 

constraints. Stacey et al., (2007) are one of the 

pioneers in specifying the significance of storage 

capacity on both the routing and inventory decisions 

in the context of inbound transportation. They have 

evaluated the benefits of applying storage constraints 

at different levels by developing two new heuristics 

that sequentially take into account the inventory level 

and routing decisions. 

Pujawan et al., (2015) have proposed a new 

method to integrate operational and strategic decision 

parameters, namely shipment planning and storage 

capacity decision under uncertainty. Their objective 

is to provide a close to optimal solution to find the 

best balance for logistics cost and product 

availability. The authors develop a simulation model 

to investigate the effects of various indicators on costs 

and service levels in a distribution system. The model 

mimics the transportation and distribution problems 

of bulk cement, consisting of a silo at the port of 

origin, two silos at two ports of destination, and a 

number of ships that transport the bulk cement. The 

outcome of their model clarifies the significant effect 

of the number of ships deployed, silo capacity, 
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working hours of ports, and the dispatching rules of 

ships on both total logistics costs and service level. 

Finding the appropriate storage capacity is one of 

the main objectives of SPIRP that desires more 

investigation. The comparison between small and big 

storage capacity can be assessed from several 

different aspects such as costs, service level, silo 

availability, product’s perishability, etc. In addition, 

different options for storage capacity at the retailers 

with different costs makes it more challenging for the 

supply chain decision maker to find the most 

optimum solution. 

The idea of having the capacity optimized is a new 

concept in SPIRP and has not been treated completely 

in the literature. In this paper by involving storage 

capacity constraints into SPIRP, we develop the 

solutions to deal with stochasticity in demand rates 

and costs minimizations while service level is 

satisfied. Four different policies for storage capacity 

allocation are considered in this paper. The strategies 

are evaluated and compared by implementing them 

on an illustrative example based on two indicators 

namely costs and computation time. The outcome of 

these solutions are discussed in details for the short 

and long term planning horizon in order to have a 

better insight of their influence on the whole system. 

The rest of the paper is organized as follows; 

section 2 presents the Safety Stock-based SPIRP 

together with the different approaches for the capacity 

optimization. In section 3, we explain all the 

approaches and discuss the advantages and dis-

advantages. 

2 SAFETY STOCK-BASED SPIRP 

MODEL WITH STORAGE 

CAPACITY LIMITATION 

POLICIES 

The inventory routing system studied in this paper 

consists of a single depot and a set of geographically 

scattered retailers. The retailers are indexed by 𝑗, 𝑗 ∈
 {1, 2, . . , 𝑚} (where 𝑚 is the total number of retailers) 

and the depot is indexed by 𝑟. Each retailer 𝑗 has a 

stochastic independent demand rate of 𝑑𝑗𝑡 per unit of 

time, that is assumed to be approximately based on 

Gamma distribution Γ(𝛼, 𝛽). Let 𝑆 be the set of 

retailers indexed by 𝑖 and 𝑗; and 𝑆+  =  𝑆 ∪ {𝑟 }.  

Let 𝐻 =  {1, 2, . . , 𝑇 } be the planning horizon 

indexed by 𝑡, and 𝐻+  =  𝐻 ∪ {0} be the planning 

horizon that includes period 𝑡 = 0. Let 𝜏𝑡 be the size 

in time units of each period 𝑡, for example eight 

working hours per day. For the deliveries, a fleet of 

vehicles 𝑉, 𝑣 ∈  {1,2, . . , 𝑘} each with a capacity of 𝜅 

is available. The supplier and each retailer 𝑗 agree to 

a service level (𝑆𝐿𝑗) based on a predetermined 

inventory violation rate of 𝜃𝑗 during each period and 

retailer, and 𝑆𝐿𝑗 = (1 − 𝜃𝑗). Let 𝑆𝐺 = {1,2, … , 𝐺} be 

the number of available silos for each retailer 𝑗.  

 

Additional parameters of the model are as follows: 

𝜙𝑗𝑡 : the fixed handling cost (in euros) per delivery at 

location 𝑗 ∈ 𝑆+ (retailers and depot) in period 𝑡 ∈ 𝐻. 

