
Ontology then Agentology: A Finer Grained Framework for

Enterprise Modelling

Chris Partridge1,2, Sergio de Cesare1, Andrew Mitchell2, Ana León4,

Frederik Gailly3 and Mesbah Khan5
1University of Westminster, U.K.

2BORO Solutions Ltd., U.K.
3Faculty of Economics and Business Administration, Ghent University, Belgium

4Universitat Politècnica de València, Spain
5Tullow Oil plc., U.K.

Keywords: Enterprise Modelling, Computation Independent Model, Ontology, Agentology, Essential Indexical, De Se,

De Re, De Se Knowledge, De Re Knowledge, Deitic Centre, Agent-Neutral, Agent-Relative.

Abstract: Data integration of enterprise systems typically involves combining heterogeneous data residing in different

sources into a unified, homogeneous whole. This heterogeneity takes many forms and there are all sorts of

significant practical and theoretical challenges to managing this, particularly at the semantic level. In this

paper, we consider a type of semantic heterogeneity that is common in Model Driven Architecture (MDA)

Computation Independent Models (CIM); one that arises due to the data’s dependence upon the system it

resides in. There seems to be no relevant work on this topic in Conceptual Modelling, so we draw upon

research done in philosophy and linguistics on formalizing pure indexicals – ‘I’, ‘here’ and ‘now’ – also

known as de se (Latin ‘of oneself’) or the deitic centre. This reveals firstly that the core dependency is essential

when the system is agentive and the rest of the dependency can be designed away. In the context of MDA,

this suggests a natural architectural layering; where a new concern ‘system dependence’ is introduced and

used to divide the CIM model into two parts; a system independent ontology model and a system dependent

agentology model. We also show how this dependence complicates the integration process – but, interestingly,

not reuse in the same context. We explain how this complication usually provides good pragmatic reasons for

maximizing the ontology content in an ‘Ontology First’, or ‘Ontology then Agentology’ approach.

1 INTRODUCTION

Data integration of enterprise systems typically

involves combining heterogeneous data residing in

different sources into a unified, homogeneous whole.

This heterogeneity takes many forms and there are

many significant practical and theoretical challenges

to managing it, particularly at the semantic level. In

this paper, we consider a type of semantic

heterogeneity that is common in Model Driven

Architecture (MDA) Computation Independent

Models (CIM); one that arises due to the data’s

dependence upon the system it resides in. There

seems to be no relevant work on this topic in the

Conceptual Modelling literature, so we draw upon

research done in philosophy and linguistics on

formalizing pure indexicals – ‘I’, ‘here’ and ‘now’ –

also known as de se (Latin ‘of oneself’) or the deitic

centre. This reveals firstly that the core dependency

is essential when the system is agentive and that the

rest of the dependency can be designed away. In the

context of MDA, this suggests a natural architectural

layering; where a new concern ‘system dependence’

is introduced and used to divide the CIM model into

two parts; a system independent ontology model and

a system dependent agentology model. We also show

how this dependence complicates the integration

process – but, interestingly, not reuse in the same

context. We explain how this complication usually

motivates maximizing the (domain) ontology content

in an ‘Ontology First’, or ‘Ontology then

Agentology’ approach.

454
Partridge, C., Cesare, S., Mitchell, A., León, A., Gailly, F. and Khan, M.
Ontology then Agentology: A Finer Grained Framework for Enterprise Modelling.
DOI: 10.5220/0006606304540463
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 454-463
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

In this introduction, we give an overall context for

the paper. Then we establish the broad features of

system dependence by reviewing the work on de se

done in philosophy and linguistics – where its

subjects are human. Then we show how this applies

in the related case of enterprise systems, using an

extended simple example. With the argument

established, we then look at its methodological and

architectural implications. Finally, we make some

brief comments on future work and summarize the

paper.

1.1 MDA Architectural Layers

The Object Management Group (OMG) has produced

significant documentation of the mainstream

approach to MDA. This starts with a general notion

of a system (here we narrow our focus to enterprise

application software systems). Then, they relate this

to models, where, for them, “[a] model in the context

of MDA is information selectively representing some

aspect of a system based on a specific set of concerns.

