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Abstract: UML modeling tools are notoriously hard to use for many reasons, including complexity of the language, 

weak support for methodologies, and insensitivity to users’ concerns. This is manifested in tools that expose 

all of their capabilities at once, overwhelming users. The problem is exacerbated when a tool supports multiple 

domain-specific languages that are defined on top of UML. In this case, the tool customizations necessary for 

each language may interfere with each other and exacerbate the complexity further. In this paper, we discuss 

an approach to reduce the complexity of UML tools by implementing and adapting the ISO 42010 standard 

on architecture description. In this approach, the notions of architecture contexts and architecture viewpoints 

allow heterogeneous UML-based languages to be independently supported and help contextualize the exposed 

tool capabilities to them. We present a case study where we defined several architecture contexts, and 

provided an implementation for them in the Papyrus modeling tool. The implementation of this novel 

approach demonstrated the ability for multiple architecture contexts to coexist without interference and 

provided significant reduction in the exposed capabilities in the UI. 

1 INTRODUCTION 

The Unified Modeling Language (UML) is a general-

purpose modeling language in the field of software 

engineering. The language was first adopted by the 

Object Management Group as a standard in 1997, and 

since then has become widely adopted. UML has an 

abstract syntax (defining its concepts) and a concrete 

syntax (graphical notation) to model different 

concerns ranging from system structure (e.g., Class 

Diagram and Composite Structure Diagram) to system 

behavioral (State Machine Diagram and Activity 

Diagram). The language is large and complex; it 

contains over 250 concepts and directly supports 14 

diagram kinds. As such, a methodology is often 

required to guide designers on creating meaningful 

and consistent models. Meanwhile, the language itself 

is kept agnostic so it can support several 

methodologies. 

Furthermore, despite being a general-purpose 

language, UML is often used as a base to define 

domain-specific modeling languages (DSMLs). This 

is made possible by leveraging UML’s profile 

extension mechanisms. A UML profile allows 

extending the language’s abstract syntax (with 

stereotypes) and/or concrete syntax (with graphical 

annotations). Many DSMLs have been defined on top 

of UML including: SysML (Edward et.al, 2007) for 

systems design, MARTE) for real-time and embedded 

design, SoaML for service-oriented architecture and 

BPMN for business process modeling (Elvesæter et al., 

2010). One or more profiles can be applied to a UML 

model at the same time to address different concerns. 

This capability is often leveraged by domain-specific 

frameworks (e.g., DoDAF, 2010) that integrate 

multiple DSMLs together. These extension 

mechanisms add to the complexity, and is a significant 

overhead that designers have to manage. 

UML enjoys a wide range of tool support, 

including open-source, commercial, educational, and 

research tools. These tools cater to designers with 

different levels of expertise (ranging from novices to 

experts) and needs (e.g., creating models to document 

a design, generating code from models, performing 

model-based testing, and creating executable models 

to simulate and analyze designs). Unfortunately, most 
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of these tools cannot hide complexity without 

compromising functionality. For example, tools 

typically expose all possible diagram kinds, along 

with their relevant concepts, relationships and 

properties in the UI. Tools do not allow filtering of 

these UI items according to a specific methodology, 

and if they did, such filtering is globally applied and 

is not contextual to the model and the underlying 

methodology. Moreover, when tools support DSMLs, 

defined with UML profiles, they typically add to the 

UI additional elements that facilitate the creation of 

DSML models. Since there are no formalisms to 

identify relevant and/or dependent elements, the UI 

becomes quickly cluttered. More importantly, many 

DSMLs require tooling customizations. When 

multiple DSMLs are applied to a model, their 

customizations may sometimes interfere with each 

other in unexpected ways. For example, one DSML 

may expect a newly created Class to have public 

visibility, while another may expect it to be private. 

Furthermore, tools that attempt to address these issues 

do not achieve this in a systematic scalable manner, 

making extensions to other DSMLs unpredictable and 

unreliable, and further complicates tool maintenance. 

The aforementioned issues are caused by two main 

underlying limitations. The first one is that a UML 

model is not characterized by a unique context, for 

which customizations can be provided. Such context 

cannot be a UML profile, since a) multiple profiles can 

be applied at once, possibly leading to customization 

interference, and b) many customizations do not 

depend on profiles at all, like ones intended to 

implement a framework (e.g., DoDAF) or methodol-

ogy. The second limitation is the lack of methods to 

control UML tool UI item visibility based on a 

methodology, user role, or user concerns. 

