
Species Categorization via MicroRNAs 
Based on 3’UTR Target Sites using Sequence Features 

Malik Yousef1, Dalit Levy1 and Jens Allmer2 
1Community Information Systems, Zefat Academic College, Zefat, 13206, Israel 

2Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands 

 

Keywords: MicroRNA, MicroRNA Target, Categorization, Sequence Features, Machine Learning. 

Abstract: Proteins define phenotypes and their dysregulation leads to diseases. Post-translational regulation of protein 

abundance can be achieved by microRNAs (miRNAs). Therefore studying this method of gene regulation is 

of high importance. MicroRNAs interact with their target messenger RNA via hybridization within a 

specialized molecular framework. Many miRNAs and their targets have been identified and they are listed 

in various databases like miRTarBase. The experimental identification of functional miRNA-mRNA pairs is 

difficult and, therefore, they are detected computationally which is complicated due to missing negative 

data. Machine learning has been used for miRNA and target detection and many features have been 

described for miRNAs and miRNA:mRNA target duplexes generally on a per species basis. However, many 

claims of cross-kingdom regulation via miRNAs have been made and, therefore, we were interested whether 

it is possible to differentiate among species based on the target sequence in the mRNA alone. Thus, we 

investigated whether miRNA targets sites within the 3’UTR can be differentiated between species based on 

k-mer features only. Target information of one species was used as positive examples and the others as 

negative ones to establish machine learning models. It was observed that few features were sufficient for 

successful categorization of mircoRNA targets to species. For example mouse versus Caenorhabditis 

elegans reached up to 97% average accuracy over 100 fold cross validation. The simplicity of the approach, 

based on just k-mers, is promising for automatic categorization systems. In the future, this approach will 

help scrutinize alleged cross-kingdom regulation via miRNAs in respect to miRNA from one species 

targeting mRNAs in another. 

1 INTRODUCTION 

Protein expression is tightly regulated on several 

levels since their dysregulation may often lead to 

disease. Two of these levels are gene regulation and 

protein stability. Another regulatory level that 

directly modulates protein abundance is post 

transcriptional regulation governed by microRNAs 

(Erson-Bensan, 2014). Mature microRNAs 

(miRNAs) interact with messenger RNAs (mRNAs) 

via hybridization which leads to modulation of the 

translation rate (Saçar and Allmer, 2013). A stretch 

of approximately 20 nucleotides incorporated in the 

RISC complex functions as the target recognition 

key. This type of post-transcriptional regulation has 

been described for many species ranging from 

viruses (Grey, 2015) to plants (Yousef, Allmer and 

Khalifa, 2016a). Known pre-miRNAs are stored in 

miRBase (Griffiths-Jones, 2010) and their targets 

can be found in TarBase (Vergoulis et al., 2012) and 

miRTarBase (Hsu et al., 2014). Currently, about 

30000 miRNAs are known but many more may exist 

(Londin et al., 2015). In respect to the targets, one 

miRNA can have many targets and an mRNA may 

be targeted by many miRNAs so that the number of 

possible interactions is very large. Human, for 

example, has less than 2,000 known pre-miRNAs 

but more than 300,000 miRNA-mRNA interactions. 

For these interactions to be detectable 

experimentally, both miRNA and mRNA need to be 

co-expressed. This feat is impossible to achieve for 

all miRNA-mRNA pairs since some may only be 

expressed under certain conditions (Saçar and 

Allmer, 2013). For this reason, computational 

detection of pre-miRNAs has become important and 

most approaches employ machine learning (Allmer, 

2014; Saçar and Allmer, 2014). Machine learning 

models have been established for many species 
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among them for metazoan (Allmer and Yousef, 

2012) and plants (Yousef, Allmer and Khalifa, 

2016a) and they depend on the parameterization of 

the folded pre-miRNA’s three dimensional structure 

(Sacar and Allmer, 2013). Many features have been 

described and we recently compared existing 

machine learning approaches and were able to show 

that an ensemble method is applicable to all species 

(Saçar Demirci, Baumbach and Allmer, 2017). This 

shows that some structural features universally 

describe miRNAs. On the other hand, sequence 

based features like k-mers and sequence motifs 

(Yousef, Allmer and Khalifa, 2016a), (Malik 

Yousef, Khalifa, et al., 2017) can be used to 

differentiate pre-miRNAs among species (Malik 

Yousef, Nigatu, et al., 2017). Selected features are, 

therefore, important when training machine learning 

classifiers to distinguish between positive (miRNAs 

or their targets) and negative examples. Generally, 

two-class classifications suffers from missing high 

quality negative examples (Khalifa et al., 2016) 

which is even worse when considering miRNA 

targets. There is no dataset holding the guarantee not 

to contain target sites for miRNAs which confounds 

their computational prediction (Hamzeiy, Allmer 

and Yousef, 2014). A viable approach to remove the 

dependency on negative data is to use one-class 

classification (Yousef, Allmer and Khalifa, 2016b). 

