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Abstract: Today, complex logistics operations include different levels of communication and interactions. This paper 

explores the requirements of these operations and conceptualizes important key performance indicators, 

stakeholders, and different data visualizations to support the stakeholders in order to understand interactions 

between entities easier and faster. Three different levels were identified—supply chain, automated 

warehouse, and intelligent agent—to define the complex logistics operations. For each level, important 

stakeholders and performance indicators were determined. A case study was designed and described to 

exemplify the role of cyber-physical systems in complex logistics operations. Moreover, different data 

visualizations were developed as part of a dashboard to illustrate key performance indicators of different 

levels for the purpose of supporting stakeholders. This exploratory study concludes by identifying important 

data necessity for each performance indicator, suggesting ways to collect these data, and exemplifying how 

data visualization approach can be used through a dashboard design. 

1 INTRODUCTION 

Automated warehouses include different forms of 

cyber-physical systems (CPSs) (Lee and Seshia, 

2016)—such as intelligent robots and autonomous 

vehicles, which require collaborative behavior for 

effective and efficient handling and distribution of 

goods—to manage complex logistics operations. 

Even though the autonomous guided vehicles have 

been used in warehouses to move very large and 

heavy objects since the 1950s (Wurman, D’Andrea 

and Mountz, 2008), the use of CPSs in this industry 

has gained speed in recent years with the help of 

ongoing developments in control, communication, 

and computation capabilities of these systems. 

Today, CPSs have inexpensive computational power 

and wireless communication and components, which 

are making them cheaper, smaller, and more 

capable.  

While the adaptation of CPSs is increasing, the 

need to provide real-time feedback to support the 

design and control decisions of these systems is also 

arising. This research focuses on developing 

appropriate data visualizations to support 

stakeholders in their decision-making activities 

when architecting complex logistic operations, 

which includes automated warehouses and 

intelligent agents (IAs). 

It has been decided that Soar (Laird, Newell and 

Rosenbloom, 1987)  will be used as a cognitive 

architecture to explain a variety of phenomena 

related with IAs. Generally, cognitive architectures 

are producing textual data, and the data is often 

considered impractical by stakeholders who try to 

understand the behavior of the IAs. Nevertheless, 

both the architecture developers and subject matter 

experts want to learn how cognitive architectures 

work in detail (Avraamides and Ritter, 2002; 

Councill, Haynes and Ritter, 2003). One approach to 

help stakeholders understand the behavior of these 

architectures is to provide a graphical representation 

of the processes and behaviors of the agents.  

In earlier research (Gürdür, 2016), existing data 

collection methods were not developed well enough 

to be directly useful for data analytics and data 

visualization development in order to improve the 

understanding of the CPS. Therefore, this study aims 

to identify important stakeholders, who are part of 

the decision-making activities of the automated 

warehouses, in order to develop necessary data 
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collection, presentation, and interactivity methods to 

generate intuitive data visualizations for the purpose 

of increasing the understanding of important key 

performance indicators (KPIs). As part of this effort, 

this study has initiated the development of several 

data visualizations and a dashboard to measure KPIs 

and inform stakeholders about the current situation 

about the system.  

To this end, this study aims to answer the 

following research questions (RQs): 

• RQ1: What are the important KPIs for 

improving the understanding of complex 

logistics operations? 

• RQ2: Who are the important stakeholders that 

can benefit from real-time data visualizations 

and visual analytics in order to assess the 

identified KPIs? 

• RQ3: What are the possible data resources to 

be used in the development of data 

visualizations? 

• RQ4: Which data visualization technique(s) 

should be used to support decision-making 

activities of these stakeholders? 

These exploratory questions are answered by 

different research methods, which we will detail in 

Section 3. The expert opinion technique and semi-

structured interviews were used to answer RQ1 and 

RQ2. Moreover, an example case study has been 

designed and described, and sample dashboard was 

developed to answer RQ3 and RQ4. 

