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12, rue Marie Curie CS 42060 - 10004, Troyes Cedex, France

Keywords: Transfer Learning, Multi-task Learning, Outliers Detection, One Class Classification.

Abstract: In this paper, we use the multi-task learning idea to solve a problem of detection with one class SVM when

new sensors are added to the system. The main idea is to adapt the detection system to the upgraded sensor

system. To solve that problem, the kernel matrix of multi-task learning model can be divided into two parts,

one part is based on the former features and the other part is based on the new features. Typical estimation

methods can be used to fill the corresponding new features in the old detection system, and a variable kernel is

used for the new features in order to balance the importance of the new features with the number of observed

samples. Experimental results show that it can keep the false alarm rate relatively stable and decrease the miss

alarm rate rapidly as the number of samples increases in the target task.

1 INTRODUCTION

In real applications, many machine learning models

may not work very well due to the ideal assumption

that the training data and the future data are subject

to the same distribution or that they are observed in

the same feature space, which may not hold with re-

cent system that can evolve based on sensor upgrade

or use of logical software based on sensors. Trans-

fer learning approach arose accordingly to solve that

problem, and it has received significant attention in

recent years, which is widely studied in both supervi-

sed learning and unsupervised learning area (Pan and

Yang, 2010). In this paper, we focus on using the

multi-task learning approach to solve the transfer le-

arning problem to one class classification or outliers

detection problem, where the detection model may

experience a change due to practical reasons.

For detection, two kinds of one class support vec-

tor machines are mainly used. One is proposed by

(Tax and Duin, 1999), which aims to find a hypersp-

here with minimal volume to enclose the data sam-

ples in feature space, the amount of data within the

hypersphere is tuned by a parameter C (noted as C-

OCSVM). Another one is introduced by (Schölkopf

et al., 2001), which finds an optimal hyperplane in

feature space to separate a selected proportion of the

data samples from the origin, and the selection para-

meter is ν which gives an upper bound on the fraction

of outliers in the training data (noted as ν-OCSVM).

It is proved that these two approaches lead to the same

solution according to (Chang and Lin, 2001), if a re-

lationship between parameters ν and C is fulfilled and

under build condition over the choice of the kernel.

From data driven side, we can divide the issues for

such detection system into two categories. One is the

transfer learning problem when the feature space re-

mains the same meaning that the number of features is

not changed but are drown from a different data distri-

butions. For example, the introduction of a detection

task for a new version of a system, or the update of a

detection after system maintenances with sensor up-

date. Another issue is the transfer learning problem

in different feature space, where we have different

number of features for the target task. For example,

in the application of fault detection for an engine sy-

stem, there are a few sensors which have already wor-

ked on an engine diagnosis system for much time and

every sensor gets a few data. Now due to technical

or some other practical needs, such as improving de-

tection performances, new sensors are added to this

system. As far as we know, this problem has never

been tackled in the detection context using one class

SVM.

Instead of training a new detection system from

scratch, multi-task learning seems to be an ideal mean

to adapt the former detection to an updated system,

since it uses the assumption which is satisfied in
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our context that related tasks share some common

structure or similar model parameters (Evgeniou and

Pontil, 2004), assuming one task is the former system

and the second one is the updated system. And the

idea is also used to solve one class classification pro-

blem by (Yang et al., 2010; He et al., 2014), but both

of them are subject to the situation that the related

tasks are in the same feature space. In (Xue and Beau-

seroy, 2016), a new multi-task learning model is pro-

posed to solve the detection problem when additional

new feature is added, where it gives a good transi-

tion from the old detection system to the new modi-

fied one. However, in some cases the kernel matrix in

that model is not positive semi-definite which means

that some approximation in a semi-definite subspace

must be considered to determine the detection.

In this paper, a new approach is proposed to avoid

that issue. As is shown in section 2.2, we can divide

the kernel matrix into two part, one part is based on

the old features and the second part is based on the

new added feature. After typical estimation method is

conducted to fill the corresponding new feature in the

old detection system in order to get a positive semi-

definite matrix, a specific variable kernel is used in the

second kernel matrix (which is base on the new fea-

ture) to control the impact of the new feature over the

detection according to the amount of collected new

data.