ℎ𝑗𝑡 : the per unit holding cost of the product at 

location 𝑗 ∈ 𝑆 (in euros per ton) in period 𝑡 ∈ 𝐻; 

𝜓𝑣: the fixed operating cost of vehicle 𝑣 ∈  𝑉 (in 

euros per vehicle per use); 

𝛿𝑣: travel cost of vehicle 𝑣 ∈ 𝑉 (in euros per km); 

𝜂𝑣: average speed of vehicle 𝑣 ∈ 𝑉 (in km per hour); 

∆𝑖𝑗 : duration of a direct trip from retailer 𝑖 ∈ 𝑆+ to 

retailer 𝑗 ∈ 𝑆+ (in hours); 

𝐼𝑗0: the initial inventory levels at each retailer 𝑗 ∈ 𝑆 in 

period zero; 

𝐶𝐼𝑗𝑡: The cost of using a silo for each retailer 𝑗 ∈ 𝑆, in 

period 𝑡 ∈ 𝐻 

𝐾𝐼𝑗𝑔: maximum capacity of each silo  𝑔 ∈ 𝑆𝐺, for 

retailer 𝑗 ∈ 𝑆 

The variables of the model are defined as follows: 

𝑄𝑣𝑖𝑗𝑡 : the quantity of product remaining in vehicle 

𝑣 ∈ 𝑉 when it travels directly to location 𝑗 ∈ 𝑆+  from 

location 𝑖 ∈ 𝑆+ in period 𝑡 ∈ 𝐻. This quantity equals 

zero when the trip (𝑖, 𝑗) is not on any tour of the route 

travelled by vehicle 𝑣 ∈ 𝑉 in period t; 

𝑞𝑗𝑡 : the quantity delivered to location 𝑗 ∈ 𝑆 in period 

𝑡 ∈ 𝐻; 

𝐼𝑗𝑡: the inventory level at location 𝑗 ∈ 𝑆 by the end of 

period 𝑡 ∈ 𝐻; 

𝑥𝑣𝑖𝑗𝑡: a binary variable set to 1 if location 𝑗 ∈ 𝑆+ is 

visited immediately after location 𝑖 ∈ 𝑆+ by vehicle 

𝑣 ∈ 𝑉 in period 𝑡 ∈ 𝐻, and 0 otherwise; 

𝑦𝑣𝑡: a binary variable set to 1 if vehicle 𝑣 ∈ 𝑉 is being 

used in period 𝑡, and 0 otherwise; 

𝐼𝑆𝑗𝑡𝑔: a binary variable set to 1 if silo 𝑔 ∈ 𝑆𝐺 is being 

used for retailer 𝑗 ∈ 𝑆 in period 𝑡, and 0 otherwise; 

The minimization objective function is: 
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𝐶𝑉 =  ∑ ∑ [𝜓𝑣𝑦𝑣𝑡  +  ∑ ∑ (𝛿𝑣

𝑗 ∈ 𝑆+𝑖∈ 𝑆+ 

𝜂𝑣∆𝑖𝑗 +  𝜙𝑗𝑡)𝑥𝑣𝑖𝑗𝑡  ]

𝑣∈𝑉𝑡∈𝐻

+ ∑ ∑ ℎ𝑗𝑡𝐼𝑗𝑡 

𝑗 ∈ 𝑆𝑡 ∈ 𝐻

 

(1) 

+ ∑ ∑ (𝐾𝐼𝑗𝑔 𝐶𝐼𝑗𝑡)𝐼𝑆𝑗𝑡𝑔

𝑔∈𝑆𝐺𝑗∈𝑆

 𝑇 

Subject to: 

∑ ∑ 𝑥𝑣𝑖𝑗𝑡  ≤ 1, ∀ 𝑗 ∈  𝑆,

𝑖∈ 𝑆+𝑣 ∈ 𝑉

 𝑡 ∈  𝐻 (2) 

