Implementing Contract-based Software Architectures in Java: The

Keywords:

Abstract:

Structural, Behavioural, and Interaction Design Decisions

Mert Ozkaya
Department of Computer Engineering, Altinbas University, Istanbul, Turkey

Software Architecture, XCD, Code Generation, Java, Design-by-Contract.

Architectural languages (ALs) have been so actively researched since the nineties and this leads to many
ALs with different capabilities that have been proposed each day. However, most of the ALs ignore the
specifications of the structural, behavioural, and interaction design decisions and do not support their analysis
and development. The ALs that do support suffer from the process algebra based notation sets that practitioners
do not prefer to work with. This issue is tackled in the paper by extending the Design-by-Contract based
architectural language called XcD that supports the contractual specifications of the structural, behavioural,
and interaction design decisions about software systems and their formal analysis. XCD is extended with a
development support in Java so as to transform the contractual specifications in XCD into a complete Java
program that considers all the structural, behavioural, and interaction decisions specified. So, practitioners
will be able to specify non-algebraic, contractual specifications in XCD, formally analyse them, and produce
the Java source-code that reflects the specified architecture completely and consistently. The produced Java
code can also be tested for incompleteness and wrong use of component services automatically.

1 INTRODUCTION

Software architecture have been proposed essen-
tially for describing large software systems in terms
of independent computations (i.e., components) and
their relationships with each other (i.e., connectors)
(Clements et al., 2003). Many high-level design deci-
sions can also be specified at the level of software ar-
chitecture design. This includes the design decisions
about the system structure, behaviour, interaction pro-
tocols, non-functional properties, concurrency, devel-
opment, and deployment.

With the evolution of the model-based software
engineering, architectural design decisions can be
specified at different levels of abstractions, analysed
for the properties of interest, and then transformed
into software implementation code. Indeed, many ar-
chitectural languages (ALs) (Medvidovic and Taylor,
2000; Ozkaya and Kloukinas, 2013) have been pro-
posed, which offer different ways of modelling soft-
ware architectures and provide many interesting fea-
tures such as non-functional property support, analy-
sis support, extensibility, code generation, graphical
notation set, etc.

One of the most trendy topics of ALs is the for-
mal analysis, i.e., the exhaustive checking of architec-

346

Ozkaya, M.

tural models for some properties (e.g., deadlock and
live-lock) or any user requirements. This allows for
checking the behavioural and interaction design deci-
sions for every state of the components and proving
their correctness. Many of the ALs nowadays offer
formally defined semantics and tool-support for trans-
forming architectural models in these formalisms. By
doing so, the exhaustive model checker tools of the
formalisms can be used and the design errors can be
detected before the design decisions are used in the
low-level design and implementation stages.

While the analysis of the design decisions is so
crucial, it is also desirable to transform the anal-
ysed specifications in some programming languages
so as to reduce the development effort. This not
only prevents the coding-from-scratch but also any
inconsistencies between the architectural design de-
cisions and the actual system implementation due to
manual transformations. Developing code from soft-
ware architecture also guarantees the communication
integrity (Aldrich et al., 2002). That is, the imple-
mented software systems consist of the components
that can communicate only with those components
that have been specified to communicate in the soft-
ware architecture.

Implementing Contract-based Software Architectures in Java: The Structural, Behavioural, and Interaction Design Decisions.

DOI: 10.5220/0006568203460355

In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 346-355

ISBN: 978-989-758-283-7

Copyright © 2018 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved



Implementing Contract-based Software Architectures in Java: The Structural, Behavioural, and Interaction Design Decisions

2 MOTIVATION AND GOAL

There are tens of ALs that are existing in the lit-
erature, and, Malavolta et al. have kept a list of
125 different ALs (Ivano Malavolta, 2017). When
those ALs have been analysed, many ALs (48%)
have been found out to support the structural and
behavioural design decisions'. So, these ALs sup-
port the (i) structural decompositions of software sys-
tems into independent components and connectors,
(ii) the behavioural descriptions of how the compo-
nents will change their states upon the events occuring
in their environment (e.g., receiving/making method-
calls) and (iii) the interaction protocols for connec-
tors (if supported as part of the behaviour specifi-
cations). However, when also the exhaustive model
checking and software implementation are considered
too, many of those ALs supporting the structural and
behavioural design decisions remain weak. As dis-
cussed in Section 6, just 5 ALs support the spec-
ifications of the system structures and behaviours,
their exhaustive analysis, and generation into software
code; and, unfortunately, those ALs are not so conve-
nient for practical use in industry due to their notation
sets. Indeed, those ALs offer process algebra based
notation sets; so, practitioners are forced to learn and
use process algebras for the behaviour specifications.
Note however that as indicated by Malavolta et al.’s
survey (Malavolta et al., 2012), algebraic ALs are not
used by the practitioners due to being found as requir-
ing a steep learning curve.

