
Optical Graph Edge Recognition

Rudolfs Opmanis
Institute of Mathematics and Informatics of University of Latvia, Raina bvld. 29., LV-1459, Riga, Latvia

Keywords: OGR, Optical Graph Recognition, Graph Vectorization, Graph Edge Recognition Algorithm.

Abstract: Optical graph recognition is a process that from an input raster image extracts a graph topology. Graph
recognition is interesting for not only because it allows reusing information from other diagrams, but also it
is a tool that can measure the readability of a graph diagram visualisation or help with a testing of automatic
graph visualisation engines. In this paper, we propose an optical graph edge recognition algorithm that can
recognise edges with arbitrary edge routing style, handle drawings with many edge crossings and process
edges that are rendered as polylines using a solid or dashed stroke. To evaluate the proposed algorithm we
have developed comprehensive test suite with 2400 graphs of various sizes, edge densities, edge routing styles
and edge rendering strokes.

1 INTRODUCTION

Graph drawing and optical graph recognition (OGR)
are very closely related disciplines. Graph drawing
considers problems related to a graph transformation
into readable drawing, while OGR considers prob-
lems related to the inverse transformation. OGR can
be considered both as a pre-processing step before the
graph drawing or as a post-process after the graph
drawing. If we look at the optical graph recognition as
a pre-process, we can imagine a use-case when we ac-
quire a drawing of a graph and we need to make some
adjustments either in its graph layout or topology. On
the other hand, if we look at the optical graph recog-
nition as a post-process after a graph drawing step
then it can be used as a tool to enable an automatic
quality assurance. With an OGR tool we can perform
completely automatic testing of a graph visualisation
solution that validates a graph layout and rendering
results simultaneously. While using an OGR we can
cover many more tests when compared to a manual
testing process.

Our OGR solution for generic graph drawings is
split into three phases: background extraction, node
recognition and edge recognition. To limit the scope
of this paper we are investigating only the edge recog-
nition step from a full optical graph recognition so-
lution. From our experience edge recognition is the
most challenging phase especially if they are rendered
using dashed patterns. The background of a typical
graph drawing is filled with a solid colour so its ex-
traction is very easy. Node recognition seems sim-

pler than edge recognition because node recognition
usually can be done using a context-free approach
(each node can be processed independently), but edge
recognition requires a context-sensitive solution be-
cause while untangling edge crossings other edges
need to be considered as well. We feel that our so-
lution, that can handle both dashed and solid edges
independent of their colour would be applicable to the
majority of graph renderings.

Others have also worked in the field of optical
graph recognition. (Auer et al., 2013; Krishnamoor-
thy et al., 1996) have proposed algorithms for a
generic graph recognition. Solution proposed by (Kr-
ishnamoorthy et al., 1996) seems to be limited to only
black and white graph drawings with straight edges.
(Auer et al., 2013) supports more generic drawings
but uses morphological operations for edge thinning
which produces an information loss at the edge cross-
ings that is critical for resolving edge crossings with
small angular resolution or locations where multiple
edges are crossing in a small vicinity. Also if edges
are rendered using dashed lines then algorithm pro-
posed by (Auer et al., 2013) is not applicable and
there is no simple way to fix it. Dashed lines are typi-
cal in UML diagrams which also can be considered as
graph drawings. If the user knows that only specific
types of graph drawings will have to be processed
then an OGR algorithm for specific diagram types
is more practical and could easier lead to acceptable
recognition results. An optical graph recognition al-
gorithm for specific diagram types, when compared to
a generic algorithm, can make additional assumptions

184
Opmanis, R.
Optical Graph Edge Recognition.
DOI: 10.5220/0006550401840191
In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 3: IVAPP, pages
184-191
ISBN: 978-989-758-289-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

about an input image and therefore gain an advantage.
Others have proposed specific graph recognition al-
gorithms for UML diagrams (Lank et al., 2001; Ham-
mond and Davis, 2006; Lank et al., 2000) and also
electrical schematics (Bailey et al.,). Another way
to limit the scope of recognisable graph drawings is
to limit the way how the drawing is produced. There
are on-line graph recognition algorithms that in ad-
dition to the produced graph drawing requires a list
of atomic draw actions that were used to produce it.
CAD diagram recognition or line drawing vectorisa-
tion (Dori and Wenyin, 1999; Dori and Liu, 1999;
Von Gioi et al., 2008) are similar fields and tries to
solve similar problems to optical graph recognition,
but does not convert recognised graphical primitives
into consistent graph topology.