∑  𝑥𝑣𝑖𝑗𝑡 − ∑ 𝑥𝑣𝑗𝑘𝑡 = 0, ∀  𝑗 ∈  𝑆+, 𝑡 ∈  𝐻, 𝑣 ∈  𝑉 

𝑘∈ 𝑆+𝑖∈ 𝑆+

 (3) 

∑ ∑ ∆𝑖𝑗𝑥𝑣𝑖𝑗𝑡  ≤  

𝑗∈ 𝑆+𝑖∈ 𝑆+

𝜏𝑡 , ∀  𝑡 ∈  𝐻, 𝑣 ∈  𝑉 (4) 

∑ ∑ 𝑄𝑣𝑖𝑗𝑡 − ∑ ∑ 𝑄𝑣𝑗𝑘𝑡 = 𝑞𝑗𝑡

𝑘∈ 𝑆+ 𝑣 ∈ 𝑉 𝑖∈ 𝑆+ 𝑣 ∈ 𝑉 

,            ∀ 𝑗 ∈  𝑆, 𝑡 ∈  𝐻 (5) 

𝑄𝑣𝑖𝑗𝑡  ≤ 𝜅 𝑥𝑣𝑖𝑗𝑡, ∀ 𝑖 ∈  𝑆+, 𝑗 ∈  𝑆+, 𝑡 ∈  𝐻 , 𝑣 ∈  𝑉 (6) 

𝐼𝑗0 + ∑ 𝑞𝑗𝑙 =  ∑ 𝐸(𝑑𝑗𝑙) + 𝑆𝑆𝑗𝑡 + 

𝑡

𝑙=1

𝑡

𝑙=1

𝐼𝑗𝑡 , ∀ 𝑗 ∈ 𝑆, 𝑡 ∈ 𝐻+  (7) 

𝐼𝑗0  ≤  𝐼𝑗𝑇  , ∀ 𝑗 ∈  𝑆, 𝑡 ∈  𝐻 (8) 

𝐼𝑗𝑡  ≤   ∑ 𝐼𝑆𝑗𝑡𝑔 

𝑔∈𝑆𝐺

𝐾𝐼𝑗𝑔, ∀ 𝑗 ∈  𝑆, 𝑡 ∈  𝐻 (9) 

𝑥𝑣𝑟𝑗𝑡  ≤  𝑦𝑣𝑡 , ∀ 𝑗 ∈  𝑆+, 𝑡 ∈  𝐻, 𝑣 ∈  𝑉 (10) 

𝑥𝑣𝑖𝑗𝑡 , 𝑦𝑣𝑡 , 𝐼𝑆𝑗𝑡𝑔  ∈ {0,1}, 𝐼𝑗𝑡  ≥ 0, 𝑄𝑣𝑖𝑗𝑡  ≥ 0, 𝑞𝑗𝑡  ≥ 0, ∀ 𝑗 ∈  𝑆+, 𝑡 ∈  𝐻, 𝑣 ∈  𝑉  
 

The objective function (1) shows the variables to 

minimize the level of costs in this replenishment 

system. It includes five cost components, namely, 

total fixed operating cost of using the vehicle(s), total 

transportation cost, total delivery handling cost, total 

inventory holding cost at the end of each period, and 

total cost of renting silos at the retailers.  

Constraints (2) assure that each retailer is visited 

at most once during each period. Constraints (3) 

guarantee that a vehicle moves to the next 

retailer/depot after serving the current one. 

Constraints (4) prevent that the time required to 

complete each tour does not exceed the duration of 

the period. The quantities to be delivered to each 

retailer are determined by constraints (5). These 

constraints also avoid sub-tour from occurring. 

Constraints (6) are capacity constraints induced by 

the vehicles capacities. Constraints (7) determine the 

delivered number of products from period 1 to 𝑡 

together with the initial inventory to be equal to the 

expected demand’s values from period 1 to 𝑡, safety 

stock, and remaining inventory at the end of period 𝑡 

for each retailer 𝑗. Constraints (8) insure that the level 

of inventory at the end of last period is equal or larger 

than initial inventory. Constraints (9) determine the 

optimum number of required silos for each retailer 

during each period. Finally, constraints (11) specify a 

vehicle cannot be assigned to serve retailers unless 

the related fixed cost is payed. 