In this paper, the goal is to propose a new software
architecture modeling approach that allows practi-
tioners to specify, analyse, and develop their software
architectures without using any algebraic code. To
this end, the Xcp AL (Ozkaya and Kloukinas, 2014)
is aimed to be extended in this study, which uses
the well-known Design-by-Contract (DbC) (Meyer,
1992) approach for specifying the structural, be-
havioural, and interaction design decisions. XcD’s
semantics have been defined in terms of its precise
translation in SPIN’s ProMeLa formal verification
language (Holzmann, 2004). Using Xcp’s translator,
practitioners can obtain the ProMeLa model of their
contractual software architectures that satisfy the se-
mantics rules and verify them using the SPIN model
checker for a set of pre-defined properties (e.g., dead-
lock, race-conditions, wrong use of services, and in-
completeness) and user-defined properties in linear
temporal logic (LTL). However, Xcb currently does
not provide any support for the implementation of the
software architecture specifications. Practitioners are

IThe analysis results for the ALs can be found in the fol-
lowing link: https://sites.google.com/site/ozkayamert1/als

expected to transform their design decision specifica-
tions into software implementation manually, which
is error-prone and time-consuming. Therefore, to
bridge this gap, this paper introduces Xcp’s precise
translations in the Java programming language. This
will let practitioners who use Xcp for the contractual
specifications of component behaviours and connec-
tors’ interaction protocols have the complete and con-
sistent Java code that reflects all the decisions speci-
fied. Furthermore, to increase the code maintenance
and understandability, the adapter design pattern has
been applied for the Java code produced.

In the rest of this paper, initially, Xcp’s DbC-
based notation set is introduced. This is followed by
the explanations of the algorithms for translating Xcp
in Java. Next, the Java translation of Xcp has been
illustrated via the gas station case-study. Lastly, the
related work and conclusion are given.

3 XCD’s NOTATION SET

Xcp offers components and connectors as first-class
elements, which can be specified contractually.

3.1 Components in Xcp

Components in Xcp are the units of computations,
which are specified with state data and ports. Fig-
ure 1 illustrates the component specifications via the
client (lines 1-12) and server (lines 13-24) compo-
nents. Both component specifications include the
variable initialisations firstly (line 2 and 14), which
represent the component state that are changed via
the ports. The asynchronous (i.e., one-way event)
communication is performed via the emitter and con-
sumer types of ports (lines 8-11 and lines 20-23 re-
spectively). The synchronous (i.e., request-response
methods) communication is performed via the re-
quired and provided types of ports (lines 3-7 and 15-
19 respectively).

Xcp extends DbC and offers functional and inter-
action contracts for the port method/event behaviours,
whose syntax and semantics differ by the type of
the port. Xcp introduces accept and wait interac-
tion contracts. If the accept contract is not satis-
fied, the method call (or the event) is rejected im-
mediately (line 16). If the wait contract is not sat-
isfied, the method call (or the event) is delayed un-
til it is satisfied (line 21). Whenever the interaction
contract for a method/event is satisfied, the functional
contract for that method/event is evaluated that essen-
tially updates the component state under some condi-
tions. The functional contract for emitter events or

347



MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

1 component Client (int clientName) {

2 bool clientData:= -1; 14
3 required port clientPortl{ 15
4 @functional { promises: name := clientName; 16
5 requires : \result >= 0; 17
6 ensures: clientData:=\result;} 18
7 int getData (int name); } 19
8 emitter port clientPort2{ 20
9 @functional { promises: data := clientData; 21
10 requires: true; ensures: \nothing; } 22
11 setData (int data); } 23
12} 24}

13 component Server () {

bool isDataSet:=false; int serverData=1;
provided port serverPortl({
@interaction {accepts: isDataSet; }
@functional { requires:
\result :=

name >= 0;

ensures : serverData*3; }
int getData (int name); }

consumer port serverPort2{
@interaction { waits: ! isDataSet; }
@functional { ensures :

setData (int data); }

isDataSet:=true; serverData=data;}

Figure 1: Contractual component specifications in XCD - client and server components.

1 connector client_server_conn (client{getData,
2 role client{

3  bool isSet := false;

4 required port_variable pv1 {

5 @interaction{ waits: isSet;ensures: \nothing;}

6 int getData (int name); }

7  emitter port_variable pv2 {

8 @interaction{waits: ! isSet ;ensures: isSet :=true;}
9 setData (int data); }

10}

setDatal, server{getData, setData}){
11 role server{
12 provided port_variable pv1 {
13 int getData (int arg); }
14 consumer port_variable pv2 {
15 setData (int arg2); }

16 }
17 connector linkl (client{pvl},server{pvl});

8 connector 1ink2 (client{pv2},server{pv2});
19 }

Figure 2: Contractual specification of a connector for client and server.

required methods consists of promises (lines 4 and
9) and requires-ensures pair (lines 5-6, and line 10),
where the former assigns parameters for the even-
t/method to be emitted/called and the latter changes
the component state after the emission/call if the re-
quires pre-condition is satisfied. The functional con-
tracts for consumer events or provided methods are
evaluated after the method-call (or event) is received.
Each functional contract consists of the requires and
ensures pair (lines 17-18 and line 22) for updating the
component state with the ensures data assignments
whenever the requires pre-condition is satisfied.
Lastly, a component may be a composite, which
consists of the instance specifications of other com-
ponents and connectors. Indeed, system configura-
tions are specified as a composite component in XcD,
which includes the component instances composing
the system and the connector instance(s) that are re-
sponsible for the interactions of those components.

3.2 Connectors in Xcp

Connectors in Xcp are the units of component inter-
actions and used to specify the interaction protocols
for a set of interacting components. As illustrated
in Figure 2, connectors are specified with roles that
are played by the participating components and a set
of links that establish the connections between the
roles (essentially the components). In Figure 2, the
client role in lines 2-10 are played by the client com-
ponent and the server role in lines 11-16 are played

348

by the server component. Each role, just like com-
ponents, consists of state data variables (line 3) and
port-variables that represent the ports of the compo-
nent playing the role. Role port-variables (lines 4-6 &
7-9 for the client role and lines 12-13 & 14-15 for the
server role) may include any methods/events of the
corresponding component ports, and each method-
/event is attached with an extra interaction contract
that constrains the interaction behaviour of the meth-
ods (lines 5 and 8). Note that role interaction contracts
also have ensures data assignments for changing the
role data if the waits condition is satisfied.
Connectors also have role parameters and these
parameters are passed with the relevant components
when the connectors are instantiated in a composite
component for specifying the system configuration.