This paper is organised as follows. In Section 2
we define basic concepts that are used in this paper,
Section 3 explains details of the proposed optical edge
recognition algorithm. Section 4 is dedicated to the
performance analysis and the testing process of the
proposed algorithm. Finally, Section 5 contains the
summary and conclusions.

2 PRELIMINARIES

In this paper we consider a graph to be an undirected
multi-graph with possible self-loops. By a graph
layout, we mean a process that assigns 2D geometry
to graph objects. For nodes, it assigns their centre po-
sitions, but for edges, it might assign a list of points.
Edges are routed as polylines from the centre of one
end-node, through the list of assigned points and to
the centre of the other end-node. We assume that
graphs in input images are laid out and rendered con-
sidering the common graph drawing aesthetics crite-
ria as described in (Di Battista et al.,) such as node-
node and node-edge overlap-free drawings and also
reasonable spacing and angular resolution between
graph objects. Since this paper is focused only on
the edge recognition step, we allow any node render-
ing style as long as they can be reliably detected by
the node recognition pre-processing algorithm. In our
benchmark tests, we use a circle to represent a node.

In this paper, an image or a graph drawing rep-
resents a bit-mapped raster image of a laid out graph.
The image can be provided as a png file or in any other
file format as long as it is possible to retrieve colour
information for every pixel. We don’t make any as-
sumptions about how the image was retrieved.

3 EDGE RECOGNITION
ALGORITHM

The edge recognition algorithm is designed to run af-
ter a node recognition algorithm so the input of the al-
gorithm consists of the input image, detected node ge-
ometry information and a image background colour.
Each node geometry should contain its centre location
and either its width and height or a set of pixels that
are considered to belong to the node. Image back-
ground colour is used to split all input image pixels
into three distinct classes: node pixels (pixels deter-
mined by node geometries), graph background pix-
els and potential edge pixels. It is important to note,
that if the graph drawing contains labels or noise then
at this point their pixels will be classified as poten-
tial edge pixels, however, after the edge recognition
step, they will be filtered out in a separate set. Graph
background pixels are those pixels that are in the same
colour as graph background colour. The edge recog-
nition algorithm works only with the pixels from the
potential edge pixel class.

The edge recognition algorithm consists of three
consecutive phases: the image vectorization, the
building of segment graph, and the edge detection.
The first phase has access to the input data of the
whole edge recognition algorithm, but each of the fol-
lowing phases has access to the algorithm input data
and also to any output information that any of the pre-
vious phases have produced.

The output of edge recognition algorithm contains
a set of recognised edges and a set of input image pix-
els which belong to the recognised edges. After the
edge recognition algorithm is finished it is possible to
divide all input image pixels into four distinct classes:
background, node, edge, and other pixels. The other
pixel set could be used as an input for other algorithms
to recognise labels or other visual elements.

Figure 1 illustrates the input this edge recogni-
tion algorithm receives. The input image is pre-
processed, the white pixels are background pixels, the
gray dashed rectangles show bounding boxes of the
detected nodes and the remaining black pixels belong
to the potential edge pixel set.