The model is related to the system by an explicit or

implicit mapping.” (Object Management Group,

2003) an almost identical statement is in (ORMSC,

ORMSC Draft). Interestingly for us, this text

recognises that there is a relation from the model to

the modelled system and that it is not always explicit;

but it does not mention the relation from the system’s

data to the system.

OMG then outlines the need for the models to

work in architectural layers based upon separating

sets of concerns; recognising that: “Separation of

concerns enables greater agility, ability to deal with

change and a “divide and conquer” approach to

realizing a system.” (Object Management Group,

2014). They accept that “there can be any number of

architectural layers” and identify these three possible

layers in Table 1. As noted earlier, we focus on the

first of these three, the CIM.

1.2 Data Integration Configuration

The integration of data in enterprise systems typically

involves combining heterogeneous data residing in

different sources into a unified whole; where a

significant part of the process is the transformation of

the data into a homogeneous format. There are a

variety of possible integration configurations. Data

warehouses extract data from a variety of source

systems, transform it into a common, homogeneous

format and load this into a target warehouse.

1.3 Direct Interoperability

Configuration

Here we are focussed on the CIM level and so use in

our examples a type of integration scenario that

allows the CIM to vary while keeping the other levels

(PIM and PSM) unchanged. These scenarios involve

the integration of data across a group of standard

implementations of an application package on the

same hardware. As these have the same program code

and the same platform, they share a common PIM and

PSM. All that can vary within the group is the system

specific data content. We call such groups here

standard scenarios.

Data that can be copied directly from one system

to another within a standard scenario without causing

an operational error is called directly interoperable.

We use examples to illustrate the way dependence

works by showing system independent data is directly

interoperable while the system dependent data is not.

This is a kind of extension of Leibniz’s intersubstitu-

tivity salva veritate principle – so we could say that

dependent data is interoperably opaque.

1.4 System Dependent Data

It is relatively easy to find examples of system

dependent data; data that is dependent upon the

system of which it is a part. Take a standard scenario

and consider one of the packages. Assume it has a

system configuration file (this is likely to contain

system-dependent data). Assume further that this

configuration has a 'System Base Currency' attribute

with a value of 'USD'. This 'means' that the base

currency for that specific system is US Dollars.

Table 1: OMG’s MDA architectural layers (adapted from (Object Management Group, 2014)).

Name Acronym Description

Computation

Independent Model

CIM Business or domain models – models of the actual people, places, things,

and laws of a domain.

Platform Independent

Model

PIM Logical system models – models of the way the components of a system

interact with each other – independently of the platform upon which

they are implemented.

Ontology then Agentology: A Finer Grained Framework for Enterprise Modelling

455

Platform Specific Model PSM Implementation models for a specific type of platform; for the set of

resources on which a system is realized.

One can get a feel for its dependence by

considering a couple of integration scenarios where

there is no transformation. If this data is copied to

another directly interoperable system without

transformation, clearly there is no guarantee that it

will be correct as the new system may well have a

different base currency. Consider those packages in

the standard scenario that have the same 'USD' value

in the equivalent attribute. At a data level, their

content is equivalent, there are no differences.

However, one cannot integrate these different

systems into a single target without transformation as,

although the data looks exactly the same, it does not

mean exactly the same. In each case, the data is saying

that US Dollars is the base currency of that specific

system; in other words, it is dependent upon its

owning system.

1.5 System Independent Data

It is equally easy to find examples of system

independent data. Consider the application package

above, and assume it has a currency table with a 'USD'

row. Then the equivalent currency tables in some

other implementations are likely to have a similar

'USD' row. In normal circumstances, these two rows

are homogenous (in the data integration sense), they

'mean' the same thing. So it is likely that one could

safely simply copy the 'USD' row into the equivalent

table of other package systems without causing

problems.