In Section 2, the earlier studies on automated 

warehouse systems will be explained, and the 

background information about chosen cognitive 

architecture will be described. Secondly, the 

research approach and the methodology will be 

explained in Section 3. Then, the case study will be 

described in Section 4 in order to demonstrate the 

data visualization needed to improve the 

understanding of complex logistics operations. This 

section identifies the KPIs and stakeholders, and 

presents the data visualization dashboard to 

accomplish better understanding of the system. 

Afterward, the findings of the case study will be 

discussed in Section 5. Section 6 summarizes related 

work, and finally, Section 7 will recapitulate the 

findings of the research to conclude the study, in 

addition to presenting the areas where future efforts 

will be devoted. 

2 BACKGROUND 

Logistics or supply chain management is “the 

process of planning, implementing, and controlling 

the efficient, cost-effective flow and storage of raw 

materials, in-process inventory, finished gods, and 

related information flow from point-of-origin to 

point-of-consumption for the purpose of conforming 

to customer requirements” (Management, 1986). 

Automated warehouses play an important role in 

today’s supply chains, and they consist of a 

combination of computer-controlled systems that 

automatically handle, store, and retrieve products 

with great speed and accuracy. Some parts of these 

warehouses are also called automated storage and 

retrieval systems (AS/RSs). They offer the 

advantages of improved inventory control and cost-

effective utilization of time, space, and equipment 

(Hur et al., 2004; Manzini, Gamberi and Regattieri, 

2006). They can be considered as CPSs since they 

are equipped with motors, sensors, actuators, 

controllers, and the ability to communicate with 

other systems (Basile, Chiacchio and Coppola, 

2016).  

It is necessary to address the design and control 

decisions of these systems to fully take advantage of 

all the opportunities they offer. For this reason, 

several studies are included that examine the 

AS/RSs from different perspectives. Roodbergen 

and Vis (Roodbergen and Vis, 2009) published an 

extensive literature review that examines the current 

state of the art in AS/RSs. In this study, the authors 

summarized the issues, such as system 

configuration, travel time estimation, storage 

assignment, dwell-point location, and request 

sequencing. After discussing the reviewed papers, 

the paper addresses the individual control policies 

for storage assignment, batching, parking of idle 

AS/RSs, and sequencing. The authors also 

commented that the majority of the literature 

addressed the design and control problems in static 

environments. Moreover, the authors underlined that 

today customer demands, order quantities, and 

delivery schedules are rapidly changing, and the 

competition is constantly increasing; hence, more 

flexible approach is needed.  

The literature review (Roodbergen and Vis, 

2009) identified that only one or two decision 

problems are addressed simultaneously, instead of 

combining different problems and developing an 

overall optimization solution. Certainly, it is a 

difficult task to include a multitude of design and 

control aspects of the system for an overall 

optimization. However, it is vital to understand the 

system as a whole rather than focusing on only one 

decision problem. Furthermore, the existing 

literature mainly concentrated on the relationship 

between AS/RSs; little effort was spent on 
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understanding the relationship between AS/RSs and 

other systems in production and distribution 

facilities. 

The literature review (Roodbergen and Vis, 

2009) concluded by highlighting the need “to move 

towards developing models, algorithms, and 

heuristics that include the dynamic and stochastic 

aspects of current business. In this context, one can 

think of self-adaptive storage assignment methods, 

online-batching policies and dynamic dwell-point 

rules. Also, algorithms for physical design may need 

to focus more on the robustness of the design than 

on perfect optimality to ensure that the system will 

be capable of remaining efficient in yet unknown 

future situations.” One way to fulfill the need that 

has been identified by the authors (Roodbergen and 

Vis, 2009) is to implement intelligent automated 

warehouses. These intelligent warehouses can 

examine the relationships between CPSs such as 

autonomous vehicles, AS/RSs, conveyor systems, 

cooperative robots, and humans. Moreover, it is 

possible to develop analytic support within 

intelligent automated warehouses that aids 

stakeholders in their decision-making activities. 