4 TRANSLATING XCD TO JAVA

In this section, Xcp’s translation in Java is discussed
in a modular and thus more understandable manner.
Initially the component translation is given, which is
further modularised into translations of different types
of ports. Then, the connector translation is given.
Lastly, the translation of the system configurations is
given, which consists of the instances of the compo-
nents and the connectors.

Basically, each component is translated as a sep-
arate Java class and each connector is translated as a
set of classes each corresponding to a different com-



Implementing Contract-based Software Architectures in Java: The Structural, Behavioural, and Interaction Design Decisions

munication link of the connector. These classes are
instantiated and used together in another main Java
class translated from the system configuration.

4.1 Translating Components

Listing 1 gives the component translation in Java.
Each component that is instantiated in the system con-
figuration is translated into a Java class. The body
of the Java class firstly includes the declarations of
the instance variables corresponding to the compo-
nent state data (lines 3—4) and the data of the con-
nector role(s) that the component plays (lines 5-7).
Then, the class body includes the port method/event
translations, which is discussed in the next section.

1 FORALL ¢ € configuration.componentSet

2 public class c.ID {

3 FORALL data € c.dataSet

4 data.type data.ID = data.initialValue;
5 FORALL role € c.roleSet

6 FORALL data € role.dataSet

7 data.type data.ID = data.initialValue;
8 ComponentPorts_to_Java(c.type)

9

}
Listing 1: Translating component type.

4.2 Translating Component Port to
Java

For each port, its methods/events are translated into
a Java method in the body of the Java class trans-
lated for the component that owns the port. The port
method/event translation is considered in two parts as
shown in Listing 2. While the provided methods and
consumed events are translated in the same way (line
8), the required methods and emitted events are the
other two that are also translated in the same way (line
9).

1 ComponentPorts_to_Java(component c)

2 LET

3 providedMethods={port.methodSet | portec.providedPortSet}
4 requiredMethods={port.methodSet | portec.requiredPortSet}
5 consumerEvents={port.methodSet | portcc.consumerPortSet}
6 emitterEvents={port.methodSet | portec.emitterPortSet}

7 IN

8 offeredServices (c, providedMethods U consumerEvents)

9 requestedServices (¢, requiredMethods U emitterEvents)

Listing 2: Translating component port.

4.2.1 Translating Provided Methods and
Consumer Events to Java

Listing 3 gives the translation of provided methods
and consumer events. For each provided method (or
consumer event), a Java method with public visibility
is created (lines 3-22) in the Java class of the rele-
vant component type. Note that each method is syn-
chronised, which locks the class instance when the
method is called. The body of the Java method starts
with a while loop (lines 4-6) that essentially checks

whether the port’s wait interaction contract and the
component’s role interaction contracts for the relevant
service are together satisfied. Java Object class’s wait
method is called (line 6) in the loop until the interac-
tion contracts are satisfied. The waif method serves to
stop the thread that executes the calling method and
another thread that executes a different method of the
same class (i.e., another port service of the same com-
ponent) may interleave. The newly executing method
may indeed change the component state that will
later on satisfy the interaction contracts of the wait-
ing thread. A provided method (or a consumed event)
may alternatively have an accepting interaction con-
straint (lines 8-9). In such a case, the interaction con-
tract is translated into an if statement whose dissatis-
faction leads to an exception to be thrown, indicating
the wrong use of component services. When the inter-
action contracts are all satisfied, firstly the role state
data are updated using the role interaction contract’s
ensures data-assignments (lines 10-11). Then, the
functional contracts for the provided method (or con-
sumed event) can be processed (lines 13—19). Each
functional contract for a method (or an event) is trans-
lated as an if statement, whose condition is the re-
quires pre-condition and body includes the ensures
assignments. So, whenever the functional constraint
pre-condition is satisfied, the functional contract’s en-
sures assignments are performed. Note that the en-
sures clause changes the component state data and as-
sign the method result (if the result type is not void).
If none of the functional contract’s pre-condition is
satisfied, an exception is thrown (lines 18-19), indi-
cating the incompleteness of the functional constraint
specifications. In line 20, the Java Object class’s
notify method is called, which notifies any waiting
thread to resume its execution. Lastly in line 21, the
result is returned for the method-call.

1 offeredServices (component c,providedMethods ,consumedEvents)
2 FORALL s € providedMethods U consumedEvents

3 public synchronized s.returnType s.ID (s.paramList){
4 while !(s.IContract.waits A

5 Nvoteceroese TOle . s . IContract . waits)

6 {Object.wait ();}

7 IF s.IContract.accepts # NULL

8 if !(s.IContract.accepts)

9 throw new Exception(”Wrong use of component services™ ) ;
10 FORALL role € c.roleSet

11 role.s.IContract.ensures;

12 IF s.FContractSet # NULL

13 FORALL fc € s.FunctionalContractSet

14 if (fc.requires) {

15 fe . ensures duatssigmen ;

16 result = fc.ensures e ;

17

18 else

19 throw new Exception ("Incomplete func. behavior”) ;

20 Object. notify ();

21 return result;

22 +

Listing 3: Translating provided and consumer ports.