1.6 The Dependence Distinction in
Software Engineering

Most mainstream work on software engineering pays

little attention to the system dependence distinction,

either using language that clearly makes no

commitment to the system or casually shifting from

one perspective to the other. For example, Pressman

(Pressman, 2005) could be taking a system

independent perspective when he suggests that a

model is constructed by asking the customers what

are “… the “things” that the application or business

process addresses”.

One MDA Guide (Object Management Group,

2003) focuses on the system and its environment,

saying the CIM “… describe[s] the situation in which

the system will be used” and “is a model of a system

that shows the system in the environment in which it

will operate, and thus it helps in presenting exactly

what the system is expected to do” (Section 3.1). In

another (see the description in Table 1) the CIM is

described in system-free terms.

There are some papers that tackle related issues;

for example, a series of papers (by some of the current

authors) where indexicality and the related theme of

epistemology in enterprise models are explicitly

discussed (Partridge, 1996), (Partridge, 2002a),

(Partridge, 2002b) and (Partridge, Mitchell and De

Cesare, 2012). This paper focusses explicitly on the

de re – de se distinction in CIM level business.

1.7 Understanding System Dependence

While it is relatively easy to identify system

dependent (and independent) data, we have not been

able to find any research that analyses and explains

this specific phenomenon in the Conceptual

Modelling literature. One obvious reason is that, from

the perspective of Conceptual Modelling, this system

dependence could be regarded as a given, as the code

is expected to run on, and so already relativized to,

the system; hence there is no need to explicitly

introduce it.

However, there has been extensive discussion of

almost the same phenomenon in the philosophy and

linguistics literature. Since Frege (Frege, 1997) and

more recently, Perry (Perry, 1979) and Lewis (Lewis,

1979) (among others) there has been significant work

done in philosophy and linguistics on formalizing

pure indexicals – ‘I’, ‘here’ and ‘now’ – also known

as de se (Latin ‘of oneself’) or the deitic centre. A

commonplace of this work is that there are cases

where the pure indexicals are essential, ones where

they cannot be completely translated into non-

indexical de re (Latin ‘about objects’) knowledge

(Perry, 1979). A standard approach, in so far as there

is one, to formalising these indexicals is to regard the

formalization as relative to a context that includes the

deitic centre.

In areas where the role of the pure indexical might

be expected to be prominent – such as pervasive

computing (where there is a focus on context-

location) and agent computing (where there are

multiple deitic centres) – a short-term pragmatic

approach is taken where the use of pure indexicals is

avoided by using non-indexical identifiers.

2 THE PHILOSOPHICAL DE SE

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

456

Philosophy and linguistics have developed a good

understanding of what differentiates the pure (de se)

indexical and (de re) non-indexical that we can

exploit for our analysis of system dependence. A

characteristic of pure (de se) indexical uses is that the

reference (and truth) of a sentence can shift from use

to use. For instance, if John and Mary both utter the

sentence ‘I am hungry’, the two utterances refer to

different things; that (in de re non-indexical terms)

‘Mary is hungry (now)’ and ‘John is hungry (now)’.

And there is no (logical) inconsistency in one of the

utterances being true and the other false. This does

not happen with non-indexical de re uses. So, for

example, the reference (and truth) of the sentence

‘Mary is hungry at time t’ does not change whoever,

wherever and whenever it is uttered - each utterance

has exactly the same content.

There is a sense in which John and Mary utter the

same ‘I am hungry’ sentence. In this paper, we will

do this by saying they have the same character;

broadly following the distinction between content and

character in (Kaplan, 1989), where the same pure (de

se) indexical utterance types have the same character,

but their content (and so truth) depends upon a

context – in this case who utters the sentence.

Whereas (de re) non-indexical sentences always have

the same content. Sentences with character (and so a

context) are clearly more complicated to integrate

properly than ones without.