3.1 Image Vectorization

The image vectorization is the first phase of the edge
recognition algorithm. It uses potential edge pixels to
produce a set of line segments. For the actual segment
detection, we use the Sparse Pixel Vectorization (SPI)
algorithm (Dori and Liu, 1999). SPI searches through
the set of potential edge pixels to find clusters of pix-
els that defines line segments with consistent width

Optical Graph Edge Recognition

185

Figure 1: Input image with detected nodes.

and direction properties through the whole length of
detected segment. This strict consistency requirement
means that if some edge in the original drawing is
drawn with bend points or curves then SPI will re-
turn a set of segments that approximate that shape
(because direction changes at bends or curves) or if
there are edge crossings, then SPI will split segments
at the edge crossing point (because segment thickness
changes at the crossing). For each segment, SPI re-
turns coordinates of both end points of medial axis
and detected thickness. If an edge in the input image
is rendered using a dashed line pattern, then each dash
would be a separate segment. At this point, we are not
making any assumptions about the dashing pattern so
we will be able to handle edges with arbitrary dash
patterns and also uncommon edge renderings when
different parts of the same edge are rendered using
different dash patterns. SPI algorithm can process a
noisy input so even if the input image has some noise
it will be able to handle it.

Figure 2 shows the concept of detected edge seg-
ments.

3.2 Building of Segment Graph

The segment graph building phase is used to build a
graph which would store the segment neighbour in-
formation. The segment graph is a graph where nodes
are the endpoints of the segments detected in the pre-
vious image vectorization phase and node centres that
are specified in the input of the edge recognition algo-
rithm. A segment graph contains an edge between two
of its nodes (geometric points) if both points are geo-
metrically close to each other. The closeness thresh-
old is a parameter that can be customised before the
edge recognition starts. A segment graph contains

A

B C

DE

F

G

H

I

JL1

K2

L2

K3

L3

K4

L4

K1

Figure 2: Detected line segments.

only two kinds of edges: edges between segment ends
and edges between a segment end and the centre of a
previously detected node.

To build a segment graph it is necessary to solve
common computational geometry problem for the
given point p, the distance parameter value d and the
set of points S: find q ∈ S : p.distance(q) ≤ d. The
set S contains all node centre points and end points of
all detected edge segments. A segment graph is built
by solving this computational geometry problem for
every point in S and adding an edge between each
pair of points p and q. To reduce the number of edges
in a segment graph two different distance threshold
values were used during the segment creation. The
node neighbour distance (nd) threshold is used for
finding node centre point neighbours, but the edge
neighbour distance (ed) threshold is used to find
neighbours of edge segment end points. The value
of ed should be greater than the greatest acceptable
gap in a edge rendering (caused by noise in drawing
or edge dash pattern) and also greater than the edge
thickness because detected segments might be split
next to crossing points. The value of nd determines
how far away an edge segment can start from the
node to still be considered connected to the node. nd
should be greater than the greatest acceptable gap in
an edge and ensure that at the distance nd from a node
all connected edges are distinguishable from each
other. Solid lines in Figure 3 illustrates generated
segment graph edges, but the dotted lines are the
detected segments. The segment graph edges are:
(O1,K1),(O1,J),(O2,A), (O3,L4),(O4,H),(O5,D),
(K,J),(F,G), (B, I),(B,E),(B,C), (C, I),(C,E),
(K2,L1),(K3,L2),(K4,L3).

IVAPP 2018 - International Conference on Information Visualization Theory and Applications

186

A

B C

DE

F

G

H

I

J

O1

O5

O4

O2

O3

L1

K2

L2

K3

L3

K4

L4

K1

Figure 3: Created segment graph.

3.3 Edge Detection

The edge detection phase is the final phase that using
the previously detected segments and the created seg-
ment graph finds chains of consecutive segments that
start in a node and end in a node and reports them as
edges. Segment end point coordinates can be used as
bend points for the created edges.

The edge detection algorithm works under the as-
sumption that each detected edge segment can belong
to a single detected edge so we introduce the used
segment set which initially is empty, but is dynami-
cally populated with the segments that makes up each
detected edge. The edge detection algorithm iterates
through all segments and if at least one end of the seg-
ment is close to a node (the segment graph contains
an edge between the segment end and the node cen-
tre) then it starts the edge tracking with this segment
in the direction away from the detected node.