349



MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

4.2.2 Translating Required Methods and
Emitter Events to Java

Required methods and emitter events are translated as
depicted in Listing 4. For each required method (or
emitter event), a Java method is created again within
the Java class corresponding to the component (lines
5-28). Required ports (or emitter ports) of compo-
nents make method requests (or event emission in the
case of emitter ports) to the connected provided port
(or consumer). Therefore, the translated Java meth-
ods are actually supposed to make method-calls to
the translated Java methods of the connected provided
methods (or consumed events). This issue has been
tackled with using the adapter design pattern, where
the adapter is the connector link class and the adaptee
is the component class that operates the provided port
(consumer port). As shown in lines 3-4, each Java
class includes an instance variable for each required
port (or emitter event). This instance variable is ex-
pected to store a reference to the adapter class in-
stance (i.e., the connector link). Whenever the re-
quired method (or emitter event’s method) is called
via the adapter instance, the adapter directs the call
to the class instance corresponding to the providing
component.

The first statement in the translated Java meth-
ods for required methods (or emitter events) is the
while loop for checking the port and role interaction
contracts (lines 5-8). As in the translations of pro-
vided methods (and consumed events), the Java Ob-
ject class’s wait method is called in the loop (line
8) until the interaction contracts are satisfied, which
causes another thread that executes another port ser-
vice of the same component to interleave. When
the interaction contracts are satisfied, the role data
are updated initially using the role interaction con-
straints’ ensures data-assignments (lines 9-10). Then,
the Java method of the connected provided port are
called via the connector variable (line 11). Note that
the functional contract’s promises assignments for the
required port method (emitter event) are passed as
parameters to the called method. After calling the
method of the provided port (or consumer port), the
functional contracts for the required method (or emit-
ter event) are processed (lines 12-17). If none of
the functional contract’s pre-condition is satisfied, the
program execution is again halted with an exception
thrown to indicate the incomplete behaviour specifi-
cation (lines 16-17). Lastly in line 18, the Java Ob-
Jject class’s notify method is called to notify the wait-
ing thread (i.e., the one whose wait method has been
called) to resume their execution.

If a component has a required port (or emitter),

350

besides the Java methods created for each required
method (emitter event), another compute method is
created (lines 20-27). The compute method serves
for making service requests on behalf of the compo-
nent’s required (or emitter) ports. So, it is translated
as the concurrent execution of multiple Java threads
each calling a Java method corresponding to a unique
required port method (or emitter event).

1 requestedServices (Component c,requiredMethods , emitterEvents)
2 FORALL port € c.requiredPortSet U c.emitterPortSet

3 port.ID Tlink .. ;

4 FORALL s € requiredMethods U emitterEvents

5 public synchronized s.returnType s.ID (s.paramList) {
6 while !(s.IContract.waits A

7 Nvotecerotese TOle s . IContract . waits)

8 {wait();}

9 FORALL role € c.roleSet

10 role.s.IContract.ensures;

11 result = link,,,.service(s.FContractSet.promises);
12 IF service.FContractSet # NULL

13 FORALL fc € s.FunctionalContractSet

14 if (fc.requires)

15 fc.ensures;

16 else

17 throw new Exception("Incomplete fun. behavior”) ;

18 notify ();

19 }
20  public void compute (){
21 FORALL service € requiredMethodSet U emitterEventSet

DR (new Thread () {

23 public void run() {

24 try {service(service.argumentList);}

25 catch (Exception e){e.printStackTrace ();}
26 }

27 }).start ();

28 }

Listing 4: Translating required and emitter ports.
4.3 Translating Connectors

Besides components, connectors are translated in Java
too, depicted in Listing 5. As aforementioned, con-
nectors are specified with (i) component roles for im-
posing interaction protocols on components and (ii)
links for connecting the component ports. For each
link that a connector has, a Java class is created
(lines 3—19). This Java class implements a Java in-
terface (line 3) that has the methods corresponding to
the methods/events communicated between the con-
nected component ports. The connector class also
has a constructor (lines 6—7) for receiving the class
instance for the providing component (i.e., the one
that provides the method/event services to the con-
nected requiring component). In lines 9-18, the in-
terface methods are implemented in a way that each
method directs the call to the corresponding method
of the providing component class instance. So, as dis-
cussed in Section 4.2.2, the required component class
may use the connector link class instance to call the
methods of the provided component class indirectly.

1 FORALL connector € configuration.connectorSet

2 FORALL link € connector.linkSet
3 public class link.ID implements interfacelD(requiredPort(link)){

type(providesComponent (link)) offeringComponent;

public link .ID (type(providesComponent(link)) ¢) {

4
5
6
7

offeringComponent = c;



Implementing Contract-based Software Architectures in Java: The Structural, Behavioural, and Interaction Design Decisions

8}
9 IF type(link) = provided_required
10 FORALL m € providedPort(link). methodSet

11 m.retType m.ID (m.paramSignatures) throws Exception {

12 return offeringComponent.m(m. paramList);

13

14 ELSE

15 FORALL e € emitterPort(link).eventSet

16 void e.ID (e.paramSignatures) throws Exception{
17 offeringComponent.e(e.paramList);

18

9 }

Listing 5: Translating connectors.

The underlined functions each returns a specific part of a VXCD specification (e.g., port
element) and serves for simplifying the algorithm, making it more modular and easier to
understand.

4.4 Translating Configurations

The system configuration is translated as a Java class,
depicted in Listing 6. The Java class herein includes
(i) for each component involved in the configuration
an instance variable referencing to the class instance
of that component and (ii) for each connector link
that connects the components an instance variable ref-
erencing to the class instance of that link. In lines
13-17, the link variables of the requiring component
instances (i.e., the components with required/emitter
ports) are each instantiated with a reference to the in-
stance of the relevant connector’s link.