2.1 The Essential (Indexical)

As the example shows, it is true that the content of

pure (de se) indexical sentences can be translated into

(de re) non-indexical sentences. But what Perry

(Perry, 1979) and others have shown is that the

translations are not complete as there is an essential

core of de se knowledge that cannot be translated. A

neat way of illustrating this is with a situation where

someone has de re knowledge of what is happening,

but has not made the link to the corresponding de se

indexed knowledge. The unexpectedness of this has

provided authors with a useful literary device. In

Chapter 3 – ‘Pooh and Piglet Go Hunting and Nearly

Catch a Woozle’ – of the children’s book Winnie-the-

Pooh (Milne, 1926), Winnie-the-Pooh follows the

tracks of what he thinks might be a Woozle, until he

realizes that he has been ‘Foolish and Deluded’ and

that the tracks are his own. In this case, it is initially

true for an observer to say ‘Winnie-the-Pooh is

following his own tracks’ but not initially for Winnie-

the-Pooh (himself) to say that ‘Winnie-the-Pooh is

following his own tracks’ – as he believes that he is

following someone else.

The examples are taken as clear evidence that one

cannot always translate de se indexical knowledge

completely into de re knowledge. As David Lewis

(Lewis, 1979) puts it, the content of de re and de se

knowledge is like a map and the untranslatable kernel

of de se indexical knowledge is like an ‘I am here’

arrow marking where one is on the map. The de re

map can be made as detailed as one wishes, but it still

will not show the de se arrow. The map tells one about

the nature of the world; the arrow tells you, in

addition, where you are in that world. If one extends

this analogy to multiple agents, then the potential for

interoperability issues becomes clear; their de se ‘I

am here’ knowledge obviously cannot be directly

passed between them, it needs to be translated.

As the various authors (rightly) claim, the mere

possibility that this can happen is sufficient to show

that de re knowledge, by itself, is unable to

encompass all de se knowledge. What is needed to

link the two types of knowledge is what Holton

(Holton, 2015) calls, breakthrough knowledge: a

piece of knowledge that enables the two types to be

connected. When Winnie-the-Pooh realizes that the

tracks are his, he acquires breakthrough knowledge

that enables him to connect the two bodies of

knowledge and integrate them.

3 DE SE KNOWLEDGE IN

ENTERPRISE SYSTEMS

Enterprise systems differ from people; not least in

that they are artefacts. Despite the difference, there is

a similar de se – de re distinction. One illustration of

this is the ease with which we can recreate a similar

example. Consider an enterprise system that takes as

input event logs and outputs an analysis of them.

Assume that, when producing the enterprise model

for this system a design choice was made to exclude

processing that checks whether the logs are for the

system doing the processing. Now consider a

situation where this system sometimes consumes its

own event logs. In this case, the system is playing the

same kind of role as Winnie-the-Pooh tracking the

Woozle. It has a reasonably complete picture of the

event logs, but does not have the breakthrough

knowledge that could link some of these to itself. The

problem is not one of principle. The designers of the

system could just have easily designed processing

that makes the link – and probably would do if there

were a requirement, such as its own event log needing

to trigger an action.

Ontology then Agentology: A Finer Grained Framework for Enterprise Modelling

457

3.1 Bank Example

We now move on to illustrating how this affects

enterprise models and to do this we need to look at a

different, more extended, example; one that takes

advantage of the artefactual nature of these systems.

The example aims to illustrate the essentiality of the

de se for (system) agency, and also the different

nature of de re and de se data, by showing how one is

directly interoperable (in the sense introduced earlier)

while the other is not. In other words, we will examine

whether the different types of data can be copied

directly from one standard package system to another

without causing an operational error.

3.1.1 A Naïve Neutral Modelling Notation

Our aim with the models used in this example is to

show the de se and de re data embedded in enterprise

systems. We want to avoid any kind of commitment

to a particular style of CIM modelling to avoid any

possibility that this implicitly makes some

assumptions. Hence we have chosen to use a simple

naïve modelling notation with minimal assumptions.

3.1.2 De Re View – No De Se Deitic Core

Figure 1 shows a de re view of the example. It shows

three banks that we assume (for simplicity) deal in

three currencies. They hold correspondent accounts

with each other to facilitate the transfer of funds; only

the US Dollar accounts are shown in the figure. For

this example, we consider just the two transactions

across these accounts shown in the figure.

In this example, we include two processes

associated with correspondent accounts:

1. The administrator of the account is responsible

for keeping a master record of the account

transactions (and its balance) and reporting any

transactions to its owner.