In this paper, we describe an approach to address 

the aforementioned limitations that can be applied to 

any UML modeling tool. Our approach is inspired by 

the ISO: 42010 Standard (IEEE et al., 2011) (Hilliard, 

2012) which specifies how architecture is described. In 

that standard, architecture description always has a 

context that can either be an architecture description 

language (ADL) or an architecture framework (AF). A 

context specifies a set of architecture viewpoints that 

define a set of allowed Model Kinds. 

We make four contributions in this paper. Our first 

contribution is interpreting and implementing the ISO 

42010 standard in the context of Model Driven 

Engineering, and in particular in the UML domain. 

This entails an Architecture metamodel, whose 

instances, i.e., architecture models, can be referenced 

by UML models to specify their context and 

viewpoints. Our second contribution is a demonstra-

tion of how architecture models can be used to mitigate 

common concerns in UML tools. One concern is the 

complexity of the UML tool’s UI. Another concern is 

the ability to extend UML architecture contexts or 

define new contexts by extending existing ones. A 

third concern is migrating UML models from one 

architecture context to another. A fourth concern is 

supporting modeling methodologies. Our third 

contribution is an implementation of the approach in 

the Papyrus tool. This implementation includes 

defining a Papyrus Architecture metamodel that 

extends the base Architecture metamodel. It also 

includes an implementation of solutions to the 

aforementioned concerns in Papyrus. Our fourth 

contribution is a case study that involves defining three 

architecture contexts (UML, Profile, SysML) in 

Papyrus. The case study demonstrated that several 

UML-based architecture contexts can coexist in the 

same tool without interfering with each other, and also 

showed that using such approach can reduce the 

complexity of the UML modeling tool’s UI. 

The rest of this paper is organized as follows: 

Section 2 provides background on the ISO 42010 

standard; a description of our Architecture metamodel 

is given in Section 3; Section 4 discusses how 

architecture models can address UML tools’ concerns; 

an implementation of the approach in Papyrus is 

described in Section 5; Section 6 presents a case study 

where several architecture contexts are defined in 

Papyrus; related works are presented in Section 7; and 

finally, Section 8 provides conclusions and outlines 

future works. 

2 BACKGROUND ON THE ISO 

42010 STANDARD 

In our attempt to search for methods to reduce the 

complexity of UML and DSML tools, we broadened 

our search to include architectural tools at large. This 

lead us to the ISO 42010 standard, which specifies the 

requirements for creating an Architecture Description 

(AD), shown in Figure 1 (left), as a product of systems 

/ software architecting. The standard provides a com-

mon vocabulary to describe architectures, and aims at 

systematizing the architecting processes. 

In a nutshell, the standard adheres to the idea that 

every system has an architecture and that AD is a 

specification of that architecture. It defines architecting 

as the “process of conceiving, defining, expressing, 

documenting, communicating, certifying proper 

implementation of, maintaining and improving an  

architecture throughout a system’s life cycle” (IEEE et 
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Figure 1: Highlighted Fragments of the ISO 42010 Standard Vocabulary on Architecture Description (AD).

al., 2011), which takes place in the context of a 

specific organization or project. The architecture of a 

system, within the context of this standard, intends to 

convey the essence of a system. The rationale for this 

rather broad definition is to capture the underlying 

common theme of various existing definitions of 

architectures.  

The standard also acknowledges that architecting a 

system, especially when it is a complex system, 

involves multiple Stakeholders that have various 

Concerns that are framed by Architecture Viewpoints 

and their referenced Model Kinds. An AD contains 

instances of those Architecture Viewpoints, called 

Architecture Views, which in turn contain instances of 

Model Kinds, called Architecture Models.  

Furthermore, the ISO 42010 standard specifies 

that an AD conforms to a meta (higher level) descript-

tion. This meta description can be an Architecture 

Description Language (ADL), shown in Figure 1 (top-

right) or an Architecture Framework (AF), shown in 

Figure 1 (bottom-right), which are two widely used 

mechanisms to describe architectures. Each mecha-

nism establishes common practices for creating, inter-

preting, analyzing and using ADs within a particular 
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Figure 2: Architecture Metamodel. 

domain of application or stakeholder community. 