Eq. (11) presents the safety stock calculation 

model to be used in constraints (7). 

As is specified by equation (11), safety stock is a 

function of service level parameter (𝑧𝜃𝑗
), number of 

time periods (𝑡), and standard deviation of demand 

(𝜎𝑗𝑡) for each retailer (𝑗). The parameter 𝑧𝜃𝑗
 is the 

service factor determined by retailer’s requested 

service level (𝑆𝐿𝑗%) gained by the level of 𝜃𝑗. It is 

used as a multiplier with the standard deviation and 

number of time periods to calculate a specific 

quantity (as safety stock) to meet the pre-set service 

level.  
 

𝑆𝑆𝑗𝑡 =  𝑧𝜃𝑗
 √∑ 𝜎𝑗𝑙

2

𝑡

𝑙=1

 (11) 

Optimizing Storage Capacity of Retailers in Stochastic Periodic Inventory Routing Problem

219



3 DIFFERENT APPROACHES 

FOR STORAGE CAPACITY 

ALLOCATION 

We propose 4 different policies in this study. These 

policies are suggested based on the requirements in 

short/long term planning horizons and high 

variability in demand rates to evaluate their 

applicability in distribution systems. Different 

industries have different preferences in renting a silo. 

Therefore, presenting various strategies for silo 

allocation could help the decision maker to decide 

wisely. In the reminder four proposed policies for silo 

allocation are modelled and described. 

3.1 Fixed Number of Silos 

This is the basic policy that allocates a certain number 

of silos to the retailers during the whole planning 

horizon. Equations (1)-(10) formulate the Safety 

Stock-based SPIRP for this policy. Number of silos 

are fixed from period 1 to the last period. It means the 

maximum required silos need to be rented in the 

beginning of the planning horizon based on the 

expected level of inventory from the optimization 

model.  

In some distribution centres where the variability 

of demand rates is high, and high level of service is 

promised to the customers, it is better to rent a certain 

number of silos for the whole planning horizon. 

Therefore, there is less risk of having limited space 

for the inventory during the planning horizon. The 

calculated number of silos is based on the maximum 

expected level of inventory, meaning there are some 

periods that some silos are not full, but the rent must 

be paid. The allocation of the silos to the retailers are 

based on the rental fee, and the trade-off between 

inventory/silo costs and transportation costs. 

3.2 Fixed Cumulative 

Fixed-cumulative approach optimizes the silo 

allocation  mechanism,  in order to  use  the maximum 

capacity of rented silos during the periods with low 

inventory level at the retailers. In other words, the 

cumulative level of inventory from the beginning to 

period 𝑡 is taken into account instead of the level of 

inventory for period 𝑡. To have this strategy applied 

in the Safety Stock-based SPIRP, constraints (9) 

needs to be replaced by constraints (13). In 

constraints (13) the inventory level for all the periods 

from 1 to 𝑡 need to be smaller or equal to storage 

capacity in one period multiplied by 𝑡. Retailers with 

higher variability in demand rates and/or long term 

planning horizon are more convenient to have this 

strategy for renting the silos, since for those retailer 

the risk of having excess inventory/demand in long 

term is compensated by other periods with lower 

demand rate. 

3.3 Flexible Number of Silos 

In this policy the retailers are allowed to have 

different number of silos for each period. It means the 

number of silos are different during the planning 

horizon, but 1the decision for each period is made 

only based on the inventory for that period. It makes 

the inventory costs as low as possible since there is 

no need to pay the rent when the silo is not used.  

Equation (12) involves this flexibility in the objective 

function by summing up the silo fee costs for each 

period. Therefore, the model selects the number of 

silos for each period differently based on the 

maximum inventory level on that period. Equations 

(2-10) and (12), present the Safety Stock-based 

SPIRP model with flexible storage capacity. 

All these decisions are made before the planning 

horizon, therefore this mechanism may cause risks for 

the retailers in terms of stock-out occurrence. 