2. The owner of the account is responsible for

keeping a copy record of the account transactions

(and its balance) based upon transactions

reported from its administrator.

So, for example, when, as part of the first transfer,

a payment is made from Account No. 1234, its

administrator, MegaBank, is responsible for

recording this and advising its owner, GigaBank, so

they can record this.

Nowadays, banks delegate these responsibilities

to computer systems. Let us assume – as shown in

Figure 1 – that the banks in our example all use

instances of the same (notional) banking package,

Bancology (hence they are a standard scenario and so

easily illustrate direct interoperability or its lack).

This gives us enough data to recreate a similar

type of issue to that found in the earlier de se

examples. Assume that the Bancology system’s data

structures follow the de re view laid out in Figure 1.

Now consider one of the system instances –

Mega-Bancology, say. The instance has no way of

knowing who owns it and so what responsibilities it

has been delegated. What can the system do to

ascertain how to process either transaction? Given the

information at hand, it cannot work out whether it has

administration or owning responsibility for either leg

of the transfer – or neither.

3.1.3 Minimal De Se Deitic Core

Only when the system is given the additional

breakthrough self-ascription information – shown in

Figure 2 – can it work out what to do. In this case, if

the system is given the de se data that it is the

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

458

Figure 1: The de re view.

Figure 2: Breakthrough I-mapping extension.

Table 2: Perspectives on nostro-vostro and counterparty nostro.

Account MegaBank perspective GigaBank perspective NanoBank perspective

1234 Vostro (and GigaBank Counterparty

Nostro)

Nostro GigaBank Counterparty

Nostro

5678 Nostro Vostro (and MegaBank Counterparty

Nostro)

MegaBank Counterparty

Nostro

9012 Vostro (and NanoBank Counterparty

Nostro)

NanoBank Counterparty Nostro Nostro

individual (system) Mega-Bancology, then it can

infer it ‘works’ for MegaBank, where MegaBank is

an administrator or owner, and carry out the relevant

processes. The other systems would need information

with the same character, but content relative to

themselves. This recapitulates the essentiality of the

de se for agency. As an aside, this level of self-

awareness is uncommon in enterprise systems. They

tend to have data structures closer to those described

in the next section.

3.1.4 More Typical De Se View – Deitic
Neighbourhood

In practice, banks tend to classify the correspondent

accounts in their books relative to themselves (that is,

in de se mode) as either nostro (Italian for ‘ours’)

when they own the account and vostro (Italian for

‘yours’) when they administer the account. Table 2

shows this for the example’s accounts. It also shows

a related classification - counterparty nostro; this is

the nostro account of the (trading) counterparty. As

one can see, sometime this is, and sometimes is not, a

correspondent account of the bank.

Ontology then Agentology: A Finer Grained Framework for Enterprise Modelling

459

Let us now assume that the Bancology system has

been designed to use de se nostro and vostro

classifications for correspondence accounts – and

also use (non-vostro) counterparty nostros: this

involves introducing agent-relative types for these.

This is a common design choice. We illustrate this

using the Giga-Bancology instance in Figure 3.

Firstly, note this has a deitic centre “I” with its link to

GigaBank (this plays the same role as the earlier

breakthrough I-mapping in Figure 2) – often implicit

in enterprise systems or recorded on a configuration

table.

There are several differences between the de se

and de re views. The Banks type is agent-relative,

unlike the earlier de re view, and excludes the system-

owning bank. The correspondent bank accounts are

divided into more specific agent-relative types.

Nostro accounts are those correspondent accounts

where the system-owning bank is the owner. Vostro

accounts are those correspondent accounts where it is

the administrator. In this agent-relative context, there

is no absolute requirement for keeping a record in

each ‘row’ of GigaBank’s role – so the account owner

is dropped for the nostro type and the account

administrator from the vostro type – as these are

always the owner of the system. Its (non-vostro)

counterparty nostro accounts are the nostro accounts

of its counterparties, where these are not already

vostro accounts. From MegaBank’s perspective, its

Account No. 5678 is a nostro account. As MegaBank

is a counterparty of Gigabank, this account is

technically a counterparty nostro account (as shown

in Table 1), however it is excluded so that the agent-

relative types do not overlap.