The edge tracking step is captured in the Algo-
rithm 1. In the input it receives two objects: a) the
current segment with direction information, and b)
the set of used segments to know which of the de-
tected segments can and can not be used for the edge
tracking. While tracking an edge it iteratively builds
a chain of segments until it finds an acceptable end
node or the target end of the last segment in the built
chain doesn’t have any acceptable neighbours in the
segment graph. If target end of the last segment in
the chain has multiple valid neighbours in the seg-
ment graph then we use cost calculation function to
find the neighbour with the smallest cost. The cost
calculation function is designed to favor neighbouring
segments that continue in the general direction of the
already built chain of segments. If the last segment

A

B

u

C

v

D

w

u′

u′′
β

α

γ

Figure 4: Next segment cost calulation.

in the chain is long enough (larger than the specified
threshold) then it is used as the general edge direction,
otherwise, we step back along the built chain until the
distance to the to the target point of the last segment
exceeds the threshold. Stepping back is very impor-
tant in dashed line recognition, because each dash on
its own might not define the correct edge direction.
On the other hand if the target end of the last segment
in the built chain doesn’t have any acceptable neigh-
bours then we cancel the edge tracking process and
return to iterating through not processed segments.

The cost calculation function receives a segment
showing the general edge direction as the first param-
eter and a neighbour segment for which the cost value
needs to be computed as the second parameter. In Fig-
ure 4 segment AB is the general edge direction and CD
is the neighbour segment. If |BC| is shorter than the
edge thickness approximation eT value then the cost
value is angle β. If |BC| > eT then the BC direction
is as important as the direction of CD and we use the
sum of angles α and β as the cost value and in case
segments AB, BC, and CD creates ’S’ turn then we
add an additional penalty of 3π to the cost value. This
additional penalty helps with the parallel edge track-
ing.

4 EXPERIMENTAL RESULTS

To gain understanding about the quality of the pro-
posed algorithm not only it is important to understand
the details about the algorithm itself, but equally im-
portant it is to know how the quality is measured. To

Optical Graph Edge Recognition

187

Algorithm 1: Track Edge.
Input: initialSegmentStartEnd,

initialSegmentOtherEnd, Set of used
vectors usedSegments

begin
initialize list of segments segmentList
currentSegment ←
initialSegmentStartEnd.segment()

result ← NORESULT
while result = NORESULT do

nextSegment ←
getNextSegment(currentSegment,
SegmentGraph)

if currentSegmentEnd is connected to
recognized node n in SegmentGraph
and line of currentSegment crosses
bounding-box of n then

result ← SUCCESS targetNode←
n

end
else if nextSegment 6= null then

segmentList.add(currentSegment)
end
else

result ← FAILURE
end
currentSegment ← nextSegment

end
end

get fair measurements we designed a test suite and
performed an automatic testing on more than 2400
test cases with various properties. The following sec-
tions will cover decisions and reasoning made while
designing the test suite, the algorithm testing and fi-
nally the produced results. All tests used for the test-
ing are accessible at (Opmanis, 2017).

4.1 Design of Benchmark Tests

When we look at a graph drawing there are at least
three important aspects influencing our ability to read
it and recognise the graph. These aspects are: vi-
sualised graph properties (size, a number of nodes,
edges, average node degree, etc.), the graph layout,
and its rendering style. To measure the quality of the
proposed algorithm we created benchmark tests with
variations in all three aspects. Each test consisted of
a raster image with the graph rendering and a text
file with the graph topology for the validation of the
recognition result.

4.1.1 Graph Properties

To cover various graph types we generated random,
connected graphs with 10, 20, 50 and 100 nodes.
Graph connectivity was ensured by first generating a
random tree and then adding 0.3, 0.1, 0.05 or 0.025
of all possible edges. Smaller ratio values were ap-
plied to bigger graphs. The graph sizes were chosen
to cover typical manually created graph sizes and also
reach automatically generated graph sizes.