For the computational detection of miRNA 

targets(Peterson et al., 2014), generally the 

miRNA:mRNA duplex is considered. Some of the 

most commonly used features are seed match, 

conservation, free energy, and target site 

accessibility. For instance, NBmiRTar (Yousef et 

al., 2007) splits the duplex into two parts “seed” and 

“out-seed” and extracts a set of features from each. 

Among these features are the number of bulges, 

number of loops, and number of asymmetric loops. 

NBmiRTar also employs sequences features like k-

mers. Similarly, RFMirTarget (Mendoza et al., 

2013) extracts alignment features that are assigned 

by miRanda (Enright et al., 2003), minimum free 

energy (MFE), and structural features (Watson-

Crick matches, G:U wobble pair, gaps, mismatches). 

In this study, we avoid the problem with missing 

negative data by using positive examples from one 

species as negative examples for another species. 

Thereby, training machine learning models that can 

differentiate among targets from different species. 

Since structural features are widely applicable and 

evolutionary stable, we use k-mers which are less 

stable and allow differentiation among relatively 

closely related species (Malik Yousef, Khalifa, et al., 

2017; Malik Yousef, Nigatu, et al., 2017) which is in 

line with previous reports of fast evolution within 

vertebrate, fly, and nematode 3’UTRs (Chen and 

Rajewsky, 2006). Accordingly, this study only 

considers 3’UTR target sites. Thus, it is our aim to 

differentiate between miRNA targets sites of one 

species by using another species as negative training 

data which means that positive and negative classes 

derived from known miRNA targets sites. There 

have been accounts of cross-kingdom regulation via 

miRNAs and we were able to reject some of them 

(Bağcı and Allmer, 2016), but on the other hand 

cross-kingdom regulation may occur in tightly 

coupled systems like viruses or intracellular 

parasites and their hosts (Saçar, Bağcı and Allmer, 

2014; Saçar Demirci, Bağcı and Allmer, 2016). 

Machine learning models allowing the 

differentiation of miRNA targets among species add 

another line of evidence for the investigation of 

cross-kingdom regulation and we suggest that both 

miRNAs should fit the host species machine model 

(Malik Yousef, Nigatu, et al., 2017) as well as the 

targeting model (this study) to consider the 

regulation for experimental follow-up studies. 

2 MATERIALS AND METHODS 

2.1 Datasets 

We downloaded all microRNAs’ targets for all 

species available on miRTarbase (Release 6.0: Sept. 

15, 2015) having 500 or more targets which included 

the species Caenorhabditis elegans (Cel), Mus 

musculus (Mmu), Homo sapiens (hsa), Rattus 

norvegicus (Rno), and Bos Taurus (Bta) (Table 1). 

All data can be considered positive examples for 

application in regular machine learning. However, to 

distinguish among species one species’ positive data 

was utilized for training as positive examples while 

the other’s positive data was used as negative 

training and testing examples. 

Table 1: List of the species whose known miRNA:mRNA 

duplexes were used in this study and their amounts 

available on miRTarBase. Cleaning refers to clustering of 

reads and removing duplicates. 

Species Number of target sites 

Cel 4,029 

Mmu 54,951 

Hsa 317,542 

Rno 658 

Bta 489 
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MicroRNA target information on miRTarBase is 

presented as miRNA:mRNA duplexes (Figure 1). 

Here we only consider the lower part of the image 

which refers to the sequence within the 3’UTR. 

 

Figure 1: Example duplex structure of a miRNA and its 

target 3’UTR target site. 

The set of 3’UTR target sites were filtered according 

to sequence similarity using USEARCH (Edgar, 2010) on 

the sequences of each species and also on a per species 

basis to ensure that there is no bias due to multiple 

identical target sequences. 74 similar sequences between 

Hsa and Mmu were detected and removed. 

2.2 Parameterization 

2.2.1 K-mers and Feature Vector 

K-mers are short stretches of nucleotides of length k 

(also termed n-grams or words). Such sequence-

based features were used for ab initio pre-miRNA 

detection, before, and may also be useful for target 

prediction (Yousef, Allmer and Khalifa, 2016b). 