The Java class for a configuration also has a main
method (lines 19-26). This main method creates an
instance of the configuration class and activates its
components that need to request services from other
components which offer services. To do so, the com-
pute methods of those components are called.

1 public class configuration.ID {

2 FORALL component € configuration.componentSet
3 component.type component.ID;

4 FORALL connector € configuration.connectorSet
5 FORALL link € connector.linkSet

6 link . ID link jpgance

7 public configuration .ID(){

8 FORALL component € configuration.componentSet
9 component.ID = new component.type ();

10 FORALL connector € configuration.connectorSet
11 FORALL link € connector.linkSet

12 linKjustance = mew link .ID();

13 FORALL component € configuration.componentSet
14 FORALL reqPort € component.type.requiredPortSet

15 component. linK yegporr = ConnectorLinklns(reqPort) ;
16 FORALL emPort € component.type.emitterPortSet
17 component. link gypyr = ConnectorLinkIns(emPort)

19 public static void main (String args[]){
20 configuration.ID system_config = new configuration.ID();

22 FORALL component € configuration.componentSet
23 IF component.requiredPortSet != NULL OR

24 component.emitterPortSet != NULL
25 (component.ID).compute ();

26

27 }

Listing 6: Translating system configurations.

S EVALUATION

The code generation facility has been illustrated using
the well-known gas station case-study (Naumovich
et al,, 1997). The gas station system consists of a
number of customer components, a cashier compo-
nent, and a pump component. Each customer basi-
cally makes a payment to the cashier, and, the cashier
informs the pump for releasing the gas to the cus-
tomer. Then, the customer gets the gas from the
pump. The gas station case-study has been speci-
fied in Xcp and translated into a formal ProMeLa
model using Xcp’s ProMeLa translator. The resulting
ProMeLa models have been formally analysed using
the SPIN model checker. During the analysis here, the
deadlock, race-condition, incompleteness, and wrong
use of services properties have been checked, which
are supported by Xcp. Some user-defined properties
have also been specified in LTL, which can be anal-
ysed via the SPIN model checker. More detailed info
can be found in (Ozkaya and Kloukinas, 2014). After
analysing the specifications and correcting the design
errors, the gas station specification has been trans-
formed into a Java source-code, which is partially
given in Figure 3. Note that due to the space restric-
tion, the translation of gas station’s configuration is
not shown here?. To automate the translation process,
a code generator has been developed in the Metaedit
environment>, which can be accessible via the Xcp’s
visual extension called VXCD?.

Figure 4 depicts the structure of the classes gener-
ated from gas station. Initially, a Java class is gener-
ated for each component involved - customer (lines 1—
24 of Figure 3), cashier (lines 25-50), and pump (lines
52-81). Note that these classes have method defi-
nitions for each required/provided method and emit-
ter/consumer event of the corresponding components.
For each connector link that connects any two com-
ponent ports, a class is created. This link class imple-
ments a Java interface that consists of the Java method
definitions corresponding to the services which are
communicated between the linked component ports.
The Java interfaces for gas station are given in lines
83-98 of Figure 3, and the connector link classes
that implement the relevant interfaces are given in
lines 100-120. Each connector link class is associ-
ated with the component classes. Whenever the com-
ponent classes are instantiated as part of the config-
uration class, their link variables are initialised with

2 The XcD specification for the gas station system,
the translated full Java source-code, and the Java code-
generator can be accessible via the link: https://sites.
google.com/site/ozkayamert1/ vxcd

