
Reducing UML Modeling Tool Complexity with Architectural

Contexts and Viewpoints

Maged Elaasar1, Florian Noyrit2, Omar Badreddin3 and Sébastien Gérard2
1Modelware Solutions, La Canada Flintridge, CA, U.S.A.

2CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,

 Point Courrier 174, Gif-sur-Yvette, 91191, France
3CS Dept., University of Texas El Paso, El Paso, TX, U.S.A.

Keywords: ISO 42010, Architecture Description Language, Architecture Framework, UML, SysML.

Abstract: UML modeling tools are notoriously hard to use for many reasons, including complexity of the language,

weak support for methodologies, and insensitivity to users’ concerns. This is manifested in tools that expose

all of their capabilities at once, overwhelming users. The problem is exacerbated when a tool supports multiple

domain-specific languages that are defined on top of UML. In this case, the tool customizations necessary for

each language may interfere with each other and exacerbate the complexity further. In this paper, we discuss

an approach to reduce the complexity of UML tools by implementing and adapting the ISO 42010 standard

on architecture description. In this approach, the notions of architecture contexts and architecture viewpoints

allow heterogeneous UML-based languages to be independently supported and help contextualize the exposed

tool capabilities to them. We present a case study where we defined several architecture contexts, and

provided an implementation for them in the Papyrus modeling tool. The implementation of this novel

approach demonstrated the ability for multiple architecture contexts to coexist without interference and

provided significant reduction in the exposed capabilities in the UI.

1 INTRODUCTION

The Unified Modeling Language (UML) is a general-

purpose modeling language in the field of software

engineering. The language was first adopted by the

Object Management Group as a standard in 1997, and

since then has become widely adopted. UML has an

abstract syntax (defining its concepts) and a concrete

syntax (graphical notation) to model different

concerns ranging from system structure (e.g., Class

Diagram and Composite Structure Diagram) to system

behavioral (State Machine Diagram and Activity

Diagram). The language is large and complex; it

contains over 250 concepts and directly supports 14

diagram kinds. As such, a methodology is often

required to guide designers on creating meaningful

and consistent models. Meanwhile, the language itself

is kept agnostic so it can support several

methodologies.

Furthermore, despite being a general-purpose

language, UML is often used as a base to define

domain-specific modeling languages (DSMLs). This

is made possible by leveraging UML’s profile

extension mechanisms. A UML profile allows

extending the language’s abstract syntax (with

stereotypes) and/or concrete syntax (with graphical

annotations). Many DSMLs have been defined on top

of UML including: SysML (Edward et.al, 2007) for

systems design, MARTE) for real-time and embedded

design, SoaML for service-oriented architecture and

BPMN for business process modeling (Elvesæter et al.,

2010). One or more profiles can be applied to a UML

model at the same time to address different concerns.

This capability is often leveraged by domain-specific

frameworks (e.g., DoDAF, 2010) that integrate

multiple DSMLs together. These extension

mechanisms add to the complexity, and is a significant

overhead that designers have to manage.

UML enjoys a wide range of tool support,

including open-source, commercial, educational, and

research tools. These tools cater to designers with

different levels of expertise (ranging from novices to

experts) and needs (e.g., creating models to document

a design, generating code from models, performing

model-based testing, and creating executable models

to simulate and analyze designs). Unfortunately, most

Elaasar, M., Noyrit, F., Badreddin, O. and Gérard, S.
Reducing UML Modeling Tool Complexity with Architectural Contexts and Viewpoints.
DOI: 10.5220/0006597901290138
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 129-138
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

129

of these tools cannot hide complexity without

compromising functionality. For example, tools

typically expose all possible diagram kinds, along

with their relevant concepts, relationships and

properties in the UI. Tools do not allow filtering of

these UI items according to a specific methodology,

and if they did, such filtering is globally applied and

is not contextual to the model and the underlying

methodology. Moreover, when tools support DSMLs,

defined with UML profiles, they typically add to the

UI additional elements that facilitate the creation of

DSML models. Since there are no formalisms to

identify relevant and/or dependent elements, the UI

becomes quickly cluttered. More importantly, many

DSMLs require tooling customizations. When

multiple DSMLs are applied to a model, their

customizations may sometimes interfere with each

other in unexpected ways. For example, one DSML

may expect a newly created Class to have public

visibility, while another may expect it to be private.