The paper is organised as follows. In section 2, we

propose the approach to use multi-task learning idea

to solve one class SVM problems with the same fe-

atures and with additional new features respectively.

Then we prove the effectiveness of the proposed ap-

proach by experimental results in section 3. Finally,

we give conclusions and future work in section 4.

2 MULTI-TASK LEARNING FOR

ONE CLASS SVM

For the one class transfer learning classification pro-

blem, two kinds of situation might happen depending

whether the source task and the target task share the

same feature space (homogenous case) or not (hete-

rogenous case). To study the heterogenous case, we

consider the situation of adding new feature one by

one in target task to simulate the modification or evo-

lution of an existing detection system.

2.1 Homogeneous Case

Consider the case of source task (with data set X1 ∈
R p) and target task (with data set X2 ∈ R p) in the

same space. For source task, a good detection model

can be trained based on a large number of samples

n1. After the maintenance or modification of the sy-

stem, we have just a limited number of samples n2

during a period of time. Intuitively, we may either try

to solve the problem by considering independent se-

parated tasks or treat them together as one single task.

Inspired by references (Evgeniou and Pontil, 2004)

and (He et al., 2014), a multi-task learning method

which tries to balance between the two extreme cases

was proposed by (Xue and Beauseroy, 2016). The de-

cision function for each task t ∈ {1,2} (where t = 1

corresponds to the source task and t = 2 corresponds

to the target task) is defined as:

ft (x) = sign(〈wt ,φ(x)〉− 1), (1)

where wt is the normal vector to the decision hyper-

plane and φ(x) is the non-linear feature mapping. In

the chosen multi-task learning approach, the needed

vector of each task wt could be divided into two part,

one part is the common mean vector w0 shared among

all the learning tasks and the other part is the specific

vector vt for a specific task.

wt = µw0 +(1− µ)vt, (2)

where µ ∈ [0,1]. When µ = 0, then wt = vt , which

corresponds to two separated task, while µ = 1, im-

plies that wt = w0, which corresponds to one single

global task. Based on this setting, the primal one class

problem could be formulated as:

min
w0,vt ,ξit

1

2
µ ‖ w0 ‖2 +

1

2
(1− µ)

2

∑
t=1

‖ vt ‖2 +C
2

∑
t=1

nt

∑
i=1

ξit

s.t. 〈µw0 +(1− µ)vt,φ(xit )〉 ≥ 1− ξit , ξit ≥ 0,
(3)

where t ∈ {1,2}, xit is the ith sample from task t, ξit

is the corresponding slack variable and C is penalty

parameter.

Based on the Lagrangian, the dual form could be

given as:

max
α

−1

2
αT Kµα+αT 1

s.t. 0 ≤ α ≤C1,
(4)

where αT = [α11, ...,αn11,α12, ...,αn22] and

Kµ =

[
Kss µKst

µKT
st Ktt

]
(5)

is a modified Gram matrix, Kss = 〈φ(X1),φ(X1)〉,
Kst = 〈φ(X1),φ(X2)〉, Ktt = 〈φ(X2),φ(X2)〉, which

means that we can solve the problem by classical one-

class SVM with a specific kernel (we use Gaussian

kernel in this paper).

Accordingly, the decision function for the target

task could be defined as:

f2(x) = sign(αT

[
µ〈φ(X1),φ(x)〉
〈φ(X2),φ(x)〉

]
− 1). (6)
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2.2 Heterogenous Case

Due to practical reasons, when new feature is added to

the old detection system, if we continue to use the old

detection system we will not be able to take advan-

tage of the new information to improve the detection

performances. If we wait until we gather enough new

data to train a new detector which means that on one

hand we have to delay the benefit of the update of the

system, and on the other hand we have to go through

all the hyper parameter optimisation process which

may be time consuming. On the contrary, the multi-

task learning model should be able to take into consi-

deration the information brought by the new feature.

We introduce a former method (MT LI) and a new one

(MT LII) to tackle that problem. For both we consider

X1 ∈ R p be the data set of the old detection system,

and X2 ∈ R p+1 be the data set since new feature is

added.