3http://metacase.com/

351



MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

60 for(int i=0;i<payment_amount.length; i++)
1 public class Customer { 61 payment_amount[i]=0;
2 //Data—variables 62
3 int chosenAmount=0; 63 public synchronized int pump(int portID) {
4 boolean requestMade=false; 64 if (!(PumpReleased[portID] == true))
5 // Required—port link 65 {throw new Exp(”Wrong use of services”);}
6 gas_Link gas_LinkInstance 66  if (payment_amount[portID] != 0){
7 public synchronized void pump() { 67 PumpReleased [ portID] = false;
8  while (! requestMade){try{wait();} catch(InterruptedExp e){}} 68
9 int result = gas_LinkInstance.pump(); 69 else{throw new Exp(”Incomplete func. behaviour”);}
10 if (result == chosenAmount){requestMade = false;} 70 notify ();
11 else if (result != chosenAmount){//..} 71  return payment_amount[portID];
12 else throw new Exp(”Incomplete func. behaviour”); 72
13 notify (); 73 public synchronized void releasePump (int pumpID,int amount) {
14 74 if(true) {
15 //Emitter port link 75 PumpReleased [ pumpID]=true ;
16 pay_Link pay-LinkInstance; 76 payment_amount [pumpID]=amount;
17 public synchronized void pay(int amount) { 77
18 while (requestMade){try{ wait();} catch(InterruptedExp e¢) {}} 78 else throw new Exp(”Incomplete func. behaviour™);
19  pay_LinkInstance.pay (0); 79  notify ();
20 requestMade = true; 80
21 notify (); 81}
22} 82
23 //compute methods for the requested methods (see Sec. 4.2.2) 83 public interface pay_Link{public void pay(int amount)throws Exp:}
24 } 84
25 public class Cashier{ 85 public interface toPump-Link{
26 int payment_amount[]= mew int[3]; 86 public void releasePump(int pumpID,int amount)throws Exp;}
27 int var.N, varM; 87
28 public Cashier(int N ,int M) { 88 public interface gas_Link{public int pump()throws Exp;}
29 var.N = N; 89
30 var-M =M; 90 public class Customer_to_Pump implements gas_Link {
31 for(int i=0;i<payment_amount.length: i++) 91 Pump Pump_ins;
32 payment_amount[i]=0; 92 int portlD ;
33 93 public Customer-to-Pump (Pump Pump_arg, int portID){
34 public synchronized void pay(int amount._arg, int portID) {94 Pump_ins=Pump_arg:
35 if (!(payment_amount[portID] == 0)) 95 portID=portID;
36 throw new Exp(”Wrong use of services”); 96
37 if(true){payment.amount[portID]= amount.arg;} 97 public int pump(){ return Pump_ins.pump(portID);}
38 else throw new Exp(”Incomplete func. behaviour™); 98 }
39 notify (); 99
40 100 public class Customer_to_Cashier implements pay_Link {
41 // emitter port link 101 Cashier Cashier-ins;
42 toPump_Link toPump_LinkInstance; 102 int portID_var ;
43 public synchronized void releasePump(int pumpID,int amount) 108 public Customer_to_Cashier(Cashier Cashier-arg, int portID){
44 while ((payment_amount [pumpID]== 0)) 104 Cashier_.ins=Cashier_arg;
45  {try {wait();} catch(InterruptedExp e) {}} 105  portID_var=portID;
46  toPump_LinkInstance .releasePump (pumpID , amount); 106
47  notify (); 107 public void pay(int amount){
48 } 108 try {Cashier_ins.pay(amount,portID_var);}
49 //compute methods for the requested methods (see Sec. 4.2.2)109 catch (Exp e) {e.printStackTrace();}
50 } 110
51 11}
52 public class Pump { 112
53 boolean PumpReleased[]= new boolean[3]; 113 public class Cashier_to_.Pump implements toPump_Link {
54 int payment_amount[]= new int[3]; 114 Pump Pump_ins;
55 int var_N; 115 public Cashier_to_Pump (Pump Pump_arg ) {Pump_ins=Pump_arg;}
56 public Pump(int N){ 116 public void releasePump (int pumplD,int amount){
57 var.N = N; 117 try {Pump_ins.releasePump (pumpID,amount);}
58 for(int i=0;i<PumpReleased.length; i++) 118 catch (Exp e) {e,printStackTrace();)
59 PumpReleased[i]=false; 119
120 }
Figure 3: The translated Java code from the Gas Station specification in XCD.
Note: “Exp” represents Exception.
Brl [ e the Customer2Cashier class instance (lines 100-111).
+releasePump(int ... +pump() +pay(int amount) . . . . . . IR T
| b | 3 | The cashier link variable in line 42 is initialised
G 2Fimg] ‘{ i | }‘““’L“““‘ﬂ_Connectors with the Cashier2Pump class instance (lines 113-
; - ; A AT 120). So, whenever the component class instances
' ! <<uges> ! ! 1 . . . .
: e | e P make a method-call using the associated link vari-
ccuip> ; ; ; cades ! . : : i
: v v : Ty ables, the link class instances receive the calls and di-
' [ Pump ] Customer [ Cashier ] B .
Ve e W | Components rect them to the linked component class instances. For
' +releasePump(int Cus... +pump() +releasePump(int C... R K
! [ ! instance, the customer class instance makes a pump
I method-call using the Customer2Pump link class in-
[ . stance (see line 9). Then, the Customer2Pump class
> Configuration : : . RS
- - instance receives the call (see line 97) and directs it

Figure 4: Gas station class diagram.

the relevant connector link class instances. The cus-
tomer link variable in line 6 is initialised with the
Customer2Pump class instance (lines 90-96). The
customer link variable in line 16 is initialised with

352

to the pump component (i.e., calling the pump class
instance’s pump method).

As illustrated in Figure 3, the Java source-code
translations for Xcp consider not only the structural
design decisions but also the behavioural and interac-
tion design decisions that may be specified. For in-



Implementing Contract-based Software Architectures in Java: The Structural, Behavioural, and Interaction Design Decisions

stance, the pump component’s pump method is trans-
lated in lines 63-72, which essentially consists of
three parts. In the first part (lines 64—65), the interac-
tion contracts imposed on the pump method are trans-
lated. Apparently, the method is not constrained with
any delaying interaction contracts (waits) - neither by
the component port nor the connector roles. How-
ever, the method is constrained with an accepting in-
teraction contract, translated as a selection construct
in lines 64-65. So, if the pump has not been released
yet, a Java exception will be thrown, which will halt
the system execution. If the interaction constraints
are satisfied (i.e., no exception thrown), the functional
contract translated in lines 66-69 is executed. If the
payment amount recorded for the customer is not zero
(i.e., the first requires pre-condition), the correspond-
ing ensures assigns the pump-released data to false to
be able to release the gas again upon request. Other-
wise, a Java exception is thrown and the program is
halted (line 69) to indicate the incomplete behaviour
specification (i.e., the case when the payment infor-
mation is not received is not considered by the pump
specification). Lastly, inline 70, the Object class’s no-
tify method is called and the result (i.e., the payment
amount) is returned to the caller.

To enhance the understandability of the generated
Java code, the translation algorithms have been de-
signed using the adapter design pattern. For any con-
nector link that connects the compatible ports of any
two components, the translated Java class from the
connector link acts as an adapter, the providing com-
ponent class (i.e., the one with the provided/consumer
port) acts as an adaptee, and the requiring compo-
nent class (i.e., with the required/emitter port) acts
as a client. The requiring component class uses the
connector class to call the methods of the providing
class indirectly. So, the classes of the two compo-
nents whose required and provided (or emitter and
consumer) ports are interconnected and request the
methods (or events) of each other do not know each
other thanks to the connector.