Furthermore, tools that attempt to address these issues

do not achieve this in a systematic scalable manner,

making extensions to other DSMLs unpredictable and

unreliable, and further complicates tool maintenance.

The aforementioned issues are caused by two main

underlying limitations. The first one is that a UML

model is not characterized by a unique context, for

which customizations can be provided. Such context

cannot be a UML profile, since a) multiple profiles can

be applied at once, possibly leading to customization

interference, and b) many customizations do not

depend on profiles at all, like ones intended to

implement a framework (e.g., DoDAF) or methodol-

ogy. The second limitation is the lack of methods to

control UML tool UI item visibility based on a

methodology, user role, or user concerns.

In this paper, we describe an approach to address

the aforementioned limitations that can be applied to

any UML modeling tool. Our approach is inspired by

the ISO: 42010 Standard (IEEE et al., 2011) (Hilliard,

2012) which specifies how architecture is described. In

that standard, architecture description always has a

context that can either be an architecture description

language (ADL) or an architecture framework (AF). A

context specifies a set of architecture viewpoints that

define a set of allowed Model Kinds.

We make four contributions in this paper. Our first

contribution is interpreting and implementing the ISO

42010 standard in the context of Model Driven

Engineering, and in particular in the UML domain.

This entails an Architecture metamodel, whose

instances, i.e., architecture models, can be referenced

by UML models to specify their context and

viewpoints. Our second contribution is a demonstra-

tion of how architecture models can be used to mitigate

common concerns in UML tools. One concern is the

complexity of the UML tool’s UI. Another concern is

the ability to extend UML architecture contexts or

define new contexts by extending existing ones. A

third concern is migrating UML models from one

architecture context to another. A fourth concern is

supporting modeling methodologies. Our third

contribution is an implementation of the approach in

the Papyrus tool. This implementation includes

defining a Papyrus Architecture metamodel that

extends the base Architecture metamodel. It also

includes an implementation of solutions to the

aforementioned concerns in Papyrus. Our fourth

contribution is a case study that involves defining three

architecture contexts (UML, Profile, SysML) in

Papyrus. The case study demonstrated that several

UML-based architecture contexts can coexist in the

same tool without interfering with each other, and also

showed that using such approach can reduce the

complexity of the UML modeling tool’s UI.

The rest of this paper is organized as follows:

Section 2 provides background on the ISO 42010

standard; a description of our Architecture metamodel

is given in Section 3; Section 4 discusses how

architecture models can address UML tools’ concerns;

an implementation of the approach in Papyrus is

described in Section 5; Section 6 presents a case study

where several architecture contexts are defined in

Papyrus; related works are presented in Section 7; and

finally, Section 8 provides conclusions and outlines

future works.

2 BACKGROUND ON THE ISO

42010 STANDARD

In our attempt to search for methods to reduce the

complexity of UML and DSML tools, we broadened

our search to include architectural tools at large. This

lead us to the ISO 42010 standard, which specifies the

requirements for creating an Architecture Description

(AD), shown in Figure 1 (left), as a product of systems

/ software architecting. The standard provides a com-

mon vocabulary to describe architectures, and aims at

systematizing the architecting processes.

In a nutshell, the standard adheres to the idea that

every system has an architecture and that AD is a

specification of that architecture. It defines architecting

as the “process of conceiving, defining, expressing,

documenting, communicating, certifying proper

implementation of, maintaining and improving an

architecture throughout a system’s life cycle” (IEEE et

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

130

Figure 1: Highlighted Fragments of the ISO 42010 Standard Vocabulary on Architecture Description (AD).

al., 2011), which takes place in the context of a

specific organization or project. The architecture of a

system, within the context of this standard, intends to

convey the essence of a system. The rationale for this

rather broad definition is to capture the underlying

common theme of various existing definitions of

architectures.

The standard also acknowledges that architecting a

system, especially when it is a complex system,

involves multiple Stakeholders that have various

Concerns that are framed by Architecture Viewpoints

and their referenced Model Kinds. An AD contains

instances of those Architecture Viewpoints, called

Architecture Views, which in turn contain instances of

Model Kinds, called Architecture Models.