Generally, the retailers with lower coefficient of 

variation with short term planning horizon are more 

preferred to apply this policy. 

3.4 Flexible Cumulative 

This mechanism is similar to Fixed-cumulative, with 

this difference that in this policy the retailer does not

𝐶𝑉 =  ∑ ∑ [𝜓𝑣𝑦𝑣𝑡  +  ∑ ∑ (𝛿𝑣

𝑗 ∈ 𝑆+𝑖∈ 𝑆+ 

𝜂𝑣∆𝑖𝑗 + 𝜙𝑗𝑡)𝑥𝑣𝑖𝑗𝑡  ]

𝑣∈𝑉𝑡∈𝐻

+ ∑ ∑ ℎ𝑗𝑡𝐼𝑗𝑡 

𝑗 ∈ 𝑆𝑡 ∈ 𝐻

+ ∑ ∑ ∑ (𝐾𝐼𝑗𝑔 𝐶𝐼𝑗𝑡)𝐼𝑆𝑗𝑡𝑔

𝑔∈𝑆𝐺𝑗∈𝑆𝑡∈𝐻

 

(12) 

 ∑ 𝐼𝑗𝑠

𝑡

𝑠=1

≤   ∑ 𝐼𝑆𝑗𝑡𝑔  

𝑔∈𝑆𝐺

𝐾𝐼𝑗𝑔 𝑡, ∀ 𝑗 ∈  𝑆, 𝑡 ∈  𝐻 (13) 
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need to keep a certain number of silos for the whole 

planning horizon. The idea is to be flexible in renting 

the silos as well as involving the variability in 

inventory level among the periods to minimize the 

costs. Equations (2-8), (10), (12), and (13) present the 

Safety Stock-based SPIRP model with flexible-

cumulative approach for silo allocation. 

4 ILLUSTRATIVE EXAMPLE 

We consider a distribution centre with 8 retailers. 

There is a fleet of vehicles with 2 available vehicles, 

each one with the capacity of 40 tons. The vehicles 

work 8 hours per day with an average speed of 50 

km/h. Fix and variable costs of the vehicles are 

presented in table 1. The retailers are scattered 

randomly around the warehouse. Distances between 

retailers themselves and warehouse are shown in table 

3.  

Table 1: Some elements. 

Notation Parameter Cost 

𝜙𝑗𝑡 Delivery costs 25 

𝜂𝑗𝑡 Inventory holding 

costs per unit per period 

0.5 

𝛿𝑣 Travel costs for 

vehicle in Euro per KM 

1 

𝜓𝑣𝑡 Fix operating cost 

of vehicle 

30 

𝜈𝑣 Average speed of 

vehicle 

50 

 

The demand rate for each retailer is considered 

stochastic and follows Gamma distribution and all the 

stock-outs are fully backlogged. Table 2 presents the 

demand rates for 8 hours (1 period) and standard 

deviations as well as their coefficient of variations. 

The rest of the parameters of this example are 

provided in table 1. We use CPLEX 12.5.1 for solving 

all models. All the computations are performed on a 

3.60 GHz Intel® Xeon® CPU. 

Table 2: Demand rate parameters per period. 

R
et

ai
le

rs
 Average 

demand 

𝐸(𝑑𝑗𝑡) 

(ton/day) 

Standard 

deviation 

𝜎𝑗𝑡(ton/day) 
CV (𝛼)  (𝛽) 

1 1.507 1.228 0.81 1.507 1 

2 0.979 0.989 1.01 0.979 1 

3 0.498 0.706 1.41 0.498 1 

4 3.455 1.859 0.53 3.455 1 

5 11.596 3.405 0.29 11.59 1 

6 0.497 0.705 1.41 0.497 1 

7 3.278 1.811 0.55 3.278 1 

8 5.747 2.397 0.41 5.747 1 

5 RESULTS AND DISCUSSION 

The two indicators considered in this study are cost 

level and computation time. Both indicators have 

been measured and evaluated for the defined policies 

in this example to clarify the differences. Figure 1 

shows the expected costs for each policy during the 

whole planning horizon. As mentioned in equations 

(1) and (2), these costs are fixed and variable costs of 

transportations, silos, and inventory. Figure 11 clearly 

indicates the low level of cost for flexible cumulative 

strategy while fixed strategy is the highest. Flexible 

cumulative strategy has saved 40% of the expected 

costs in this model, while flexible strategy reduces the 

costs by almost 30%. The cumulative approach shows 

a big improvement compared to periodic approach, 

by allocating the silos and trucks properly as well as 

minimizing the inventory level at the retailers among 

the periods. 