Practitioners may also test the executable Java
programs produced from the Xcp specifications. In-
deed, as discussed in Section 4.2.1 and 4.2.2, the
translation algorithms consider the incomplete func-
tional behaviours and wrong use of component port
services. Whenever such issues occur during the
system execution, a Java exception is thrown with
the necessary explanation message. When the Java
source-code in Figure 3 produced from the gas station
specification was run, a Java exception was thrown
due to the wrong use of services and the program
halted. According to the error message, the error has
essentially been resulted from the pump method of the

pump component (see lines 63-72 in Figure 3). Dur-
ing the system execution, the accepting interaction
contract in lines 64-65 has been violated as the pump
method has been called before the pump has been re-
leased. Note though that unlike formal analysis, soft-
ware testing does not check every possible system
paths for the aforementioned properties. Therefore,
the non-existence of any errors during the software
testing does not guarantee that every single path can
also be executed successfully.

6 RELATED WORK

According to Malavolta etal.’s recent survey on the
ALs, there are 125 different ALs that have been de-
veloped so far (Ivano Malavolta, 2017). The exist-
ing ALs have been analysed in this study for (i) the
support for structural, behavioural, and interaction
design decisions, (ii) the exhaustive model checking
of those design decisions, and (iii) generating soft-
ware code from the design decision specifications.
According to the analysis results, only 6 ALs sup-
port all those requirements, i.e., Prisma (Pérez et al.,
2003), Ambient-Prisma (Ali et al., 2010), Aspect-
Leda (Navasa et al., 2007), Korrigan (Choppy et al.,
2001), pi-ADL (Oquendo, 2004), and Xcp (Ozkaya
and Kloukinas, 2014). Table 1 shows the notations
that the ALs use for specifying the structural, be-
havioural, and interaction decisions, the supported
properties for analysis, and the programming lan-
guage used in generating software code.

Prisma offers a UML-like graphical notation for
specifying system structures in terms of compo-
nents and connectors, and their behaviours/proto-
cols are specified as an aspect that is specified in
the pi-calculus process algebra (Milner et al., 1992).
Prisma’s modelling toolset allows for specifying user-
defined requirements in temporal logics and checking
the consistencies of the specifications and analysing
them for the requirement specifications. Prisma’s
toolset also generates C# code, which can be ex-
ecuted on the .NET platform. Ambient-Prisma is
the extension of Prisma with the notion of ambi-
ents for specifying mobile software systems. Un-
like Prisma, Ambient-Prisma is based on Ambient-
calculus (Cardelli and Gordon, 1998), in which the
aspects are specified formally. Like Ambient-Prisma,
pi-ADL also focuses on the software architecture
specifications of mobile systems. Pi-ADL is based
on the pi-calculus process algebra. Pi-ADL supports
the specifications of user-defined requirements in pi-
calculus (or temporal logic) and supports the exhaus-
tive model checking via the CADP verification tool

353



MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

Table 1: The ALs supporting the structural, behavioural, and interaction design decisions, and their analysis & code genera-

tion.
AL Structure Behaviour Interaction Analysis Code Gen.
S Specification Specification Specification Support Support
. Graphical . . Consistency,
Prisma Notation Pi-calculus Pi-calculus User-defined regs. C#
Ambient-Prisma Grap hlcal Ambient-calculus | Ambient-calculus Consistency, C#
Notation User-defined regs.
Graphical . . Consistency,
Aspect-Leda Notation Pi-calculus Pi-calculus Model Checker Java
Korrican Graphical Symbolic Temporal Model Jav
ornga Notation Transition System | Logic Checker ava
i-ADL Predicate Logic | Pi-calcul Pi-calcul Model Checker, | \py
pi- redicate Logic i-calculus i-calculus User-defined reqs | -
Model Checker,
Xcp Textual Notation | DbC DbC Completeness, Java
User-defined reqs

(Garavel et al., 2001). Pi-ADL is supported with
a compiler that translates the pi-ADL specifications
into software code (e.g., C# and Visual Basic) in
.NET platform. Aspect-Leda is another aspectual AL
that extends the LEDA AL (Canal et al., 1999). So,
like LEDA, Aspect-LEDA is based on pi-calculus for
specifying component behaviours and connector in-
teractions. Aspect-LEDA is supported by a couple of
translators that translate the specifications in LEDA
for using LEDA’s model checking facilities. The
Aspect-Leda specifications can be translated in Java
for testing whether the software system behaves in the
expected way or not. Korrigan uses again a UML-
like graphical notation for specifying system struc-
ture and the behaviours of components are specified in
symbolic transition system (i.e., a derivation of state
transition systems). Korrigan uses temporal logic for
specifying the component interactions (i.e., connec-
tors). Korrigan specifications can be translated in the
LOTOS formal verification language (Bolognesi and
Brinksma, 1987) for model checking. Korrigan spec-
ifications can also be translated in Java. Lastly, Xcp
that has been extended with the Java development
support in this paper is the only AL that offers non-
algebraic, contractual (i.e., pre- and post-conditions)
notation set for the specifications of structural, be-
havioural, and interaction design decisions. Note also
that thanks to Xcp’s ProMeLa translator, the contrac-
tual specifications can be exhaustively analysed for a
number of properties including completeness, dead-
lock, race-condition, wrong use of services, and user-
defined requirements.