4.1.2 Graph Layout

The graph layout is important because its properties
determines if edges will be routed with bends (or as
straight lines), what is the guaranteed node-edge spac-
ing (or there will be node-edge overlaps), how likely
are crossings of more than two edges in the same point
or close vicinity, etc. To prove that the edge recogni-
tion algorithm is not fine-tuned to a particular layout
style it was tested on graphs laid out with a spring-
embedder style symmetrical layout algorithm and a
Sugiyama-style hierarchical (Sugiyama et al., 1981)
layout algorithm.

4.1.3 Symmetric Layout Style

Symmetric (spring-embedder) layout is very widely
used because of its performance and reasonably easy
readable layouts of sparse graphs. We chose to use
this layout style to generate part of our test cases be-
cause there are no dominating edge directions so it
would allow us to validate the claim that proposed
edge recognition algorithm does not depend on a par-
ticular edge direction properties. Also, edge crossings
happen randomly, therefore, there are no assumptions
about the edge crossing angles and how many edges
are crossing at the same point or close vicinity. The
symmetric layout has some properties that limit its us-
ability for edge recognizer testing such as: it routes
edges as straight line segments between the source
and target nodes and node-edge overlaps are also very
common. Straight path rendering is considered bad
for our test suite test generation because it does not al-
low us to verify if edge recognizer is capable of recog-
nising edges with bends. Node-edge crossings are bad
because they make drawings ambiguous and the pro-
posed algorithm is designed for node-edge crossing
free drawings. To solve both of these problems we
added pre-layout and post-layout steps. In the pre-
layout step, we split each edge into three segments
and added two dummy nodes to link those segments
together. In post-layout step, we substituted them
with edge bends and removed all edges that created a
node-edge crossing. Pre- and post-processing allowed

IVAPP 2018 - International Conference on Information Visualization Theory and Applications

188

us to produce symmetric style drawings with polyline
edge routing without node-edge crossings. Test suite
contains post-processed graphs.

Figure 5 illustrates one of the test graphs with 10
nodes which is laid out using symmetric layout style
and edges are rendered using dashed line pattern, but
Figure 7 shows a test case with 100 nodes and edge
density 0.025.

Figure 5: 10 node test graph laid out with symmetric
layout and rendered using dashed pattern.

Figure 6: 10 node test graph laid out with hierarchical
layout and rendered using solid lines.

Figure 7: 100 node test graph with density 0.025 rendered
using solid lines.

4.1.4 Hierarchical Layout Style

Hierarchical (Sugyama) layout style is popular be-
cause it shows hierarchical and flow properties.
Strengths of the hierarchical layout include edge rout-
ing feature that ensures an appropriate spacing be-
tween graph visual objects, therefore, it can guarantee
node-edge overlap-free drawings. When compared to
the previously mentioned symmetric layout in the hi-
erarchical layout results edges are routed with a vari-
able number of bend points, but their directions are
typically aligned with the direction of the main flow,
therefore the edge crossing angles and the edge an-
gular resolution around nodes are not as random and
uniformly distributed as for symmetric layout.

Figure 6 illustrates one of the test graphs with 10
nodes which is laid out using hierarchical layout style
and edges are rendered using solid lines.

4.1.5 Graph Rendering

Each of the previously described graph size and graph
layout combination was rendered in two edge ren-
dering styles: black anti-aliased 1 pixel wide lines
with solid and dashed line patterns. These line styles
were chosen because they are commonly used for
various graph drawings and included in various di-
agram standards (such as UML, SysML) so ability
to support them is important. Also the recognition
of dashed edges is very hard (if not impossible) with
morphology-based approaches.

4.2 Testing

The whole generated test suite consists of multiple
test groups, but each group contains tests with similar
properties. Two test cases from the same group con-
tain images of graphs with the same number of nodes,
edge density, layout style and edge rendering style.
Group name follows the pattern: ’graphN-D-S-L’ to
encode all of these parameters, N describes the num-
ber of nodes, D – the edge density, S – the edge ren-
dering style where ’s’ stands for the solid lines and ’d’
–the dashed line patterns, last token L denotes the lay-
out style, where ’hier’ means a hierarchically laid out
graph, but a group name with empty style means that
it is laid out using the symmetric layout algorithm.