ADL and AF can both contain Architectural 

Viewpoints. However, only ADL can contain Model 

Kinds, which can be referenced by any viewpoints. 

3 ARCHITECTURE 

METAMODEL 

Our first contribution is adapting the ISO 42010 

standard to the context of Model Driven Engineering. 

We achieved this by implementing the vocabulary of 

the standard as a metamodel (Figure 2). Our approach 

employs the metamodel to create architecture models 

that govern how UML and other DSML models 

represent architecture descriptions. 

All elements in an architecture model have types 

that extend ADElement in the architecture metamodel. 

This type characterizes elements by their unique id, 

name, qualified name, optional description and 

optional icon. The Architecture Domain type 

represents the root of the architecture model. This 

type, which is not explicitly defined in the standard, 

represents an application domain or a stakeholder 

community (e.g., Software Engineering, Systems 

Engineering, Automotive, Aerospace). It contains a 

set of Stakeholders (e.g., Software Engineers, Systems 

Analysts) and Concerns (e.g., Structure, Behavior, 

Parametrics). A stakeholder can have concerns from 

any domain. A domain also contains a set of 

Architecture Contexts. This new type (not in the 

standard) is an abstract supertype of both ADL and AF 

and represents the context of an Architecture 

Description (represented by a UML or a DSML 

model). A context specifies a creationCommandClass 

and (optionally) a conversionCommandClass that can 

be used by a modeling tool to create a new user model 

in, or convert an existing user model to, that context 

respectively. A context also captures the capability of 

both ADLs and AFs to contain Architecture 

Viewpoints, which reference a set of Model Kinds. An 

ADL specifies a modeling language (e.g., UML, 

SysML) by defining its abstract syntax with a 

metamodel and an optional set of UML profiles (when 

the metamodel is that of UML), and its concrete 

syntax, or notation, by a set of Model Kinds (e.g., 

diagrams and tables). An AF, on the other hand, 

specifies a modeling methodology that involves 

Model Kinds from one or more ADLs. 

Notice that a Model Kind is defined as an abstract 

metaclass in this metamodel. Instead of predefining 

possible representations, we assume that the Model 

Kind concept can be specialized to define any kind of 

representation and, as discussed later in Section 5, our 

implementation allows toolsmiths to define their own. 

Two remaining types in the architecture 

metamodel, which are Architecture Description and 

Architecture Description Preferences, are not meant to 

be instantiated within an architecture model, but rather 

within a UML or other DSML model that represent an 

architecture description. The former references an 

Architecture Context that the description conforms to, 

and is considered a characteristic of the model. The 
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latter specifies which Architecture Viewpoints are 

currently enabled in the description, and is considered 

a preference that may be stored in the description 

model, to share with all users of the model, or in a 

tool’s preference store that belongs to one user or is 

shared with a group of users. 

4 USING ARCHITECTURE 

MODELS TO ADDRESS UML 

TOOLING CONCERNS 

The architecture models that are discussed in the 

previous section allow UML models to specify their 

architecture contexts and viewpoints. This can in turn 

be leveraged by UML tools to address several 

concerns, which is another contribution in this paper. 

4.1 Modeling Tool Complexity 

One concern is the complexity of the UML tool’s UI. 

Typically, UML tools support all or most of the Model 

Kinds of UML, which include 14 diagram kinds. More 

Model Kinds can be supported for other UML-based 

DSMLs. For example, SysML supports 4 more 

diagram kinds and two table kinds. Each one of those 

Model Kinds supports many types of abstract syntax 

(AS) elements. The result is a cluttered UI to account 

for this wide range of concepts and modeling 

elements. 

One strategy that UML tools typically follow to 

reduce this clutter is a global setting in the workspace 

that controls which subset(s) of those supported 

Model Kinds and AS elements are visible. This  

 

approach is not effective since users may be dealing 

with multiple kinds of models at the same time, each 

may require different subset(s) of UI elements 

enabled. However, when UML models specify their 

architecture contexts and enabled viewpoints, a tool 

can change its UI dynamically for each model by 

limiting its options to those suitable for its context and 

viewpoints. For example, showing only SysML 

diagrams and tables that are supported by the enabled 

viewpoints of the SysML context.  