2.2.1 MT LI

Notice that for the formulation of multi-task learning

(4), if we want to compute the modified Gram matrix

(5), problem happens with block matrix Kst because

of the different features for the source task and the tar-

get task. In the work of (Xue and Beauseroy, 2016),

named as MT LI , the new feature is ignored for com-

puting matrix Kst . To some extend, it gives a balance

from the old detection system to the new one by tu-

ning the parameter µ with a proposed criteria. Howe-

ver, by using this method, the modified kernel matrix

is not always positive semi-definite which means that

a global optimisation solution can not be guaranteed

with standard approach.

2.2.2 MT LII

To fill the corresponding new feature, some estima-

tion methods like the nearest neighbour, the impu-

tation etc., can be used. Accordingly, we get X̃1 =
{x | x(1), ...,x(p), x̃(p+1)}, where x̃(p+1) is the new fe-

ature in the old detection system estimated by using

information from X2. The drawback of this method is

that when the number of samples X2 for target task is

small, it is hard to give a good estimation to the new

feature in X1.

Once we get X̃1 ∈ R p+1 and X2 ∈ R p+1, as we

use Gaussian kernel, then the kernel matrix in (5) can

be decomposed into two part:

Kµ =

[
Kss µKst

µKT
st Ktt

]

R p+1

=

[
Kss µKst

µKT
st Ktt

]

R p

︸ ︷︷ ︸
A0

◦
[

K̃ss K̃st

K̃T
st Ktt

]

R 1

︸ ︷︷ ︸
A1

,(7)

where ◦ is element-wise product and A0 is kernel ma-

trix based on R p with the first pth features for X1 and

X2, A1 is kernel matrix based on R 1 space with the

p+ 1th estimated feature x̃(p+1) from X1 and x(p+1)

from X2. Notice that Kµ is a positive semi-definite

matrix when µ ∈ [0,1], even if different kernel para-

meters are adopted for computing A0 and A1.

We use the Gaussian kernel that is defined as:

k(xi,x j) = exp(
‖xi − x j‖2

−2σ2
), (8)

where σ is the kernel parameter. Notice that when

σ →+∞ then k(xi,x j)→ 1. So we propose to use the

former σ0 for R p subspace and to choose a varying

σ(n) for the new feature, where n is the number of

samples. As a first intuition, we want σ(n2) to be

large when n2 is small and to be close to σ0 when

n2 is large.

By doing this, the entries of matrix A1 will tend

to be 1 when n2 is small, which means that it does

not have very important influence to the total kernel

matrix when the estimation of the new feature x̃(p+1)

in X1 is not very dependable. As n2 becomes lar-

ger, more information is brought in from the new fea-

ture and a better estimation of x̃(p+1) will be obtained,

more consideration should be taken for matrix A1, so

σ decreases and it converges to the same value as σ0

when n2 is large enough.

In kernel density estimation, the optimal window

width for a standard distribution is given by (Silver-

man, 1986):

hopt =

(
4

d+ 2

) 1
d+4

n−
1

d+4 , (9)

where d is the number of dimensions and n is the

number of samples.

Upon above, the kernel parameter function for A1

could be defined as:

σ(n) = c2 exp(
c1

3
√

n
)hopt , (10)

where the exponent function exp( c1
3
√

n
) decreases from

a large value when n is small to a small value close

to 1 when n is large, which means that we multiply

hopt by a large number at the beginning and we almost

keep hopt when n is large enough. The constant c1 is

used to control the value that we want to multiply hopt

when n is small and c2 is a scale factor that makes

σ(n) converge to σ0 when n is large. A few groups of

σ(n) are shown in figure 2. We name this multi-task

learning method as MT LII in this paper.
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3 EXPERIMENTS

In this section, experiments are conducted on artificial

data set. We compare the proposed method MT LII

with the former one MT LI , as well as the other pos-

sible solutions: the old detection system T1 based on

the old features, the new detection system T2 based

on data when new feature is added, and the union de-

tection system Tbig which is based on the estimated

data X̂1 and the new obtained data X2.