The automatic testing is performed on all test
cases from the test suite. All tests are executed with
the same recognition algorithm configuration so algo-
rithm input parameters were not adjusted to the graph
size, the layout style or the edge rendering style.
After the image of each test case is recognised by the
graph recognition algorithm, the recognised graph
topology is validated against the graph topology

Optical Graph Edge Recognition

189

Table 1: Grouped testing results of the edge recognition algorithm (24 groups, 100 tests per group).

test group average(min, max) stdev average number ghost edge approx. test
code success rate of edges ratio time (sec)
graphs10-0.3-d 0.983 (0.875, 1.000) 0.032 19.62 0.014 4
graphs10-0.3-d-hier 0.981 (0.850, 1.000) 0.040 19.62 0.126 1
graphs10-0.3-s 0.994 (0.895, 1.000) 0.021 19.62 0.003 3
graphs10-0.3-s-hier 0.991 (0.882, 1.000) 0.028 19.62 0.013 1
graphs20-0.3-d 0.868 (0.726, 1.000) 0.054 58.04 0.092 10
graphs20-0.3-d-hier 0.938 (0.794, 1.000) 0.041 58.04 0.147 10
graphs20-0.3-s 0.934 (0.830, 1.000) 0.036 58.04 0.032 4
graphs20-0.3-s-hier 0.958 (0.853, 1.000) 0.032 58.04 0.020 5
graphs50-0.05-d 0.955 (0.861, 1.000) 0.029 97.97 0.024 46
graphs50-0.05-d-hier 0.923 (0.792, 1.000) 0.044 97.97 0.171 27
graphs50-0.05-s 0.964 (0.906, 1.000) 0.022 97.97 0.016 32
graphs50-0.05-s-hier 0.954 (0.828, 1.000) 0.033 97.97 0.033 9
graphs50-0.1-d 0.854 (0.752, 0.934) 0.038 138.49 0.088 75
graphs50-0.1-d-hier 0.869 (0.717, 0.955) 0.048 138.49 0.197 71
graphs50-0.1-s 0.891 (0.827, 0.975) 0.030 138.49 0.054 43
graphs50-0.1-s-hier 0.895 (0.794, 0.962) 0.034 138.49 0.061 23
graphs100-0.025-d 0.927 (0.870, 0.978) 0.025 182.76 0.045 130
graphs100-0.025-d-hier 0.886 (0.795, 0.982) 0.037 182.76 0.193 70
graphs100-0.025-s 0.935 (0.874, 0.989) 0.023 182.76 0.034 75
graphs100-0.025-s-hier 0.925 (0.848, 0.988) 0.027 182.76 0.053 25
graphs100-0.05-d 0.794 (0.710, 0.884) 0.037 236.04 0.141 190
graphs100-0.05-d-hier 0.808 (0.678, 0.927) 0.046 236.04 0.253 460
graphs100-0.05-s 0.849 (0.764, 0.916) 0.032 236.04 0.083 71
graphs100-0.05-s-hier 0.855 (0.761, 0.949) 0.037 236.04 0.098 94

that is stored separately from the image. During the
topology validation, both graphs (one from the graph
recognizer and the reference graph) are compared.
Nodes are matched by their centre coordinates, but
edges are matched based on their end nodes. If an
edge from the reference graph is also present in the
recognised graph then it is marked as recognised. If
an edge in reference graph cannot be matched with
an edge in the recognised graph then it is marked as
not-recognized. All edges in the recognised graph
that does not have a matching edge in the reference
graph are marked as ’ghost edges’. Each test result
can be described by three numbers: recognized edges,
not recognized edges, ghost edges, which can be used
to calculate the total number of edges (edgesTotal =
recognizedEdges + notRecognizedEdges), the
normalized successfully recognized edge ra-
tio successRate = recognizedEdges/edgesTotal
and the ghost edge ratio (ghostedgeratio =
ghostedges/edgesTotal).