4.2 Tool Extensibility Concern 

Another tooling concern is the ability to extend UML 

architecture contexts or define new contexts by 

extending existing ones. For example, some of 

SysML’s Model Kinds (e.g., Block Definition 

Diagram and Internal Block Diagram) extend 

corresponding ones in UML (e.g., Class Diagram and 

Composite Structure Diagram), while including others 

as is (e.g., State Machine and Activity Diagram). 

Without formalisms to specify that, most UML tools 

today expose all of their supported Model Kinds. 

However, with architecture models, it is 

straightforward for an ADL or AF to define 

viewpoints that reference Model Kinds from other 

ADLs. This allows a tool to only show those Model 

Kinds that are supported by the visible viewpoints, 

while making them follow the rules of the ADL or AF 

in context. For example, the Profile AF has a 

viewpoint that includes the UML class diagram but 

restrict its elements to only classes, data types, 

associations and generalizations. 

4.3 Model Migration Across Different 
Contexts 

A third tooling concern is the need to migrate UML 

models from one architecture context to another, 

which is usually considered as a refactoring operation. 

Without knowing which architecture context a model 

belongs to or is migrating to, performing this 

refactoring becomes very tricky. However, when a 

model references an architecture context A and is 

migrating to architecture context B, the latter’s 

conversionCommandClass can be instantiated and run 

to perform the conversion to B, while taking A into 

account. For example, converting a UML model to a 

SysML model involves applying the SysML profile, 

applying the relevant SysML stereotypes to various 

UML elements (e.g., stereotyping all classes with 

SysML::Block), and deleting all non-supported 

elements (e.g., UML::Component).  

4.4 Support for Modeling 
Methodologies 

A fourth tooling concern is supporting modeling 

methodologies. As mentioned earlier, by default, 

UML tools either show all their supported capabilities 

or allow them to be filtered globally. Unfortunately, 

both approaches do not allow a tool to support a 

modeling methodology that most often revolves 

around defining Model Kinds and grouping them into 

viewpoints that address stakeholders’ concerns. With 

architecture models, a UML model can specify which 

architecture viewpoints, from the selected architecture 

context, should be enabled. These could be ones that 

frame the concerns of the current stakeholder’s role. 

For example, if the stakeholder is a systems analyst 

that has a Specifying Requirements concern, then the 

Systems Analysis viewpoint, which includes the Use 
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Case Diagram and the Requirements Diagram, would 

be visible. By switching roles or concerns, different 

viewpoints will be available and thereby, depending 

on the activated viewpoints, different Model Kinds 

can be made available. A user may also want to 

change the activation of the viewpoints manually to 

follow the steps of a methodology. 

5 IMPLEMENTATION IN THE 

PAPYRUS UML TOOL 

We provide a validating of the proposed approach by 

implementing it in the Papyrus open-source UML 

modeling tool. As depicted in Figure 3, the 

Architecture metamodel has been extended to 

introduce Papyrus-specific concepts and Papyrus’s 

Model Kinds. 

The Papyrus-specific metamodel includes an 

extension to both the ADL and the AF that make them 

reference a set of Element Type Set Configurations. 

The latter is Papyrus’s model-based mechanism 

(details of this mechanism is outside the scope of this 

paper) of configuring the editing behavior for abstract 

or concrete syntax model elements. 

By referencing these configurations from an ADL 

or an AF, one can control how UML or DSML models 

can be edited in that context. The other extension in 

the Papyrus-specific metamodel is for Model Kind. 

The Papyrus Model Kind specifies an implementation 

id of an underlying model kind (diagram kind or table 

kind) that is supported by Papyrus. For example, the 

underlying Model Kinds include the 14 UML 

diagrams. This type has two subtypes, Papyrus 

Diagram Kind and Papyrus Table Kind that specify 

how an underlying model kind is customized (the 

customization details are beyond the scope of this 

paper) in the context of an ADL or AF. For example, 

a Package Diagram can be defined as a customization 

of the standard UML Class Diagram by limiting the 

elements on the diagram to UML Packages. Notice 

that a Papyrus Model Kind can also specify another 

model kind as its parent to inherit and add to its 

customization. For example, the UML Package 

Diagram can be a parent to a new version that restricts 

the content of the packages to Classes only. 