Table 3: Duration of a trip from retailer 𝑖 ∈  𝑆+to retailer 𝑗 ∈  𝑆+ (in hour). 
 

warehouse c1 c2 c3 c4 c5 c6 c7 c8 

warehouse 0 0.5001 0.9621 0.5155 0.3106 0.4601 0.5536 0.986 0.8472 

c1 0.5001 0 1.3152 0.676 0.7533 0.2581 0.9052 1.4541 1.3465 

c2 0.9621 1.3152 0 1.436 0.6586 1.0973 1.3068 1.4446 0.7826 

c3 0.5155 0.676 1.436 0 0.7823 0.82 0.3225 0.9552 1.0698 

c4 0.3106 0.7533 0.6586 0.7823 0 0.6161 0.7071 0.9266 0.644 

c5 0.4601 0.2581 1.0973 0.82 0.6161 0 0.9775 1.4446 1.2525 

c6 0.5536 0.9052 1.3068 0.3225 0.7071 0.9775 0 0.6329 0.7992 

c7 0.986 1.4541 1.4446 0.9552 0.9266 1.4446 0.6329 0 0.4826 

c8 0.8472 1.3465 0.7826 1.0698 0.644 1.2525 0.7992 0.4826 0 
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We also consider computation time for each 

policy in order to verify the applicability of the 

strategy, particularly for larger models. Table 4 

presents the computation time per policy for the 

whole distribution system. Fixed and flexible silo 

allocation models need the minimum time among the 

other strategies, while when the model is cumulative 

in storage capacity allocation, the required time 

becomes larger. Fixed cumulative approach needs 87 

seconds to achieve the optimized solution, while it is 

even more with Flexible Cumulative approach with 

106 seconds. Higher computational time specifies the 

model complexity level and computation difficulty 

that results in lower interest to apply the complex 

solutions for large systems. 
 

 

Figure 1: Overall costs for each policy. 

Table 4: Computation time per policy. 

Policies Time (seconds) 

Fixed  20 

Fixed cumulative 87 

Flexible 23 

Flexible Cumulative 106 
 

According to the results of the illustrative 

example, flexible approach has got the most 

reasonable results for both computation time and cost 

reduction. But if the model is small in size, the fix 

cumulative approach seems more reasonable, since it 

is more logical to rent a silo for the whole planning 

horizon.  

6 CONCLUSIONS 

In this paper we considered Stochastic Periodic 

Inventory Routing Problem with storage capacity 

limitation. The proposed safety stock-based SPIRP 

model involved storage capacity as a constraint in the 

model to optimize it with regard to cost minimization. 

Four different policies are proposed to deal with 

storage capacity limitation at retailers. The 

advantages and disadvantages of these approaches 

have been discussed in this paper. Finding the balance 

between transportation and inventory costs together 

with the storage costs (silo rent) is the most important 

factor in SPIRP model. Definitely it depends on the 

value of product itself, silo fee, promised service 

level, demand variability rate at the retailers, length 

of the planning horizon, etc., to allocate silos to the 

retailers. The illustrative example presented in this 

paper has revealed the advantages of flexible model 

among other policies. In addition for smaller 

distribution centres, fixed cumulative approach seems 

to be an appropriate strategy to optimize the storage 

capacity. As for future research, the applicability of 

these approaches will be evaluated in some 

experimental cases with design of various 

experiments based on the variables. In addition, their 

impact on service level, inventory and transportation 

costs, and computational time will be measured and 

discussed. 
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