One way to construct an intelligent warehouse is 

to use cognitive architectures that adapt the tools 

from computational psychology. Newell (Newell, 

1987) proposed the development of cognitive 

architectures that provide fixed computational 

structures that form the building blocks for creating 

an intelligent system. 

A cognitive architecture is a task-independent 

infrastructure that brings an agent’s knowledge to be 

concerned with a problem in order to produce a 

behavior other than a single algorithm or method for 

solving a problem (Laird, 2012). Cognitive 

architectures are the most well-known approaches to 

improve the intelligence and autonomy of robots. 

There are different architectures that focus of 

modelling different aspects of cognition at different 

levels of abstraction (Ernst and Newell, 1969; 

Georgeff and Lansky, 1986; Laird, Newell and 

Rosenbloom, 1987; Anderson, 1996; Freed, Shafto 

and Remington, 1999; Just, Carpenter and Varma, 

1999; Cassimatis, 2006; Franklin and Patterson, 

2006).  

Soar (Laird, Newell and Rosenbloom, 1987) is 

one of these architectures that possesses several 

capabilities, making it a promising candidate for use 

in autonomous and cooperative robots. Some of 

these capabilities include the following: 

• simple communication between the 

architecture and environment through many 

sensors and motors; 

• a mix of reactive and deliberative behaviors; 

• definition of a learning mechanism; and 

• the ability to collaborate with other agents or 

software systems (Long et al., 2007). 

In particular, Soar architecture provides the 

ability to use a wide variety of types and levels of 

knowledge for problem solving. It has been used to 

develop agents that use several methods for tasks 

such as reasoning, algorithm design, robotic control, 

simulating pilot behaviors, and so on. 

3 RESEARCH DESIGN 

This study has been designed to answer the three 

exploratory research questions mentioned in Section 

1. The expert opinion technique (Clayton, 1997) was 

used to assist in the preliminary problem 

identification phase. This technique aims to gather 

opinions of experts in clarifying the issues relevant 

to a particular topic. 

Several meetings have been conducted with 

researchers at Ericsson who extensively work on the 

cognitive architectures, intelligent agents, and 

complex logistics operations. For the purpose of 

identifying significant stakeholders and key factors, 

semi-structured interviews (SSIs) (Drever, 1995) 

were used as a qualitative inquiry method. SSIs are 

designed to collect subjective responses from 

interviewees regarding a particular situation or 

phenomenon they have experienced (Drever, 1995). 

They can be used when there is sufficient objective 

knowledge about an experience but the subjective 

knowledge is lacking (Richards and Morse, 2012). 

In this research, the subjective knowledge of the 

experts plays a big role in identifying relevant KPIs 

and stakeholders, and eventually affects the design 

of the data visualizations and the dashboard. The 

interview questions were used to collect responses of 

each participant and constitute the structure of the 

SSI. These questions aimed to understand the 

architecture of the system, to identify the important 

people and positions, and to extract the needs of 

each for the purpose of developing data 

visualizations. 

Finally, an exploratory case study method (Fidel, 

1984) was used to assist the development of the 

dashboard according to the needs that identified by 

expert interviews. This method is especially useful 

to investigate complex real-world issues, such as 

those involving humans and their interactions with 

technology. The exploratory (or pilot) case studies 

are condensed case studies that can be used before 

implementing a large-scale investigation or solution. 
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Their basic function is to help identify questions and 

select types of measurement prior to the main 

investigation. Hence, the case study method is an 

ideal methodology for this particular study, where a 

holistic investigation is needed (Feagin, Orum and 

Sjoberg, 1991; Shneiderman and Plaisant, 2006).  

4 CASE STUDY 

This section first describes the case study and the 

overall architecture/structure of an automated 

warehouse. Section 4.1 focuses on the identification 

of primary KPIs and stakeholders to answer RQ1 

and RQ2. Then, the possible data visualization 

techniques are exemplified and discussed in Section 

4.2 to answer RQ3 and RQ4. 