Aside from the extended Architecture metamodel, 

we also implemented a mechanism, by which a single 

architecture domain can be defined across several 

architecture models that might be contributed by 

different extensions to Papyrus. To implement this, we 

used a composite design pattern. All the Papyrus 

tooling used the merged architecture elements from 

several architecture models. The merge required that 

single valued structural features (e.g., ADElement.id) 

have values in only one merge increment (the main 

architecture model), while multi-valued structural 

features (e.g., ArchitectureDomain. contexts) get their 

values aggregated across merge increments. 

 

Figure 3: Papyrus Architecture Metamodel. 
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6 CASE STUDY 

Our last contribution is a case study whose objectives 

are to a) show that several architecture contexts can be 

supported in the same tool (Papyrus in this case) 

without cross interference and b) that we can reduce 

the complexity of a modeling tool’s UI by dynamically 

changing the UI based on a model’s architecture con-

text and enabled viewpoints. In particular, we defined 

two architecture models: a) one with one ADL (UML) 

and one AF (Profile), and b) one with another ADL 

(SysML). Table 1 summarizes the models’ contents.  

6.1 Architecture Context Independence  

The first objective of the case study is to allow 

multiple architecture contexts (UML, SysML, Profile) 

to coexist in Papyrus without their contributions 

interfering with each other, which was a source of 

conflicts in the model editing behavior. Using the new 

approach, an architecture context is defined explicitly 

in architecture models. These contexts directly 

reference their supported model elements (using the 

Element Type Set Configurations), which makes it 

possible for Papyrus to allow exactly and only those 

elements to be used in each context, along with their 

supported editing behavior. This makes it easier to 

avoid interference, which increase the reliability of the 

tool but more importantly let tool smiths design their 

own domain specific tooling on top of Papyrus with 

no concern for potential conflicts with another 

architecture context. In fact, after the integration of 

this implementation with Papyrus code base, many 

other Papyrus ADLs and AFs were migrated to this 

new solution with reports of reduced development 

efforts.  

6.2 Reducing UI Complexity 

The second objective of the case study is to reduce the 

complexity (clutter) of the modeling tool’s UI. Much 

of this complexity is due to displaying all existing 

model contents (abstract and concrete syntax 

elements) or potential new contents that can be 

Table 1: A Summary of the Case Study Architecture Models. 

Context UML SysML Profile 

Context Kind ADL ADL AF 

Concerns 

C1: Functions 

C2: Structure 

C3: Behavior 

C4: Requirements 

C5: Parametrics 

C6: UML Profiling 

 

Stakeholders 

(Concerns) 
S1: Software Engineer (C1, C2, C3) 

S2: Systems Engineer (C1, C2, 

C3, C4, C5) 

S3: Domain Architect 

(C6) 

Model Kinds 

M1: Class Diagram 

M2: Component Diagram 

M3: Deployment Diagram 

M4: Inner Class Diagram 

M5: Package Diagram 

M6: Profile Diagram 

M7: Composite Structure Diagram 

M8: State Machine Diagram 

M9: Sequence Diagram 

M10: Activity Diagram 

M11: Communication Diagram 

M12: Interaction Overview 

Diagram 

M13: Timing Diagram 

M14: Use Case Diagram 

M15: Block Definition 

Diagram 

M16: Internal Block Diagram 

M17: Parametrics Diagram 

M18: Requirements Diagram 

M19: Requirements Table 

M20: Allocations Table 

 

Viewpoints 

(Model Kinds) 

V1: Software Analysis  

       (M1, M5, M10, M14) 

V2: Software Design 

       (M1-M5, M7-M13) 

V3: Systems Analysis  

       (M15, M5, M14, M18, 

M19) 

V4: Systems Design  

       (M15-M17, M20, M4, M5,  

        M8-M13) 

V5: Profile Definition  

       (M1, M6) 
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created. For example, the model explorer view 

typically shows all existing elements in a model. 

Similarly, the explorer provides a context menu that 

allows creating all kinds of (abstract syntax and 

concrete syntax) elements in a model. Similarly, a 

diagram or table editor has a palette and/or a context 

menu that allows creating all possible model elements. 