3.1 Setup

Let y1,y2,y3,y4 ∼ N(0,1), three features are defined

as:

x(1) = y1, (11)

x(2) = 3cos(
1

2
y1 +

1

2
y2 +

1

4
y3)+N(0,0.05), (12)

x(3) = y4, (13)

where N(0,0.05) is Gaussian noisy. We use X1 = {x |
x(1),x(2)} as the data set for the old detection system

(source task), and X2 = {x | x(1),x(2),x(3)} as the data

set for the new detection system (target task). The

number of training samples is n1 = 200, and we in-

crease n2 from 5 to 400 to simulate the change of the

new detection system. A 3 dimensional view of the

data set is shown in figure 1.

−4
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4
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0

2

4
−4
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2

4

x
(1)x

(2)

x
(3

)

Figure 1: 3D view of the data set.

To test the performance of the detection system,

20,000 positive samples are generated from X2 to test

the false alarm rate. Besides that, we use 20,000 uni-

form distribution data which cover the whole test data

set to test the performance of miss alarm rate. Speci-

fically, let u(1),u(2),u(3) ∼ U(−4,4), three groups of

negative samples are defined as:

1. Uniform distribution for all the features XnegI =

{x | u(1),u(2),u(3)}.

2. Uniform distribution only for the third dimension

XnegII = {x | x(1),x(2),u(3)} to simulate the out-

liers coming from the new added feature.

3. Uniform distribution only for the first two dimen-

sions XnegIII = {x | u(1),u(2),x(3)} to simulate the

outliers coming from the old features.

We choose kernel parameter σ0 = 1.75 and ν =
0.1 for ν-OCSVM (it exits a corresponding C for

C-OCSVM) which make the proportion of outliers

around 0.1 for the old detection system at the begin-

ning. A list of the comparison of different methods

is shown in table 1. Where X̃1 = {x | x(1),x(2), x̃(3)},

x̃(3) is the estimated feature (we use nearest neighbour

method to fill this new feature) and X2\x(3) denotes

that X2 without the new feature. For T1, T2 and Tbig,

the same kernel parameter σ0 is used, for MT LI the

setting is same as in (Xue and Beauseroy, 2016) and

for MT LII , σ0 is used for the first two features and a

variation of σ(n) according to (10) is used for the third

feature. The choice of µ for MT LII is conducted by

the criteria proposed in (Xue and Beauseroy, 2017).

All the results are averaged by 10 times.

Table 1: Setting of the comparison of different methods.

Compare methods Train data sets

T1 X1, X2\x(3)

T2 X2

Tbig X̃1, X2

MT LI X1, X2

MT LII X̃1, X2

3.2 Performance with Different Kernel

Parameters

Three groups of kernel parameters σ1,σ2,σ3 are ge-

nerated to test the performance of MT LII . As shown

in figure 2, we choose c1 = 1,3,6 and then choose
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Figure 2: Different kernel functions.
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Figure 3: Results of different kernel parameters for MT LII : (a) false alarm rate, (b) miss alarm rate on XnegI (uniform data for
all features), (c) miss alarm rate on XnegII (uniform data only for new feature), (d) miss alarm rate on XnegIII (uniform data
only for old features).

corresponding c2 in (10) which makes σ(400) = σ0

(where σ0 = 1.75 is the kernel parameter for the old

detection system).

Results of MT LII are shown in figure 3 with dif-

ferent σ for computing A1 in (7). If we use con-

stant σ0, the false alarm rate is very high when n2

is small because of the bad estimation while lack of

samples from X2. Both the false alarm rate and the

miss alarm rate will become more stable as n2 incre-

ases due to better estimation for x̃(3). However, with

the variation of kernel parameters σ1,σ2,σ3, when n2

is small, the larger σ is, the closer of A1 is to a ma-

trix with 1 elements (that means we are using a kernel

matrix which is very close to the matrix just based

on the old features), so we increase less for the false

alarm rate(MT LII(σ3)< MT LII(σ2)< MT LII(σ1)<
MT LII(σ0)).