4.1 Identifying KPIs and Stakeholders 

In this case study, an automated warehouse and a 

supply chain were simulated to explore multi-

objective computational intelligence approaches and 

autonomous robotics for managing complex logistics 

operations (Azevedo et al., 2016).  

The case study includes three distinct levels to 

describe the whole logistics operations. Level 1 

describes a typical supply chain that has components 

such as suppliers, retailers, and an automated 

warehouse. Level 2 focuses on the automated 

warehouse component and includes different types 

of CPSs that work autonomously to fulfill the 

inventory replenishment, storage, and delivery 

requests, in addition to humans. Level 3 zooms in on 

CPSs, specifically to the intelligence of CPSs. This 

level illustrates intelligent agents’ knowledge with 

Soar architecture. In the following subsections, we 

will describe the different KPIs, stakeholders, and 

the challenges for each of the three levels of this 

automated warehouse architecture. 

 Level 1: Supply Chain (SC) Level  

The supply chain (SC) level consists of an 

automated warehouse, trucks, retailers, and 

suppliers, as shown in Figure 1. At this level, several 

predictive algorithms are needed to execute an 

optimum plan for the most profitable option. A 

simulation was developed to analyze how an 

intelligent, automated vendor-managed inventory 

method allows for efficient real-time integration of 

warehouse operations with multi-retailer inventory 

replenishment tasks (Azevedo et al., 2016). V-REP 

software was used for this purpose, where a robot  
   

 

Figure 1: Overview of supply chain level. 

simulator generates instructions by a multi-objective 

evolutionary algorithm running in real-time, aiming 

to simultaneously maximize profit and minimize 

shortage and surplus risks while deciding on-the-fly 

which and how many products should be delivered 

to which retailers and when. 

The essential stakeholders of this level were 

identified as warehouse manager, supply chain 

manager, and truck driver. At this level, we 

identified profitability, risk, and sustainability as 

important KPIs by conducting SSI, as discussed in 

Section 3. Profitability metric refers to the degree to 

which a business or activity yields profit or financial 

gain. The risk is associated with the excess supply, a 

situation in which the quantity of a good or service 

supplied is more than the quantity demanded, and 

the price is above the equilibrium level determined 

by supply and demand (Sullivan and Sheffrin, 2003). 

Sustainability metric is related to the characteristics 

of the route that trucks take to/from suppliers, 

retailers such as distance, traffic congestion 

situation, and so on.  

 Level 2: Warehouse (W) Level 

The warehouse (W) level is concerned with the 

interactions between IAs, where many IAs are 

communicating with each other and parameters such 

as performance, safety, and sustainability are the 

focus. Possible shortest path, which is doable with 

the current battery level, and the most efficient way 

to complete the task without any collision, are two 

relevant examples. 

Figure 2 illustrates the overview of the 

warehouse level, where AS/RSs, robotics arms, 

autonomous robots, cameras, conveyor belts, and 

humans work together to accomplish tasks related to 

the warehouse. The warehouse manager, system 

engineer and warehouse staff are stakeholders who 

should be able to see KPIs to support their decision-

making processes. Furthermore, knowledge 

reusability, safety, interoperability, performance, 

and sustainability are important KPIs that need to be 

considered. 
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Figure 2: Overview of Warehouse Level. 

 Level 3: Intelligent Agent (IA) Level 

The intelligent agent (IA) level is compliant with the 

Soar architecture (see Figure 3) and, therefore, 

consists of a framework for representing tasks and 

subtasks, long-term memory (LTM), working 

memory (WM), and related mechanism for 

generating goals, as well as mechanism for learning 

(Steinman, Lammers and Valinski, 2009). The LTM 

is knowledge available at the agent’s inner 

“database.” It is composed of rules, facts (semantic 

knowledge), and episodes the agent has experienced 

in the past (or had them input by a designer) and that 

can be retrieved when necessary. WM, on the other 

hand, holds only what is necessary for dealing with 

the current situation. It is composed of rules being 

used at the moment and of facts about the agent’s 

current environment. It also contains perceptual 

information coming from sensors and motor 

instructions that are sent to actuators. 