The property sheet view also typically displays all 

properties of the current selection. 

The way to reduce the UI complexity is to remove 

irrelevant existing elements (e.g., in the model 

explorer) or potential elements (e.g., menu actions to 

create new elements) from the UI. Traditionally, there 

is no reliable way to check for relevance, since there 

is neither explicit context nor any methodological 

preferences associated with the model. However, with 

our proposed approach, an explicit architecture 

context (ADL or AF), as well as a set of 

enabled/visible architecture viewpoints, are 

referenced by the model. As discussed in section 5, an 

architecture context in Papyrus specifies the set of 

(abstract syntax) element types that are supported. 

This can be used to automatically filter both the set of 

existing or potential elements in the model from the 

UI. Similarly, architecture viewpoints, and their 

Model Kinds, frame stakeholders’ concerns. 

Therefore, by identifying the user as one of the 

supported stakeholders, the set of existing or potential 

Model Kinds that need to be visible can be derived 

automatically. Alternatively, a user can choose the set 

of enabled viewpoints, which also allows the 

calculation of the visible Model Kinds. 

Furthermore, when we defined the set of three 

architecture contexts in the case study, we achieved 

reductions in the number of visible UI items, both 

existing and potential. Since the reduction of existing 

elements can only have statistical significance when 

measured on a set of representative UML or DSML 

user models, which we do not have now (we leave it 

to future work), we choose to report only on the 

reduction of potential elements (i.e., menu actions for 

creating new elements). Table 2 shows the number of 

menu actions for creating new abstract syntax 

elements (e.g., UML elements) and concrete syntax 

elements (i.e., diagrams and tables), both before and 

after applying our approach, as counted in the context 

menu of Papyrus’s model explorer by right clicking 

on the root package (different numbers will result 

when clicking elsewhere in the hierarchy). For all 

architecture contexts, we assume that all their 

viewpoints are enabled (further reduction is expected 

when some of those views are disabled). 

The data in Table 2 suggests that before applying 

our approach, the number of abstract syntax element 

create actions, which spanned all Packageable 

Elements in UML and SysML equaled 88. After 

applying our approach, the number is reduced by 

~23% for UML, ~14% for SysML (lost the subset of 

UML not used in SysML but gained SysML specific 

subset), and ~72% for Profile (this is not surprising 

given that only a few elements from UML are 

needed). The table also suggests that the total number 

of concrete syntax elements (Model Kinds) create 

actions before our approach was 20 (14 UML 

diagrams+4 SysML diagrams+2 SysML tables). After 

our approach, the number is reduced by 35% for 

UML, 40% for SysML, and 90% for Profile. 

Table 2: Number of New Element Actions in Model 

Explorer Before and After the New Approach. 

 UML SysML Profile 

Abstract Syntax Before 88 88 88 

Abstract Syntax After 68 76 25 

Concrete Syntax Before 20 20 20 

Concrete Syntax After 13 12 2 

7 RELATED WORKS 

Complexity of UML modeling tools is a recognized 

and persistent challenge. The emergence of domain 

specific modeling languages and architectural 

frameworks means that modern modeling tools must 

support broader set of functionalities, and expose even 

more elements to users. Petre has conducted a large-

scale study of professional software engineers in 50 

companies (Petre, 2013) and reported that modeling 

tools complexity is a key impediment. Forward and 

Lethbridge surveyed 113 software engineers to 

uncover patterns in their modeling practices (Forward 

and Lethbridge, 2008). Among their findings, the 

tools’ steep learning curve and complexity appear to 

limit the adoption of the modeling practice. Baker et 

al report on their experience with MDA for over 20 

years at Motorola (Baker et al., 2005). They state 

multiple positive findings, including improved 

software quality and reduced defects rates. However, 

they identify key deficiencies in tool support for 

different languages and model exchange issues 

between development groups using different tools. 

Surveying the MDE practices in the Embedded 

Systems domain, Liebel et al find that interoperability, 

high levels of required training, and usability to be the 

biggest shortcomings of all (Liebel et al., 2014).  