Furthermore, the ISO 42010 standard specifies

that an AD conforms to a meta (higher level) descript-

tion. This meta description can be an Architecture

Description Language (ADL), shown in Figure 1 (top-

right) or an Architecture Framework (AF), shown in

Figure 1 (bottom-right), which are two widely used

mechanisms to describe architectures. Each mecha-

nism establishes common practices for creating, inter-

preting, analyzing and using ADs within a particular

Reducing UML Modeling Tool Complexity with Architectural Contexts and Viewpoints

131

Figure 2: Architecture Metamodel.

domain of application or stakeholder community.

ADL and AF can both contain Architectural

Viewpoints. However, only ADL can contain Model

Kinds, which can be referenced by any viewpoints.

3 ARCHITECTURE

METAMODEL

Our first contribution is adapting the ISO 42010

standard to the context of Model Driven Engineering.

We achieved this by implementing the vocabulary of

the standard as a metamodel (Figure 2). Our approach

employs the metamodel to create architecture models

that govern how UML and other DSML models

represent architecture descriptions.

All elements in an architecture model have types

that extend ADElement in the architecture metamodel.

This type characterizes elements by their unique id,

name, qualified name, optional description and

optional icon. The Architecture Domain type

represents the root of the architecture model. This

type, which is not explicitly defined in the standard,

represents an application domain or a stakeholder

community (e.g., Software Engineering, Systems

Engineering, Automotive, Aerospace). It contains a

set of Stakeholders (e.g., Software Engineers, Systems

Analysts) and Concerns (e.g., Structure, Behavior,

Parametrics). A stakeholder can have concerns from

any domain. A domain also contains a set of

Architecture Contexts. This new type (not in the

standard) is an abstract supertype of both ADL and AF

and represents the context of an Architecture

Description (represented by a UML or a DSML

model). A context specifies a creationCommandClass

and (optionally) a conversionCommandClass that can

be used by a modeling tool to create a new user model

in, or convert an existing user model to, that context

respectively. A context also captures the capability of

both ADLs and AFs to contain Architecture

Viewpoints, which reference a set of Model Kinds. An

ADL specifies a modeling language (e.g., UML,

SysML) by defining its abstract syntax with a

metamodel and an optional set of UML profiles (when

the metamodel is that of UML), and its concrete

syntax, or notation, by a set of Model Kinds (e.g.,

diagrams and tables). An AF, on the other hand,

specifies a modeling methodology that involves

Model Kinds from one or more ADLs.

Notice that a Model Kind is defined as an abstract

metaclass in this metamodel. Instead of predefining

possible representations, we assume that the Model

Kind concept can be specialized to define any kind of

representation and, as discussed later in Section 5, our

implementation allows toolsmiths to define their own.

Two remaining types in the architecture

metamodel, which are Architecture Description and

Architecture Description Preferences, are not meant to

be instantiated within an architecture model, but rather

within a UML or other DSML model that represent an

architecture description. The former references an

Architecture Context that the description conforms to,

and is considered a characteristic of the model. The

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

132

latter specifies which Architecture Viewpoints are

currently enabled in the description, and is considered

a preference that may be stored in the description

model, to share with all users of the model, or in a

tool’s preference store that belongs to one user or is

shared with a group of users.

4 USING ARCHITECTURE

MODELS TO ADDRESS UML

TOOLING CONCERNS

The architecture models that are discussed in the

previous section allow UML models to specify their

architecture contexts and viewpoints. This can in turn

be leveraged by UML tools to address several

concerns, which is another contribution in this paper.

4.1 Modeling Tool Complexity

One concern is the complexity of the UML tool’s UI.

Typically, UML tools support all or most of the Model

Kinds of UML, which include 14 diagram kinds. More

Model Kinds can be supported for other UML-based

DSMLs. For example, SysML supports 4 more

diagram kinds and two table kinds. Each one of those

Model Kinds supports many types of abstract syntax

(AS) elements. The result is a cluttered UI to account

for this wide range of concepts and modeling

elements.

One strategy that UML tools typically follow to

reduce this clutter is a global setting in the workspace

that controls which subset(s) of those supported

Model Kinds and AS elements are visible. This

approach is not effective since users may be dealing

with multiple kinds of models at the same time, each

may require different subset(s) of UI elements

enabled. However, when UML models specify their

architecture contexts and enabled viewpoints, a tool

can change its UI dynamically for each model by

limiting its options to those suitable for its context and

viewpoints. For example, showing only SysML

diagrams and tables that are supported by the enabled

viewpoints of the SysML context.