 

Figure 3: Overview of Soar9 (Laird, 2012). 

Experts and intelligence developers are the main 

stakeholders who need to understand important KPIs 

for improving the IAs. The KPIs at this level were 

identified as performance and knowledge 

reusability. 

 

4.2 Data Visualizations 

Once we identified the stakeholders and their 

specific KPIs, we designed an interactive dashboard 

to visualize each of the KPIs for their relevant 

stakeholders. The dashboard is structured into three 

main tabs associated with each of the three levels 

that have been defined in earlier sections. The top 

panel lists these three levels. 

 Dashboard View 1: Supply Chain 
Level 

As will be detailed in this section, KPIs 

(performance, knowledge reusability, 

interoperability, safety, profitability, and risk) are 

visualized in the tabs by different visualization 

techniques and metrics that were found to be most 

suitable. The dashboard design accommodates 

different stakeholders’ needs. Each stakeholder can 

use one or more tabs to focus on different KPIs 

according to their need and can navigate through the 

dashboard to reach detailed analysis for specific 

KPIs. Moreover, all information is interactively 

presented on the dashboard, where stakeholders can 

hover or click on a visualization element and see 

more information about a particular KPI. KPIs can 

be selected to be included in the multi-objective 

optimization of the end-to-end supply chain process.  

Figure 4 shows the dashboard design for the 

supply chain level. The essential information this 

level is summarized in the bottom part of the 

dashboard. The dashboard was constructed using a 

simple and clear design to easily represent the 

information. For instance, the capacity of each 

retailer and the warehouse is visualized as donut 

charts. One can see the average value of these KPIs 

according to week, month, or year ranges. Three 

trucks and their work processes are visualized below 

the donut charts. Stakeholders can click on the truck 

and can list the details about the truck on the middle 

panel. Important factors listed there include the 

name of the truck, route direction information, 

percentage of the completed work, sustainability 

metric percentage and the relationship with the 

average sustainability percentage, time spend to 

complete work, and time necessary to reach the 

warehouse for next shipment. On the left bottom of 

the dashboard, the profitability and risk metrics are 

shown as a density plot. This information will be 

updated in real time. Finally, on the right panel, all 

relevant stakeholders are listed, including their 

profile and contact information. It is also possible to 

provide notification mechanisms through the 
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Figure 4: Dashboard design for the supply chain level, where Truck 1 is in focus for the details. 

dashboard in order to inform other stakeholders for a 

specific situation. 

 Dashboard View 2: Warehouse Level 

Figure 5 is the view of the automated warehouse 

dashboard. In the warehouse level, the main focus is 

the robots, AS/RSs, and metrics related to these 

systems. One of the important KPIs mentioned in the 

earlier section is the performance. The performance 

of each AS/RS is illustrated with the stacked bar 

chart, where each color represents different ASs/RSs 

over a period of working hours. It is also possible to 

visualize data over a week, month, or a year to see 

the average performance KPI of each AS/RS. The 

user can hover on the bar chart to learn the exact 

number of packages picked and placed by a 

particular AS/RS. 

Moreover, the autonomous robot status is illustrated 

in real time by a dot map. The location of each robot 

is shown in this dot map visualization. The re-

charging area and location of the conveyor belts are 

also included in this map in order to observe the 

behavior of robots. A user can learn more about a 

particular robot by clicking on a dot. When a robot is 

selected, an arrow illustrates the direction of the 

movement. Furthermore, the middle panel is 

designed to list important information related to the 

selected robot. For this example, this information 

includes the name of the robot, direction of the 

movement, battery status, safety status, performance 

and its relationship with the average performance, 

activity time of the robot and its relationship with 

the average activity, and expected time of the 

recharging to return back to the warehouse floor. 