Education on modeling driven engineering in 

software engineering programs seems to also suffer 
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from the complexity of UML tools. One study reports 

that industrial-level modeling tools can be used in 

education, only if a dedicated and expert tool support 

is available (Liebel et al., 2015),a prerequisite not 

easily met at many academic institutions. In an 

investigation of MDA pedagogies at four higher-level 

institutions, students consistently reported that UML, 

and its supporting tools, are too complex, and their 

associated overhead does not justify the added value 

(Badreddin et al., 2015). 

Lightweight modeling tools have been developed 

to minimize the learning curve and reduce tool 

complexity. Examples of such tools include Umple 

and TxtUML (Forward et al, 2012) (Devai et al, 2014) 

that enable users to create models quickly using 

textual editors. Other works proposed a light version 

of UML itself (Wrycza and Marcinkowski, 2007). 

These approaches do achieve some level of 

complexity reduction, but typically at the cost of 

compromised functionality. 

Existing modeling tools may provide global 

preferences or settings to allow users to enable and 

disable modeling notations and/or features. This is the 

case in Rational Software Architect (Leroux et al., 

2006). These global sittings are not tuned to the 

specific model(s) being worked on. Other tools 

provide pre-set preferences per role. For example, for 

an analyst role, the tool may hide away specific 

modeling notations and UI elements. 

Architecture description languages and 

frameworks have emerged around the same time as 

UML. Some of the early ADLs include Rapide 

(Lukham et al., 1995), Wright (Allen and Garlen, 

1996), and Darwin (Magee et al., 1995).These early 

ADLs focused on structural concerns: large-scale 

system organization expressed in terms of 

components, connectors and configurations and had 

varying support for framing behavioral concerns. 

More recently, “wide-spectrum” ADLs have been 

developed which support a wider range of concerns. 

These include Architecture Analysis & Description 

Language (AADL) (Fieler et al., 2006), SysML 

(Huang et al., 2007), and ArchiMate (Lankhorst et al., 

2009). 

In 2000, the Computer Society approved IEEE 

Standard 1471(Maier et al.,2001), which established a 

consensus on desirable architectural description 

practices. Heescha and Hilliard have proposed a 

documentation for architecture decision that is based 

on ISO 42010 standard (Heesch et al., 2012). This 

framework focuses on four viewpoint definitions; a 

Decision Detail viewpoint, a Decision Relationship 

viewpoint, a Decision Chronology viewpoint, and a 

Decision Stakeholder Involvement viewpoint. These 

viewpoints definitions satisfy several stakeholder 

concerns related to architecture decision management. 

Hilliard also published a template that can be used by 

architects and organizations to specify architecture 

viewpoints in accordance with the ISO 42010 standard 

(Hilliard, 2012). 

8 CONCLUSION 

This paper introduces an approach for reducing the 

complexity of modeling tools by leveraging the 

concepts of architectural contexts and viewpoints. 

This approach is inspired and based on the ISO 42010 

standard, which establishes coherent practices for 

describing the architecture of large and complex 

systems. 

This paper makes four contributions; 1) 

interpreting and implementing the ISO 42010 

standard in the Model Driven Engineering domain 

through a new Architecture metamodel that reflects 

and refines the vocabulary of the standard; 2) a 

demonstration of how the approach addresses several 

modeling tools’ concerns including UI complexity, 

extensibility to other architecture contexts, model 

migration between architecture contexts, and support 

of modeling methodologies; 3) a working 

implementation of the approach in the Papyrus 

modeling tool, and 4) a case study that includes two 

architecture models that define three architecture 

contexts (UML, SysML, Profile). The case study 

demonstrates a) the proposed approach’s 

effectiveness in easing the implementation of domain 

specific tooling and improving the reliability when 

several architecture contexts are supported, and b) the 

proposed approach’s ability to reduce UI complexity 

by filtering UI items that do not suit the model’s 

context and enabled viewpoints. 

The proposed approach has the potential to 

significantly improve the usability of modeling tools 

in general. However, several limitations have been 

identified throughout the paper that we plan to address 

in future work. One of them is the effort to standardize 

the Architecture metamodel at OMG. However, we 

will first need to define the Model Kinds in a tool-

neutral way, which would open the door for better 

modeling tool interoperability, and improve the users’ 

experiences across different modeling tools. We also 

plan to investigate the limit to which we can automate 

model migration between architecture contexts with 

more declarative means. We also plan to study the 

impact of this approach on reducing the visible details 

in user models. 
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