4.2 Tool Extensibility Concern

Another tooling concern is the ability to extend UML

architecture contexts or define new contexts by

extending existing ones. For example, some of

SysML’s Model Kinds (e.g., Block Definition

Diagram and Internal Block Diagram) extend

corresponding ones in UML (e.g., Class Diagram and

Composite Structure Diagram), while including others

as is (e.g., State Machine and Activity Diagram).

Without formalisms to specify that, most UML tools

today expose all of their supported Model Kinds.

However, with architecture models, it is

straightforward for an ADL or AF to define

viewpoints that reference Model Kinds from other

ADLs. This allows a tool to only show those Model

Kinds that are supported by the visible viewpoints,

while making them follow the rules of the ADL or AF

in context. For example, the Profile AF has a

viewpoint that includes the UML class diagram but

restrict its elements to only classes, data types,

associations and generalizations.

4.3 Model Migration Across Different
Contexts

A third tooling concern is the need to migrate UML

models from one architecture context to another,

which is usually considered as a refactoring operation.

Without knowing which architecture context a model

belongs to or is migrating to, performing this

refactoring becomes very tricky. However, when a

model references an architecture context A and is

migrating to architecture context B, the latter’s

conversionCommandClass can be instantiated and run

to perform the conversion to B, while taking A into

account. For example, converting a UML model to a

SysML model involves applying the SysML profile,

applying the relevant SysML stereotypes to various

UML elements (e.g., stereotyping all classes with

SysML::Block), and deleting all non-supported

elements (e.g., UML::Component).

4.4 Support for Modeling
Methodologies

A fourth tooling concern is supporting modeling

methodologies. As mentioned earlier, by default,

UML tools either show all their supported capabilities

or allow them to be filtered globally. Unfortunately,

both approaches do not allow a tool to support a

modeling methodology that most often revolves

around defining Model Kinds and grouping them into

viewpoints that address stakeholders’ concerns. With

architecture models, a UML model can specify which

architecture viewpoints, from the selected architecture

context, should be enabled. These could be ones that

frame the concerns of the current stakeholder’s role.

For example, if the stakeholder is a systems analyst

that has a Specifying Requirements concern, then the

Systems Analysis viewpoint, which includes the Use

Reducing UML Modeling Tool Complexity with Architectural Contexts and Viewpoints

133

Case Diagram and the Requirements Diagram, would

be visible. By switching roles or concerns, different

viewpoints will be available and thereby, depending

on the activated viewpoints, different Model Kinds

can be made available. A user may also want to

change the activation of the viewpoints manually to

follow the steps of a methodology.

5 IMPLEMENTATION IN THE

PAPYRUS UML TOOL

We provide a validating of the proposed approach by

implementing it in the Papyrus open-source UML

modeling tool. As depicted in Figure 3, the

Architecture metamodel has been extended to

introduce Papyrus-specific concepts and Papyrus’s

Model Kinds.

The Papyrus-specific metamodel includes an

extension to both the ADL and the AF that make them

reference a set of Element Type Set Configurations.

The latter is Papyrus’s model-based mechanism

(details of this mechanism is outside the scope of this

paper) of configuring the editing behavior for abstract

or concrete syntax model elements.

By referencing these configurations from an ADL

or an AF, one can control how UML or DSML models

can be edited in that context. The other extension in

the Papyrus-specific metamodel is for Model Kind.

The Papyrus Model Kind specifies an implementation

id of an underlying model kind (diagram kind or table

kind) that is supported by Papyrus. For example, the

underlying Model Kinds include the 14 UML

diagrams. This type has two subtypes, Papyrus

Diagram Kind and Papyrus Table Kind that specify

how an underlying model kind is customized (the

customization details are beyond the scope of this

paper) in the context of an ADL or AF. For example,

a Package Diagram can be defined as a customization

of the standard UML Class Diagram by limiting the

elements on the diagram to UML Packages. Notice

that a Papyrus Model Kind can also specify another

model kind as its parent to inherit and add to its

customization. For example, the UML Package

Diagram can be a parent to a new version that restricts

the content of the packages to Classes only.