Users can check the current situation of any other 

CPSs by clicking on their representation (label or 

element of visualization) to update the information 

in the middle panel. On the left bottom of the 

dashboard, the energy consumption status of each 

robotic arm is summarized. The donut chart 

visualization technique is used to show this 

information. The energy consumption metrics are 

important to calculate the sustainability KPI of a 

task or the warehouse as a bigger system. 
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Figure 5: Dashboard design for the warehouse level, where Autonomous Robot 1 and AS/RS1 are in focus for the details. 

 Dashboard View 3: Intelligent Agent 
Level 

The last dashboard design is illustrated in Figure 6. 

In this dashboard, the intelligent agent level is 

represented to inform stakeholders such as 

intelligence developer(s) and systems engineer. In 

this design, similar to the earlier Figures 4 and 5, the 

stakeholders are listed on the right panel. In the 

middle information panel, KPIs related to a single 

intelligent agent (IA 2) are summarized. This 

information includes the name of the agent, the task 

it is working on, memory usage, performance and its 

relationship with the average performance, and time 

for the task and its relationship with the average. 

On the left side of the dashboard, a combination 

of a sunburst diagram and a chord diagram is used to 

visualize the active IAs and the interactions between 

them. The order of the sunburst diagram starts with 

the inner ring, where the IAs are illustrated with 

different colors. Then, the larger ring shows the 

active tasks for each IA. The last two outer rings 

illustrate the working memory and long-term 

memory, respectively. The viewer of the dashboard 

can get information about a specific slice or chord 

by hovering over it. Moreover, the viewer can view 

detailed information by clicking on any agent and 

making the middle information panel active for that 

specific agent. 

It is important to know the amount of pre-defined or 

acquired knowledge for a specific agent, speed of 

gaining new knowledge, and amount of knowledge 

used between IAs.  Moreover, in case an  agent  does 

not have knowledge in memory, a stakeholder needs 

to know the amount of time and energy needed for a 

search of information. Such KPIs can help identify 

the quantity of gained useful knowledge that should 

be shared between robots, or identify useless 

knowledge that should be forgotten. For this reason, 

a node link diagram illustrates the information 

interactions between the selected IA and other IAs. 

This visualization shows the useful knowledge that 

has been used and shared with other IAs and the 

relationships associated with it. 
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Figure 6: Dashboard design for the intelligent agent level, where Intelligent Agent 2 is in focus for the details. 

4.3 Data Measurement 

At the end of the case study, a dashboard was 

designed to visualize important KPIs about the three 

different levels: (1) supply chain, (2) automated 

warehouse, and (3) the intelligent agent. This 

dashboard design was developed according to expert 

opinions for the purpose of improving the 

understanding of interoperability, knowledge 

reusability, sustainability, profitability, risk, and 

safety of the system.  

The input data for each KPI needs to be well-

structured so that one can easily develop a 

dashboard that responds to a real-time stream of 

input data connected to an intelligent automated 

warehouse. One of the aims of this study was to 

generate necessary data collection methods. To this 

end, the KPIs and data needed to actualize the KPIs 

are listed below: 

Interoperability: To visualize the 

interoperability KPI, one needs information about 

the interactions between entities. In the dashboard 

design, interoperability is visualized on the IA tab 

where the communications between intelligent 

agents are represented in the chord diagram. To be 

able to generate this visualization, data about the 

interactions between the robots needs to be logged. 

For instance, whenever a CPS encounters another 

CPS, the interaction should be saved by stating the 

names of the IAs, their actions, duration of the 

interaction, and so on. Moreover, this data should 

also include time stamps, so it can be tracked on 

time. Categorization of the interactions according to 

different actions can give information to the user 

about which type of actions requires better 

interoperability, and then the stakeholder can make 

prioritization decisions on these actions. To collect 

this useful data one can use sensors on/around the 

robots and other CPSs and/or network data. 

Sustainability: The sustainability KPI is 

visualized on different levels to inform the user 

about the energy consumption situation of the 

system. Any data related to power, energy, and 

battery life needs to be saved for this purpose. More 

details about the truck, route distance, and fuel 
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consumption can give a more holistic view about the 

whole supply chain sustainability.  