As for the miss alarm rate on XnegI (figure 3(b))

to simulate the outliers coming from for all features,

the method with variation kernel parameters increa-

ses a bit at the beginning and it decreases rapidly to

the same value as we use fixed one. The same trend

happens for data set XnegII (figure 3(c)) to simulate

the outliers coming from the new features except at

the beginning, where the miss alarm rate is relatively

high, but as we increase n2, we decrease σ and the

miss alarm rate decreases rapidly to the same value

with fixed σ0. This kind of trend makes meaningful

sense because when new feature is added, while n2

is small, if outliers are all from the new feature, we

can not decide them all as negative samples, instead

we would rather keep a relative stable false alarm rate

while reduce the miss alarm rate rapidly as n2 incre-

ases which means that we take the new feature’s in-

formation into consideration gradually. For the miss

alarm rate on XnegIII (figure 3(d)), all methods keep al-

most stable which means that we do not increase the

miss alarm rate if the outliers come from the old fea-

tures. From the above analysis, MT LII(σ3) produces

a relatively good detection model when new feature

is added, where σ3 is relatively large at the beginning

and it converges to σ0 at the end.
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Figure 4: Compare results of different methods: (a) false alarm rate, (b) miss alarm rate on XnegI (uniform data for all features),
(c) miss alarm rate on XnegII (uniform data only for new feature), (d) miss alarm rate on XnegIII (uniform data only for old
features).

3.3 Experimental Results

We use MT LII(σ3) to compare with the other possi-

ble methods listed in table 1, results are reported in

figure 4. Besides that, in order to study the problem

that might happen is the adaptation for the old feature

space (that means the data distribution for the old fe-

atures may experience a change due to system main-

tenance or update), we give a rotation of π
6

to the first

two features in X2 to study the model’s performance

on this situation, and the results are shown in figure 5.

For the method T1, which is trained on the old fea-

tures of X1 and X2, the false alarm rate is almost con-

stant around 0.1, but the miss alarm rate is the highest

one among all the other methods because it does not

take into consideration of the new feature.

For T2 which is based only on X2 since the new

feature is added, it gives very high false alarm rate

when n2 is small, which means that it does not make

full use of the information from the former detection

system at the beginning, as n2 increases large enough

(here n2 > 150), it produces more stable false alarm

rate and miss alarm rate.

If we combine the estimated data set X̃1 and X2 to

train a detection model, named as Tbig, the false alarm

rate is lower than that of T2, and the miss alarm rate

will end up with the same as T2. However, with a ro-

tation of the first two features in X2, it will increase

the chance of miss alarm at the end (which is shown

in figure 5(b), 5(c) and 5(d)), because Tbig tends to in-

close all the train data set together. That means Tbig is

not practical when data distribution of the old features

experiences a change in the new detection system.

For multi-task learning method, both MT LI and

MT LII gives a transition from the old detection sy-

stem T1 (which is just based on the old features) to the

new modified system T2 (which is based on the new

data set X2 since new feature is added) as n2 increa-

ses. The false alarm rate of MT LI is a bit lower than

that of MT LII , and both of them are relatively stable

compared to T2 and Tbig. But for miss alarm rate, only

MT LII converges to that of T2 while MT LI does not
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Figure 5: Compare results with π
6 rotation in X2 for the first two features: (a) false alarm rate, (b) miss alarm rate on XnegI

(uniform data for all features), (c) miss alarm rate on XnegII (uniform data only for new feature), (d) miss alarm rate on XnegIII

(uniform data only for old features).

as n2 increases. And the general miss alarm rate of

MT LII is much lower than that of MT LI , this diffe-

rence is much larger when there is a rotation to the

first two features in X2 (figure 5). Therefore, MT LII

gives a better transition from the old detection system

to the new one than MT LI , it can keep the false alarm

rate relatively stable while decrease the miss alarm

rate rapidly to a stable value.

4 CONCLUSIONS

In this paper, a modified approach of multi-task lear-

ning method MT LII is proposed to solve the problem

of transfer learning to one class SVM, where additio-

nal new features are added in the target task.

The idea is to decompose the kernel matrix in

multi-task learning model into two parts, one part is

the kernel matrix based on the old features and the ot-

her part is the kernel matrix based on the new added

features. Typical methods can be used to estimate the

corresponding new features in the source data set in

order to compute the kernel matrix based on the new

features. Then a variable kernel is used to balance the

importance of the new features with the number of

new samples and at last it converges to the same value

as used in the old detection system. Experimental re-

sults show that the proposed method outperforms the

former proposed method MT LI and the other possible

approaches.

Future work may consider online implementation

of the proposed approach.
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