Aside from the extended Architecture metamodel,

we also implemented a mechanism, by which a single

architecture domain can be defined across several

architecture models that might be contributed by

different extensions to Papyrus. To implement this, we

used a composite design pattern. All the Papyrus

tooling used the merged architecture elements from

several architecture models. The merge required that

single valued structural features (e.g., ADElement.id)

have values in only one merge increment (the main

architecture model), while multi-valued structural

features (e.g., ArchitectureDomain. contexts) get their

values aggregated across merge increments.

Figure 3: Papyrus Architecture Metamodel.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

134

6 CASE STUDY

Our last contribution is a case study whose objectives

are to a) show that several architecture contexts can be

supported in the same tool (Papyrus in this case)

without cross interference and b) that we can reduce

the complexity of a modeling tool’s UI by dynamically

changing the UI based on a model’s architecture con-

text and enabled viewpoints. In particular, we defined

two architecture models: a) one with one ADL (UML)

and one AF (Profile), and b) one with another ADL

(SysML). Table 1 summarizes the models’ contents.

6.1 Architecture Context Independence

The first objective of the case study is to allow

multiple architecture contexts (UML, SysML, Profile)

to coexist in Papyrus without their contributions

interfering with each other, which was a source of

conflicts in the model editing behavior. Using the new

approach, an architecture context is defined explicitly

in architecture models. These contexts directly

reference their supported model elements (using the

Element Type Set Configurations), which makes it

possible for Papyrus to allow exactly and only those

elements to be used in each context, along with their

supported editing behavior. This makes it easier to

avoid interference, which increase the reliability of the

tool but more importantly let tool smiths design their

own domain specific tooling on top of Papyrus with

no concern for potential conflicts with another

architecture context. In fact, after the integration of

this implementation with Papyrus code base, many

other Papyrus ADLs and AFs were migrated to this

new solution with reports of reduced development

efforts.

6.2 Reducing UI Complexity

The second objective of the case study is to reduce the

complexity (clutter) of the modeling tool’s UI. Much

of this complexity is due to displaying all existing

model contents (abstract and concrete syntax

elements) or potential new contents that can be

Table 1: A Summary of the Case Study Architecture Models.

Context UML SysML Profile

Context Kind ADL ADL AF

Concerns

C1: Functions

C2: Structure

C3: Behavior

C4: Requirements

C5: Parametrics

C6: UML Profiling

Stakeholders

(Concerns)
S1: Software Engineer (C1, C2, C3)

S2: Systems Engineer (C1, C2,

C3, C4, C5)

S3: Domain Architect

(C6)

Model Kinds

M1: Class Diagram

M2: Component Diagram

M3: Deployment Diagram

M4: Inner Class Diagram

M5: Package Diagram

M6: Profile Diagram

M7: Composite Structure Diagram

M8: State Machine Diagram

M9: Sequence Diagram

M10: Activity Diagram

M11: Communication Diagram

M12: Interaction Overview

Diagram

M13: Timing Diagram

M14: Use Case Diagram

M15: Block Definition

Diagram

M16: Internal Block Diagram

M17: Parametrics Diagram

M18: Requirements Diagram

M19: Requirements Table

M20: Allocations Table

Viewpoints

(Model Kinds)

V1: Software Analysis

 (M1, M5, M10, M14)

V2: Software Design

 (M1-M5, M7-M13)

V3: Systems Analysis

 (M15, M5, M14, M18,

M19)

V4: Systems Design

 (M15-M17, M20, M4, M5,

 M8-M13)

V5: Profile Definition

 (M1, M6)

Reducing UML Modeling Tool Complexity with Architectural Contexts and Viewpoints

135

created. For example, the model explorer view

typically shows all existing elements in a model.

Similarly, the explorer provides a context menu that

allows creating all kinds of (abstract syntax and

concrete syntax) elements in a model. Similarly, a

diagram or table editor has a palette and/or a context

menu that allows creating all possible model elements.

The property sheet view also typically displays all

properties of the current selection.