Knowledge Reusability: The development 

process of knowledge is visualized on the IA level. 

The Soar architecture includes an epidemic memory 

as a record of an agent’s stream of experiences. Each 

chunk of knowledge inside the agent’s WM could 

have a “level of reusability” attached to it. The 

aggregation of all these values across all agents can 

be used to calculate/measure the knowledge 

reusability KPI. One can include initial set of 

knowledge components such as goals, milestones, 

self-knowledge, and other agents (Taylor et al., 

2002) for further analysis. 

Performance: The performance KPI is very 

much related to time. Log files about each CPS’s 

task should be collected for this purpose. Time-

stamped data related to the goal, process, and details 

about each robot’s name, position, battery situation 

are needed to generate the visualization(s). 

Safety: Safety-level-related data could be 

acquired by a set of sensors located inside the 

warehouse. These sensors can detect human 

existence and change the level of safety for specific 

robots, distribute this information through the 

network, and use different notifications to inform 

both CPSs and humans. However, more detailed 

safety requirements are needed to understand the 

safety-related measures. For example, in case of a 

human-robot interaction, one should consider 

movements of the robots that can cause hazards to 

humans surrounding them. To prevent accidents, it is 

necessary to identify dangerous or potentially 

harmful movements. This is especially difficult in 

cases where autonomous robots are included since 

such robots share the warehouse space with humans 

instead of having dedicated spaces. During the case 

study, we identified safety as an important KPI to 

consider, but did not develop any visualizations or 

specific data needs for its assessment. We have 

listed this KPI among others since it is crucial to 

consider. Further work on understanding existing 

safety standards, such as ISO: ISO/TS 15066 

(International Organization for Standardization, 

2016), and on identifying cases where humans will 

be present in an autonomous warehouse is essential 

to extract the data needs for the safety KPI. Safety 

and necessary data to observe safety will be detailed 

in future studies. 

Risk: This is shortage risk, or the risk of not 

being able to deliver the expected products in due 

time according to plan. To calculate the risk KPI, 

inventory levels and customer ordering events needs 

to be known. With this, expected consumption is 

estimated and fed into a model, which relies on a 

Poisson distribution to estimate shortage risk. 

Profitability: In order to calculate profit, one 

needs the measured "revenue," "inventory cost," and 

"transportation costs" of the whole cycle. We also 

need the "missed revenue," which is calculated from 

the expected revenue, based on how many sales 

would be lost if there were shortages of specific 

products. 

5 DISCUSSION 

This study showed that it is vital to identify 

important KPIs and the need of data as a preliminary 

stage of the project to be able to assess them before 

designing and implementing the system. Moreover, 

the case study illustrated how one can use these 

KPIs with different data visualization techniques in 

order to develop dashboards. 

Another aim of the study was to understand 

required methods for designing an intelligent 

complex logistics operations system. Choosing a 

cognitive architecture for modeling intelligent agents 

in our scenarios was motivated by a number of 

factors. Decision-making in a cognitive architecture 

happens similar to how it happens in the human 

mind, albeit at a higher abstract level. Thus, 

extracting an explanation from the agent for why it 

made a particular decision is more straightforward. 

This AI capability, of providing explanations for its 

decisions, has been gaining much importance in the 

design of current and future autonomous systems 

(Goodman and Flaxman, 2016). 

In addition, cognitive architectures tend to 

provide a framework for developing very general 

agents, which ought to be applicable to many 

different domains. Generic software that can be 

applied to many domains with little extra 

engineering needed tend to lower time to market and 

reduce costs. 

Despite the exploratory nature of this study, we 

endeavored to validate the findings by different 

methods. Using expert opinion at this preliminary 

stage of the research is a fast and comprehensive 

way to structure the concept and to identify the 

needs. In the future, we plan to employ user 

experience methodologies, where specialized 

research tools can capture the participant behaviors 

and attitudes when going through some scenarios. 