This agent-relative perspective simplifies the

processing, which can be rewritten as follows:

The system is responsible for

1. Keeping a master record of the vostro account

transactions (and its balance) and reporting any

transactions to its owner.

2. Keeping a copy record of the nostro account

transactions (and its balance) based upon

transactions reported from its administrator.

Figure 3: A more typical view - Giga-Bancology.

The agents’ different responsibilities to these

accounts result in different types of information in

them. The vostro accounts contain the master record

of the transactions and balances – so the balance is

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

460

authoritative. The nostro accounts are copies of the

master records and so, while intended to be complete

(include all transactions) they are less authoritative –

they rely on good and timely information from the

administrator. Finally, the (non-vostro) counterparty

nostro accounts are not complete, as the agent will

typically not know all (or even most) of the

transactions – hence it makes no sense to even

calculate a balance.

Now we show the Mega-Bancology instance in

the same Bancology structure in Figure 4.

This, as expected, has the same character

(structure) with very different content. One obvious

example is the deitic centre, which links to GigaBank

rather than, as in Figure 3, to MegaBank. Another

interesting difference is that there are no (non-vostro)

counterparty nostro accounts in Figure 4 as

MegaBank’s counterparty nostro accounts are all

vostro accounts.

This clearly shows that the same de re data is

being viewed differently by different agents. For

example, there is literally no correspondent account

row in common in these two agent views: none of

these are classified in the same way. This illustrates

how taking a fully-fledged agent-relative view (with

agent-relative types) leads to each agent dividing up

their view of the world (correspondent accounts) in a

different way. But what is interesting here is that

though the data is different, the metadata or schema

is the same. This works in a similar way to language

indexicals. The agent-relative view encoded in the

enterprise layer of the system enables agents to build

views with the same ‘character’ (see earlier (Kaplan,

1989) definition) but different content. In enterprise

system terms, using an agent-relative view does not

hinder agents with similar views from reusing the

same view. Package software trades on this, enabling

a standard agent-relative character to be reused by

many agents. Clearly agent-neutral metadata

structures can also be reused. But, maybe less

obviously, an agent-relative character cannot be

reused for a different character.

Figure 4: Another more typical view - Mega-Bancology.

3.2 Comparing the Two ‘Models’

As already noted a few times, it is possible to translate

between some – probably most – de se and de re

(agent-relative and agent-neutral) data. The only

intractable element is the deitic centre. The two types

of model – the minimal deitic core in Figure 1 & 2

combined and the maximal deitic core in Figures 3

and 4 above – illustrate two design extremes this

translation offers. The ‘minimal deitic core’ model

has a minimal agent-neutral core - “I”. The ‘maximal

deitic core’ model is pragmatically maximal agent-

relative. Later in the paper, we will revisit these

design choices, when considering the enterprise

(model) architecture.

3.3 Direct Interoperability Test for
Agent-Relative Data

Ontology then Agentology: A Finer Grained Framework for Enterprise Modelling

461

Reuse and interoperability are usually important

design considerations in system design; semantic

reuse and interoperability are usually important

design considerations in enterprise (model) level

system design. Here we consider direct

interoperability as an instrument for distinguishing

between agent-neutral and agent-relative data within

systems (and so the equivalent enterprise models).

This shows the different interoperability

characteristics of agent-neutral and agent-relative

components of the design – which, later in the paper,

we use to motivate architectural design choices.

As we have already established that systems with

agency have necessarily agent-relative components.

These agent-relative components can be reused in a

new implementation of the system, with a different

agent, provided the character requirements are the

same – even though they lead to different content.

This reuse of the components is not compromised by

these changes in content, as it works with character.

Direct interoperability however is sensitive to content

– so it provides a good instrument for distinguishing

between agent-neutral and agent-relative data.

The direct interoperability test, in the simple

cases, takes a type from two (or more) systems with

the same data structures and merges their content.