The way to reduce the UI complexity is to remove

irrelevant existing elements (e.g., in the model

explorer) or potential elements (e.g., menu actions to

create new elements) from the UI. Traditionally, there

is no reliable way to check for relevance, since there

is neither explicit context nor any methodological

preferences associated with the model. However, with

our proposed approach, an explicit architecture

context (ADL or AF), as well as a set of

enabled/visible architecture viewpoints, are

referenced by the model. As discussed in section 5, an

architecture context in Papyrus specifies the set of

(abstract syntax) element types that are supported.

This can be used to automatically filter both the set of

existing or potential elements in the model from the

UI. Similarly, architecture viewpoints, and their

Model Kinds, frame stakeholders’ concerns.

Therefore, by identifying the user as one of the

supported stakeholders, the set of existing or potential

Model Kinds that need to be visible can be derived

automatically. Alternatively, a user can choose the set

of enabled viewpoints, which also allows the

calculation of the visible Model Kinds.

Furthermore, when we defined the set of three

architecture contexts in the case study, we achieved

reductions in the number of visible UI items, both

existing and potential. Since the reduction of existing

elements can only have statistical significance when

measured on a set of representative UML or DSML

user models, which we do not have now (we leave it

to future work), we choose to report only on the

reduction of potential elements (i.e., menu actions for

creating new elements). Table 2 shows the number of

menu actions for creating new abstract syntax

elements (e.g., UML elements) and concrete syntax

elements (i.e., diagrams and tables), both before and

after applying our approach, as counted in the context

menu of Papyrus’s model explorer by right clicking

on the root package (different numbers will result

when clicking elsewhere in the hierarchy). For all

architecture contexts, we assume that all their

viewpoints are enabled (further reduction is expected

when some of those views are disabled).

The data in Table 2 suggests that before applying

our approach, the number of abstract syntax element

create actions, which spanned all Packageable

Elements in UML and SysML equaled 88. After

applying our approach, the number is reduced by

~23% for UML, ~14% for SysML (lost the subset of

UML not used in SysML but gained SysML specific

subset), and ~72% for Profile (this is not surprising

given that only a few elements from UML are

needed). The table also suggests that the total number

of concrete syntax elements (Model Kinds) create

actions before our approach was 20 (14 UML

diagrams+4 SysML diagrams+2 SysML tables). After

our approach, the number is reduced by 35% for

UML, 40% for SysML, and 90% for Profile.

Table 2: Number of New Element Actions in Model

Explorer Before and After the New Approach.

 UML SysML Profile

Abstract Syntax Before 88 88 88

Abstract Syntax After 68 76 25

Concrete Syntax Before 20 20 20

Concrete Syntax After 13 12 2

7 RELATED WORKS

Complexity of UML modeling tools is a recognized

and persistent challenge. The emergence of domain

specific modeling languages and architectural

frameworks means that modern modeling tools must

support broader set of functionalities, and expose even

more elements to users. Petre has conducted a large-

scale study of professional software engineers in 50

companies (Petre, 2013) and reported that modeling

tools complexity is a key impediment. Forward and

Lethbridge surveyed 113 software engineers to

uncover patterns in their modeling practices (Forward

and Lethbridge, 2008). Among their findings, the

tools’ steep learning curve and complexity appear to

limit the adoption of the modeling practice. Baker et

al report on their experience with MDA for over 20

years at Motorola (Baker et al., 2005). They state

multiple positive findings, including improved

software quality and reduced defects rates. However,

they identify key deficiencies in tool support for

different languages and model exchange issues

between development groups using different tools.

Surveying the MDE practices in the Embedded

Systems domain, Liebel et al find that interoperability,

high levels of required training, and usability to be the

biggest shortcomings of all (Liebel et al., 2014).

Education on modeling driven engineering in

software engineering programs seems to also suffer

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

136

from the complexity of UML tools. One study reports

that industrial-level modeling tools can be used in

education, only if a dedicated and expert tool support

is available (Liebel et al., 2015),a prerequisite not

easily met at many academic institutions. In an

investigation of MDA pedagogies at four higher-level

institutions, students consistently reported that UML,

and its supporting tools, are too complex, and their

associated overhead does not justify the added value

(Badreddin et al., 2015).

Lightweight modeling tools have been developed

to minimize the learning curve and reduce tool

complexity. Examples of such tools include Umple

and TxtUML (Forward et al, 2012) (Devai et al, 2014)

that enable users to create models quickly using

textual editors. Other works proposed a light version

of UML itself (Wrycza and Marcinkowski, 2007).