Formally, a 1-mer is one element of the relevant 

alphabet, here {A, U, C, G}. A 2-mer can generate 

16 different elements: AA, AC, …, UU. Higher k 

have also been used (Cakir and Allmer, 2010), but 

here we limited k to 1 ≤ k ≤ 3 leading to 84 features. 

As features k-mer frequencies were calculated from 

the target sequences divided by the k-mers in the 

sequence given by len(sequence) - k + 1.  

The feature vector thus consist of all k-mers (1 ≤ 

k ≤ 3). 

For the comparison study we have consider the 

results that we have published in previous studies 

based on k-mer and sequence motifs(M Yousef et 

al., 2017). 

2.2.2 Classification Approach 

Random Forest (RF, default settings of KNIME 

implementation were used) was used for 

classification in this study since it outperformed 

support vector machines (Vapnik, 1995), decision 

trees (DT), and Naive Bayes (NB) in preliminary 

tests. The classification approach was setup using 

the data analytics platform KNIME (Berthold et al., 

2008). Models were trained and tested using 100 

fold Monte Carlo cross validation (Xu and Liang, 

2001) and in each fold of the cross validation the 

data were split into 80% training and 20% testing. 

During random selection, negative and positive 

examples were sampled in equal amounts since we 

showed that this approach is beneficial for model 

establishment in pre-miRNA detection (Sacar and 

Allmer, 2013). For each of the 100-fold Monte Carlo 

cross validation (MCCV) the performance was 

recorded. 

2.2.3 Model Performance Evaluation 

For each established model we calculated a number 

of performance measures for the evaluation of the  
 

 

Figure 2: Average accuracy for 100-fold MCCV in respect to number of selected features of k-mer. The x-axis is in log 2 

format. 
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classifier such as sensitivity, specificity and 

accuracy according to the following formulations 

(with TP: true positive, FP: false positive, TN: true 

negative, and FN referring to false negative 

classifications):  

Sensitivity = TP / (TP + FN); (SE, Recall) 

Specificity = TN / (TN + FP); (SP) 

Precision = TP / (TP + FP); (PR) 

F-Measure = 2 (PR * SE) / (PR + SE) 

Accuracy (ACC) =  (TP + TN) /  

(TP + TN + FP + FN) 

MCC = (TP * TN –FP FN) /  

√((TP + FP)(TP + FN)(TN + FN)(TN + FP)); 

Matthews Correlation Coefficient (Matthews, 1975). 

All reported performance measures refer to the 

average of 100-fold MCCV. 

3 RESULTS AND DISCUSSION 

The random forest classifier was used to establish 

machine learned models using an 80/20 split from 

random sampled and stratified training and testing 

data during 100-fold MCCV. 

Table 2: Average performance of models trained for 

miRNA 3’UTR target site classification against one or the 

other species. Training/testing was performed with an 

80/20 split at 100-fold MCCV for k-mers and motif 

comparing to k-mers only (this study). 

 

In general we used all the 85 k-mer features but 

tested the number of features that should optimally 

be used for classification (figure 1). For many tests 

even low number of features led to relatively good 

results. As seen from Figure 1 it is possible to 

achieve similar results when using few features (1 

vs. 2) and that after using more than 5 features not 

much performance can be gained by adding further 

features. The list of top k-mer features are listed in 

Table 4 on a per experiment basis. 

The feature sets consisting of 84 k-mer features 

were then used to establish models to differentiate 

between miRNA 3’UTR target sites between species 

(Yousef, Khalifa, Acar, and Allmer, 2017)   

Table 2 indicates that distantly related species 

(Figure 3) are easier to differentiate using the trained 

models. Examples are Mmu vs Cel, Hsa vs Cel, Bta 

vs Cel, and Rno vs Cel. However, Rno vs Mmu 

which are the perhaps most closely related species 

(Figure 3) in this study achieved an unexpectedly 

high accuracy whereas Hsa vs Mmu and Rno vs Bta 

were according to expectations. We attribute the 

high accuracy when distinguishing between Rno and 

Mmu or Hsa to the comparably low number of 

available examples for Rno. 

Additionally we have tested multi-class 

classification using KNIME (Berthold et al., 2008) 

based on WEKA 3.7 (Hall et al., 2009) employing 

the one-to-one method and balancing the data set 

considering 700 examples for training and 200 for 

testing from each dataset. By combining Bta and 

Rno and Hsa and Mmu. The results are shown in 

Table 3 showing an overall accuracy of 78%. 

Table 3: multi-class classification results for Bta combined 

with Rno (Bta and Rno) and Hsa combined with Mmu 

(Hsa and Mmu). Since motifs were found to be sufficient 

in our previous work (Malik Yousef, Khalifa, et al., 2017), 

the computationally expensive motif calculations for the 

new data were not performed in this study (gray cells). 