This kind of formal laboratory user studies can 

provide more details about the usage of the 

dashboard and help to draw clear conclusions. 

However, designing and running controlled 
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experiments requires substantial time and resources. 

Formal laboratory user studies might even be 

inappropriate during an exploratory phase of 

research when clear objectives and variables might 

not yet be defined (Tory and Möller, 2005). Tory 

and Möller (Tory and Möller, 2005) summarize this 

as “formal laboratory user studies often focus on 

perceptual or simple cognitive tasks. High-level 

cognitive tasks (for example, thinking, deciding, and 

exploring ideas) are important activities, yet 

performance of these tasks is difficult to measure 

objectively and quantitatively.” 

6 RELATED WORK 

Several graphical displays have been developed for 

cognitive models. Even though it is not common to 

have a graphical display for every model, there are 

models that come with graphical displays, and these 

displays are used to explain the models. Some 

relevant graphical displays are summarized below to 

highlight their capabilities and how this particular 

study differs from them: 

• APEX (Freed, Shafto and Remington, 1999) 

modelling framework is a tool that 

automatically generates pictorial 

representations of the actions associated with 

the models and their dependencies. It uses 

pert charts for a critical path analysis for the 

analysis of total task time. 

• The Developmental Soar Interface (DSI) was 

created to support model creation, debugging, 

and presentations for Soar architecture. It 

provides the ability to understand and 

manipulate process models built within Soar. 

• The Tcl/Tk Soar Interface (TSI) (Ritter, Jones 

and Baxter, 1998) provides multiple views of 

the working memory and decision processes 

of a Soar agent, including a semi-graphical 

trace of the goal stack and the operators in a 

Soar model. 

• The Situational Awareness Panel (SAP) 

(Jones, 1999) provides a number of views of a 

synthetic agent. These views are updated 

continuously during the lifetime of the agent 

and aim to support users to inspect the 

reasoning processes of the agents. 

• The Visualization Toolkit for Agents 

(VISTA) (Taylor et al., 2002) provides insight 

into an agent's internal reasoning processes. 

VISTA allows agent developers, subject-

matter experts, and other stakeholders to 

verify the correctness of an agent's behavior 

without requiring technical details of the 

implementation. It uses Gantt and pert charts. 

• The Categorical Data Display (CaDaDis) is an 

extension to VISTA. It offers pert charts to 

show tasks by category, nonstandard pert 

charts that show the temporal dependencies, 

and Gantt charts that help show occurrences 

of agent events along a time line 

In this paper, data visualization and visual 

analytics techniques, rather than pictorial or 

graphical displays, were exercised to visualize the 

important KPIs in order to improve the 

understanding of intelligent agents and support 

stakeholders in their decision-making processes. 

Unlike in earlier graphical display aids, these KPIs 

do not necessarily focus only on the behavior, 

situational awareness, the agent’s working memory, 

and long-term or short-term knowledge. 

Furthermore, this study aimed to develop data 

collection, mapping, selection, presentation, and 

interactivity methods to generate these data 

visualizations. 

7 CONCLUSIONS 

This study aimed to conceptualize the needs for 

complex logistics operations where cooperative 

robots, intelligent transportation systems, and 

stakeholders related with the system can work 

together. We have identified three different levels of 

this CPS: supply chain, warehouse, and intelligent 

agent. The important KPIs related to the system are 

interoperability, sustainability, knowledge 

reusability, performance, safety, risk, and 

profitability. Moreover, the supply chain manager, 

warehouse manager, truck driver, systems engineer, 

warehouse staff, and intelligence developers are also 

recognized as essential stakeholders who would 

have access to and use the dashboard to support their 

decisions. 

Future work will be to extend the existing 

simulation to provide useful data identified by this 

study, for the use of dashboard implementation. To 

develop KPIs further, surveys with relevant 

stakeholders may be conducted. Furthermore, formal 

laboratory user studies will be designed and 

conducted as a next step to assess the success of the 

dashboard design. 
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