These approaches do achieve some level of

complexity reduction, but typically at the cost of

compromised functionality.

Existing modeling tools may provide global

preferences or settings to allow users to enable and

disable modeling notations and/or features. This is the

case in Rational Software Architect (Leroux et al.,

2006). These global sittings are not tuned to the

specific model(s) being worked on. Other tools

provide pre-set preferences per role. For example, for

an analyst role, the tool may hide away specific

modeling notations and UI elements.

Architecture description languages and

frameworks have emerged around the same time as

UML. Some of the early ADLs include Rapide

(Lukham et al., 1995), Wright (Allen and Garlen,

1996), and Darwin (Magee et al., 1995).These early

ADLs focused on structural concerns: large-scale

system organization expressed in terms of

components, connectors and configurations and had

varying support for framing behavioral concerns.

More recently, “wide-spectrum” ADLs have been

developed which support a wider range of concerns.

These include Architecture Analysis & Description

Language (AADL) (Fieler et al., 2006), SysML

(Huang et al., 2007), and ArchiMate (Lankhorst et al.,

2009).

In 2000, the Computer Society approved IEEE

Standard 1471(Maier et al.,2001), which established a

consensus on desirable architectural description

practices. Heescha and Hilliard have proposed a

documentation for architecture decision that is based

on ISO 42010 standard (Heesch et al., 2012). This

framework focuses on four viewpoint definitions; a

Decision Detail viewpoint, a Decision Relationship

viewpoint, a Decision Chronology viewpoint, and a

Decision Stakeholder Involvement viewpoint. These

viewpoints definitions satisfy several stakeholder

concerns related to architecture decision management.

Hilliard also published a template that can be used by

architects and organizations to specify architecture

viewpoints in accordance with the ISO 42010 standard

(Hilliard, 2012).

8 CONCLUSION

This paper introduces an approach for reducing the

complexity of modeling tools by leveraging the

concepts of architectural contexts and viewpoints.

This approach is inspired and based on the ISO 42010

standard, which establishes coherent practices for

describing the architecture of large and complex

systems.

This paper makes four contributions; 1)

interpreting and implementing the ISO 42010

standard in the Model Driven Engineering domain

through a new Architecture metamodel that reflects

and refines the vocabulary of the standard; 2) a

demonstration of how the approach addresses several

modeling tools’ concerns including UI complexity,

extensibility to other architecture contexts, model

migration between architecture contexts, and support

of modeling methodologies; 3) a working

implementation of the approach in the Papyrus

modeling tool, and 4) a case study that includes two

architecture models that define three architecture

contexts (UML, SysML, Profile). The case study

demonstrates a) the proposed approach’s

effectiveness in easing the implementation of domain

specific tooling and improving the reliability when

several architecture contexts are supported, and b) the

proposed approach’s ability to reduce UI complexity

by filtering UI items that do not suit the model’s

context and enabled viewpoints.

The proposed approach has the potential to

significantly improve the usability of modeling tools

in general. However, several limitations have been

identified throughout the paper that we plan to address

in future work. One of them is the effort to standardize

the Architecture metamodel at OMG. However, we

will first need to define the Model Kinds in a tool-

neutral way, which would open the door for better

modeling tool interoperability, and improve the users’

experiences across different modeling tools. We also

plan to investigate the limit to which we can automate

model migration between architecture contexts with

more declarative means. We also plan to study the

impact of this approach on reducing the visible details

in user models.

Reducing UML Modeling Tool Complexity with Architectural Contexts and Viewpoints

137

REFERENCES

IEEE, 2008. IEEE Std 1028-2008, IEEE Standard for

Software Reviews and Audits. ISO, May 2011. Systems

and Software Engineering – Architecture Description.

ISO/IEC/IEEE 42010, pp. 1–46.

van Heesch, Uwe, Paris Avgeriou, and Rich Hilliard. "A

documentation framework for architecture decisions."

Journal of Systems and Software 85.4 (2012): 795-820.

Rich Hilliard. Architecture viewpoint template for

ISO/IEC/IEEE 42010. http://www.iso-

architecture.org/42010/templates/, June 2012.