Obviously, in more complex cases, where there are

dependencies between types, a network of types may

need to be selected and then the merge may turn out

to be less simple. However, we have mostly simple

cases here. It then loads the merged content back into

the source systems and sees whether there is any

operational difference. If there is, this indicates that

there is de se content.

4 OPEN QUESTIONS FOR

AGENTOLOGY

METHODOLOGY AND

ARCHITECTURE

A system’s enterprise concerns – and so its enterprise

model – can involve representations from both de re

and de se perspectives. When one starts regimenting

the de re perspective a natural result is an ‘ontology’

– including, at least, a list of the things that exist

(Partridge, 2002a), (Partridge, Mitchell and De

Cesare, 2012). Given that the deitic centre is an agent,

we have proposed calling its regimented perspective

an ‘agentology’.

It should be clear now that where an enterprise

system has agency (that is, when it can do something),

it will have an irreducible deitic centre and so an

underlying agentology – which can be exposed by

regimentation. During the development of the system,

if an enterprise model were produced then one would

expect it to represent this deitic centre. As the bank

example illustrates, in the deitic neighbourhood the

system could have either de se or de re types. In the

deitic outskirts, the types naturally lose any de se

character; in the example, the type ‘currencies’

illustrates this.

This brings into focus two related architectural

concerns relating to the ontology and agentology

models (which are typically not considered) –

• Inter-relationships: when the system has agency,

there is no choice but to include the agentology

in the enterprise model; how this should be done?

Should the agentology or ontology be modelled

separately or together? And if separately in what

order? More radically, if one has an agentology,

is there a need for an ontology?

• Content allocation: given that there is a range of

knowledge that can be represented using either a

de se or de re perspective; how should this choice

be made? What knowledge should be in one,

what in the other?

While we have established that an agentology is

essential for agentive systems, we have not done the

same for an ontology. One can regard the deitic

outskirts as neutral with regard to de se and de re

perspectives as they appear the same in both. If one

does, then the de se (agentology) models in the bank

example can be regarded as de re free, which suggests

that one could, at one extreme, have a pure

agentology enterprise model with no ontology.

On the other hand, for non-agentive systems, such

as pure reporting systems, there is no requirement for

de se knowledge. In these cases, the agentology

model is not required.

Given the growing scale and inter-connectedness

of enterprise systems, interoperability and reuse

(more specifically, reuse across agent-relative

characters) are influential requirements. And with

larger systems, as well as inter-system

interoperability and reuse, there is intra-system

interoperability and reuse to consider. We think these

considerations should drive a preference for a de re

approach, one that aims for a model closer to the other

extreme, where the de se perspective is minimized as

far as possible to the deitic centre - and the deitic

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

462

neighbourhood is modelled from a de re perspective.

This is not to deny that, given the range of possible

scenarios, there will be situations where a de se

maximising approach makes sense, but there would

have to be requirements that trump the need for

interoperability and reuse.

The preference for agent-neutral forms does not

always mean a binary choice. One could develop a

single agent-neutral template model and use this to

generate consistent, different agent-relative

perspectives, simplifying interoperability. There will

undoubtedly be cases similar to the three layer ANSI-

SPARC model, where the core persisted data is in de

re form and this is translated on-the-fly into a de se

perspective for presentation to the users. The bank

example illustrates how this might happen: the data

could be persisted in simple de re correspondent

accounts and translated into nostro and vostro

accounts when required for specific users.

In greenfield development, the ontology is likely

to have a wider breadth of reuse than the agent-

relative agentology. This suggests a preference for

building the ontology section of the enterprise model

first and then the agentology section. So, both in

terms of de se or de re preference and the order of

construction, there are good pragmatic reasons for an

'Ontology First', or 'Ontology then Agentology'

approach. Similar concerns apply to some types of

brownfield projects, such as legacy system

modernization.