 ACC F-

measure 

SP SE PR 

BtaandRno  0.68 0.87 0.65 0.72 

HsaandMmu  0.92 0.95 0.93 0.91 

Cel  0.73 0.84 0.76 0.71 

Overall 0.78     

According to the results in (Yousef, Khalifa, 

Acar, and Allmer, 2017) both Rno and Mmu may 

contain foreign examples in their datasets such that 
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Figure 3: Phylogenetic relationship among organisms and groups used in this study was established using phyloT 

(http://phylot.biobyte.de). Itol (http://itol2.embl.de/) was used to create this graph (Leutnic and Bork, 2011). 

Table 4: Top 15 k-mer for each experiments. The top k-mer sorted by information gain (IG) for Mmu vs. Cel. 

 

 

they 1) become different from each other and 2) do 

not fit to the general expectation. For Mmu we 

previously discovered that filtering their pre-

miRNAs by a very simple measure (RPM > 100) 

leads to a 10% increase in average model accuracy 

for pre-miRNA detection (Saçar Demirci, Baumbach 

and Allmer, 2017). It seems likely, that the effect of 

this may be even more pronounced in dependent 

datasets like miRNA targets since pre-miRNAs that 

are not likely true lead to targets which are 

impossibly true. Furthermore, each miRNA can have 

many similar but not identical target sites which may 

further increase the effect thereby strongly affecting 

classification accuracy. 

3.1 Top K-mer Features 

For each experiment we have used information gain 

(IG) in order to rank the k-mer features. The top 15 

k-mer are listed in Table 4 sorted by IG values for 

Mmu vs. Cel. It is interesting to observe that for 

distant species like Mmu and Cel high IG values can 

be achieved whereas for closely related species like 

Hsa vs. Mmu this is not possible.  

Table 5 shows the similarity between the 6 

experiments top 15 k-mer features (excluding 4 

experiments that the feature are not relevant and 

considered as random with IG value close to zero). It 

can be observed that for similar combination of 

species like Bta vs. Mmu and Hsa, respectively, 

similar features are selected. For Hsa vs. Cel and Bta 

vs. Mmu this is not the case and the similarity 

among top 15 features is much lower.  
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Table 5: Similarity of the top 15 k-mer among the 

different experiments. The similarity is the number of 

common features divided by 15. 

 

Mmu  

vs 

 Cel 

Rno  

vs 

 Mmu 

Hsa  

vs 

 Cel 

Rno  

vs  

Hsa 

Bta  

vs  

Mmu 

Bta  

vs  

Hsa 

Mmu  

vs 

 Cel 

 0.85 0.95 0.90 0.80 0.85 

Rno  

vs 

Mmu 

  0.80 0.90 0.90 0.85 

Hsa  

vs  

Cel 

   0.80 0.75 0.80 

Rno  

vs 

Hsa 

    0.80 0.90 

Bta  

vs  

Mmu 

     0.90 

4 CONCLUSIONS 

MicroRNAs are recognized as important regulatory 

agents. Their action allows fine-tuning of gene 

expression with a many to many relationship 

between miRNAs and their targets. Machine 

learning has become an important tool for miRNA 

and miRNA target detection despite missing quality 

guarantee for negative data (Allmer and Yousef, 

2012). MicroRNA targets often fall within the 

3’UTRs of known genes. The focus of this study is 

on performing species categorization employing 

only k-mer features and considering only 3’UTR 

microRNA target sites. In our previous study (M 

Yousef et al., 2017) we have shown that using k-mer 

and motif features was successful for model 

establishment considering the 3’UTR target sites 

only. Here we compare our previous approach of 

using just k-mer against motif combined with k-mer 

in order to allow for development of future 

automated systems which need easy to calculate 

features. The results show that the current approach 

is successful and in most experiments even slightly 

better. Moreover, the simplicity of the model that 

based on just-k-mers is a promising approach for 

future automatic categorization system and also 

simple for interpretation. This work is especially 

important when computationally detecting miRNAs 

since it allows to add significance to predicted 

targets which should fit the species specific model. 

In addition, we have previously shown that pre-

miRNAs can be categorized into species (Malik 

Yousef, Khalifa, et al., 2017; Malik Yousef, Nigatu, 

et al., 2017). Together, these lines of evidence can 

be used to add confidence to computationally 

detected miRNAs. Additionally, alleged cross-

kingdom regulation via miRNAs should be checked 

with this approach to avoid propagation of spurious 

results (Bağcı and Allmer, 2016). 
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