Accessed March, 2017.

Maier, Mark W., David Emery, and Rich Hilliard.

"Software architecture: Introducing IEEE standard

1471." Computer 34.4 (2001): 107-109.

Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J.,

Bryan, D., & Mann, W. (1995). Specification and

analysis of system architecture using Rapide. IEEE

Transactions on Software Engineering, 21(4), 336-354.

Allen, R., & Garlan, D. (1996). The Wright architectural

specification language. Rapport technique CMU-CS-

96-TBD, Carnegie Mellon University, School of

Computer Science.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer,

aSpecifying Distributed Software Architectures,o Proc.

Fifth European Software Eng. Conf. (ESEC '95), Sept.

1995.

Feiler, Peter H., David P. Gluch, and John J. Hudak. The

architecture analysis & design language (AADL): An

introduction. No. CMU/SEI-2006-TN-011. Carnegie-

Mellon Univ Pittsburgh PA Software Engineering Inst,

2006.

Huang, Edward, Randeep Ramamurthy, and Leon F.

McGinnis. "System and simulation modeling using

SysML." Proceedings of the 39th conference on Winter

simulation: 40 years! The best is yet to come. IEEE

Press, 2007.

Lankhorst, Marc M., Henderik Alex Proper, and Henk

Jonkers. "The architecture of the archimate language."

Enterprise, Business-Process and Information Systems

Modeling. Springer Berlin Heidelberg, 2009. 367-380.

Petre, Marian (2013). UML in practice. In: 35th

International Conference on Software Engineering

(ICSE 2013), 18-26 May 2013, San Francisco, CA,

USA, pp. 722–731.

Forward, A., and Lethbridge, T.C. (2008) Problems and

opportunities for model-centric versus code-centric

software development: a survey of software

professionals. Models in Software Engineering

workshop (MiSE ’08) at ICSE, ACM, 27-32.

Taha, S., Radermacher, A., Gérard, S., & Dekeyser, J. L.

(2007, September). MARTE: UML-based Hardware

Design from Modelling to Simulation. In FDL (pp. 274-

279).

Elvesæter, B., Panfilenko, D., Jacobi, S., & Hahn, C. (2010,

October). Aligning business and IT models in service-

oriented architectures using BPMN and SoaML. In

Proceedings of the First International Workshop on

Model-Driven Interoperability (pp. 61-68). ACM.

Hause, Matthew. "The Unified Profile for

DoDAF/MODAF (UPDM) enabling systems of

systems on many levels." Systems Conference, 2010

4th Annual IEEE. IEEE, 2010.

Forward, A., Badreddin, O., Lethbridge, T. C., & Solano, J.

(2012). Model‐driven rapid prototyping with Umple.

Software: Practice and Experience, 42(7), 781-797.

Dévai, G., Kovács, G. F., & An, Á. (2014). Textual,

Executable, Translatable UML. In OCL@ MoDELS

(pp. 3-12).

Wrycza, S., & Marcinkowski, B. (2007). A light version of

UML 2: survey and outcomes. In Proceedings of the

2007 Computer Science and IT Education Conference

(pp. 739-749).

Leroux, Daniel, Martin Nally, and Kenneth Hussey.

"Rational Software Architect: A tool for domain-

specific modeling." IBM systems journal 45.3 (2006):

555-568.

Baker, Paul, Shiou Loh, and Frank Weil. "Model-Driven

engineering in a large industrial context—motorola

case study." International Conference on Model Driven

Engineering Languages and Systems. Springer Berlin

Heidelberg, 2005.

Liebel, Grischa, et al. "Assessing the state-of-practice of

model-based engineering in the embedded systems

domain." International Conference on Model Driven

Engineering Languages and Systems. Springer

International Publishing, 2014.

Badreddin, O.B., Sturm, A., Hamou-Lhadj, A., Lethbridge,

T., Dixon, W. and Simmons, R., 2015. The Effects of

Education on Students' Perception of Modeling in

Software Engineering. In HuFaMo@ MoDELS (pp.

39-46).

Liebel, Grischa, Rogardt Heldal, Jan-Philipp Steghöfer, and

Michel RV Chaudron. "Ready for Prime Time,-Yes,

Industrial-Grade Modelling Tools can be Used in

Education." (2015)

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

138