5 FUTURE WORK

There are a couple of areas for immediate future

work. Firstly, if one accepts that the agentology

should be minimal, this raises the question of how

minimal it can be. There are several precedents to

follow. Lewis (Lewis, 1979), himself following a

suggestion of Quine, considers possible worlds

centred on a designated individual, or time-slice of an

individual to characterize the deitic ‘now’. The idea

is, as David Chalmers (Chalmers, 2006) puts it, ‘We

can think of the centre of the world as representing

the perspective of the speaker within the world’. In

(Partridge, 1996) one of the authors introduces the

system perspective and ‘dynamical’ (as their

reference shifts) ‘now’ and ‘here’ event objects. This

indicates that the deitic centre (I, here and now) is

probably a reasonable base. Though as noted above,

there may be a need to define derived de se

perspectives (such as nostro and vostro accounts) to

support user views.

Secondly, it makes sense to clearly differentiate

the two perspectives in the model, which raises the

question of the relations between the perspectives.

There seems to be a need for a kind of identity

mapping, such as that in Figure 2. What other kinds

of mappings are needed? For example, can an object

in the agentology be represented as an instance of a

type in the ontology, and if so, how does this differ

from the ontology-bound instantiation relation?

These and similar questions need to be answered to

provide a rigorous enterprise model.

6 SUMMARY AND

CONCLUSIONS

The paper aimed to bring some clarity to

requirements for de se and de re perspectives in

enterprise models. As well as clarifying what these

perspectives are – and that these two perspectives are

distinct – it has provided good reasons for thinking

that a typical (agentive) enterprise model cannot be

just a de re perspective, that it needs to include a de

se perspective as well. It has proposed good

pragmatic reasons, based upon interoperability and

reuse requirements, for an 'Ontology First', or

'Ontology then Agentology' approach both in terms of

de se or de re preference and the order of construction.

REFERENCES

Chalmers, D. (2006) 'The foundations of two-dimensional

semantics', in Manuel García-Carpintero and Josep

Macià (ed.) Two-dimensional semantics. New York:

Oxford University Press, pp. 55-140.

Frege, G. (1997) 'Thought', in Beaney, M. (ed.) The Frege

Reader. Oxford: Blackwell, pp. 325-345.

Holton, R. (2015) 'Primitive Self-Ascription: Lewis on the

De Se', in Loewer, B. and Schaffer, J. (eds.) A

Companion to David Lewis. John Wiley & Sons, pp.

399.

Kaplan, D. (1989) 'Demonstratives', in Joseph Almog, John

Perry and Howard Wettstein (eds.) Themes From

Kaplan. Oxford University Press, pp. 481-563.

Lewis, D. (1979) 'Attitudes de dicto and de se', The

philosophical review, 88(4), pp. 513-543.

Milne, A.A. (1926) Winnie-the-Pooh. London: Methuen.

Object Management Group (2014) MDA Guide rev. 2.0.

Object Management Group (2003) MDA Guide Version

1.0.1.

ORMSC (ORMSC Draft) The MDA Foundation Model.

Partridge, C. (2002a) LADSEB-CNR - Technical report

05/02 - The Role of Ontology in Integrating

Ontology then Agentology: A Finer Grained Framework for Enterprise Modelling

463

Semantically Heterogeneous Databases. Padova, Italy:

LADSEB CNR.

Partridge, C. (2002b) 'The Role of Ontology in Semantic

Integration', Second International Workshop on

Semantics of Enterprise Integration at OOPSLA 2002.

Seattle.

Partridge, C. (1996) Business Objects: Re - Engineering for

Re - Use. 1st Edition edn. Oxford: Butterworth

Heinemann.

Partridge, C., Mitchell, A. and De Cesare, S. (2012)

'Guidelines for Developing Ontological Architectures

in Modelling and Simulation', in Tolk, A. (ed.)

Ontology, Epistemology, and Teleology for Modeling

and Simulation: Philosophical Foundations for

Intelligent M&S Applications. First edn. Berlin,

Heidelberg: Springer, pp. 27-57.

Perry, J. (1979) 'The problem of the essential indexical',

Noûs, 13(1), pp. 3-21.

Pressman, R.S. (2005) Software engineering: a

practitioner's approach. Palgrave Macmillan.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

464