7 CONCLUSION

While the software architecture community offers
tens of different ALs with a variety of capabilities,

354

only a few of those ALs have been determined to sup-
port the specifications of the system structures, be-
haviours, and interactions that can be exhaustively
analysed and then transformed into software imple-
mentation. Those ALs however have algebraic nota-
tion sets that are not preferred by practitioners unfor-
tunately due to requiring a steep learning curve. To
bridge this gap, this paper focuses on the Xcp AL,
which is based on the well-known DbC approach for
the contractual (i.e., non-algebraic) specifications of
the system structure, behaviour and interaction de-
sign decisions. Xcb also supports the formal (i.e., ex-
haustive) analysis of the specifications using the SPIN
model checker. So, Xcp has been extended in the
paper with a development viewpoint support and of-
fered with the precise translation of the contractual
Xcp specifications in Java. Xcp’s Java translations
considers all the structural, behavioural, and interac-
tion design decisions supported by Xcbp and the trans-
lations have been designed using the adapter design
pattern so as to enhance the quality of the code to
be produced. The translation algorithms also con-
sider checking for incomplete functional behaviours
and wrong use of component services. So, practition-
ers can obtain the executable Java-based software sys-
tems that are complete and consistent with regard to
their architecture specifications. To illustrate the Java
extension for Xcp, the gas station system has been
specified, formally analysed, and then translated in
Java. A prototype tool has also been developed for
automating the Java source-code translation.

In the future, the Xcp language is planned to be
extended with the deployment, physical, and opera-
tional viewpoints to offer practitioners with the lan-
guage that supports the full development life-cycle.



Implementing Contract-based Software Architectures in Java: The Structural, Behavioural, and Interaction Design Decisions

ACKNOWLEDGEMENTS

This work has been supported by the project of the
Scientific and Technological Research Council of
Turkey (TUBITAK), Grant No: 215E159.

REFERENCES

Aldrich, J., Chambers, C., and Notkin, D. (2002). Archjava:
Connecting software architecture to implementation.
In Tracz, W., Young, M., and Magee, J., editors, /CSE,
pages 187-197. ACM.

Ali, N., Ramos, ., and Solis, C. (2010). Ambient-prisma:
Ambients in mobile aspect-oriented software architec-
ture. Journal of Systems and Software, 83(6):937-958.

Bolognesi, T. and Brinksma, E. (1987). Introduction to the
iso specification language lotos. Computer Networks
and ISDN Systems, 14(1):25 — 59.

Canal, C., Pimentel, E., and Troya, J. M. (1999). Specifica-
tion and refinement of dynamic software architectures.
In Donohoe, P., editor, WICSA, volume 140 of IFIP
Conference Proceedings, pages 107-126. Kluwer.

Cardelli, L. and Gordon, A. D. (1998). Mobile ambients,
pages 140-155. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Choppy, C., Poizat, P., and Royer, J. (2001). The korrigan
environment. J. UCS, 7(1):19-36.

Clements, P. C., Garlan, D., Little, R., Nord, R. L., and
Stafford, J. A. (2003). Documenting software archi-
tectures: Views and beyond. In Clarke, L. A., Dillon,
L., and Tichy, W. E, editors, ICSE, pages 740-741.
IEEE Computer Society.

Garavel, H., Lang, F, and Mateescu, R. (2001). An
overview of CADP 2001. Research Report RT-0254,
INRIA.

Holzmann, G. J. (2004). The SPIN Model Checker - primer
and reference manual. Addison-Wesley.

Ivano Malavolta, Patricia Lago, H. M. P. P. A. T.
(2017). Architectural  languages  today.
http://www.di.univaq.it/malavolta/al/.

Malavolta, 1., Lago, P., Muccini, H., Pelliccione, P., and
Tang, A. (2012). What industry needs from architec-
tural languages: A survey. IEEE Transactions on Soft-
ware Engineering, 99.

Medvidovic, N. and Taylor, R. N. (2000). A classification
and comparison framework for software architecture
description languages. [EEE Trans. Software Eng.,
26(1):70-93.

Meyer, B. (1992). Applying “Design by Contract”. IEEE
Computer, 25(10):40-51.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of
mobile processes, i. Inf. Comput., 100(1):1-40.
Naumovich, G., Avrunin, G. S., Clarke, L. A., and Oster-
weil, L. J. (1997). Applying static analysis to software
architectures. In Jazayeri, M. and Schauer, H., editors,
ESEC/SIGSOFT FSE, volume 1301 of Lecture Notes

in Computer Science, pages 77-93. Springer.

Navasa, A., Pérez, M. A., and Murillo, J. M. (2007). Aspec-
tLEDA: Extending an ADL with Aspectual Concepts,
pages 330-334. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Oquendo, E. (2004). pi-adl: an architecture description
language based on the higher-order typed pi-calculus
for specifying dynamic and mobile software architec-
tures. ACM SIGSOFT Software Engineering Notes,
29(3):1-14.

Ozkaya, M. and Kloukinas, C. (2013). Are we there yet?
analyzing architecture description languages for for-
mal analysis, usability, and realizability. In Demirdrs,
O. and Tiretken, O., editors, EUROMICRO-SEAA,
pages 177-184. IEEE.

Ozkaya, M. and Kloukinas, C. (2014).  Design-by-
contract for reusable components and realizable ar-
chitectures. In Seinturier, L., de Almeida, E. S.,
and Carlson, J., editors, CBSE’14, Proceedings of
the 17th International ACM SIGSOFT Symposium
on Component-Based Software Engineering (part of
CompArch 2014), Marcg-en-Baroeul, Lille, France,
June 30 - July 4, 2014, pages 129-138. ACM.

Pérez, J., Ramos, 1., Martinez, J. J., Letelier, P, and
Navarro, E. (2003). Prisma: Towards quality, aspect
oriented and dynamic software architectures. In QSIC,
pages 59-66. IEEE Computer Society.

355