Results of all tests in the same group are aggre-
gated into seven values: the maximal, minimal, av-
erage recognised edge ratio, its standard deviation,
an average number of edges, the ghost edge ratio
and the number of tests in a group. Since the mini-
mal, maximal, average and median values are relative

values they are numbers in the range [0,1], where 1
means that everything is successfully recognised, but
0 means that no edges were recognised. The ghost
edge ratio can be any non-negative number.

4.3 Results

Table 1 shows testing results grouped by a test group.
Each group contains 100 test cases. Average edge
number is the same for all test groups with the same
number of nodes and edge density value because they
share the same topology but different edge rendering
and graph layout styles. We can observe that the stan-
dard deviation value is small so the average value ac-
tually shows the success rate that we can expect from
these kinds of tests. As a number of nodes increases
recognition quality decreases, but even for the largest
and the most complicated graphs recognition results
are good enough for automatic graph drawing quality
assurance solutions. By goodenough we mean that
we think that an automatic quality assurance environ-
ment equipped with the proposed algorithm would be
able to validate the quality of a graph drawing solu-
tion faster and more reliably than a manual process.
The solid edge rendering style recognition produces
better results when compared to the dashed edge ren-

IVAPP 2018 - International Conference on Information Visualization Theory and Applications

190

dering style. The ghost edge ratio is comparable to the
doubled ratio of not-recognized edges which proves
that recognition result is not filled with an arbitrary
number of ghost edges (which would make it unus-
able), but rather all reported ghost edges are created
because of the ambiguous patterns in input images.
The hierarchically laid out graphs are recognised bet-
ter than the same graphs laid out using the symmetric
layout style, this could be explained by the fact that
the hierarchical layout has the poly-line edge routing
opposed to the symmetric layout style so in hierarchi-
cal layout drawings edges will not have edges routed
over bend points of other edges therefore there will be
less ambiguity.

5 SUMMARY AND FUTURE
WORK

The testing results revealed that although the dashed
edge recognition rate is worse than the solid edge
recognition the proposed solution could be useful for
automatic graph rendering and layout algorithm test-
ing. Since we used the same configuration for all tests
in the test suite, the results should allow to expect
similar results on graph drawings with mixed edge
rendering styles and other graph layout styles as long
as they guarantee similar minimal node-edge spacing
values as the graph layout styles in our test cases. The
next steps in the performance analysis would be op-
timising algorithm configuration for each group sep-
arately, investigate edge thickness influence on pro-
duced results, and detailed examination of test param-
eter impact on the running time.

In future, it would be interesting to try to adjust the
proposed algorithm to recognise graphs without dis-
tinguishable nodes which are typically found in im-
ages of biological networks and where the main in-
formation is stored in edges.

ACKNOWLEDGEMENTS

This work was supported by Latvian State Research
programme NexIT project No.2

REFERENCES

Auer, C., Bachmaier, C., Brandenburg, F. J., Gleiner, A.,
and Reislhuber, J. (2013). Optical graph recogni-
tion. In Didimo, W. and Patrignani, M., editors, Graph
Drawing, number 7704 in Lecture Notes in Computer
Science, pages 529–540. Springer Berlin Heidelberg.

Bailey, D., Norman, A., Moretti, G., and North, P. Elec-
tronic Schematic Recognition.

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. Graph
drawing. 1999.

Dori, D. and Liu, W. (1999). Sparse pixel vectorization:
An algorithm and its performance evaluation. IEEE
Transactions on pattern analysis and machine Intelli-
gence, 21(3):202–215.

Dori, D. and Wenyin, L. (1999). Automated cad conversion
with the machine drawing understanding system: con-
cepts, algorithms, and performance. IEEE Transac-
tions on Systems, Man, and Cybernetics-part A: sys-
tems and humans, 29(4):411–416.

Hammond, T. and Davis, R. (2006). Tahuti: A geometrical
sketch recognition system for uml class diagrams. In
ACM SIGGRAPH 2006 Courses, page 25.

Krishnamoorthy, M., Oxaal, F., Dogrusoz, U., Pape, D.,
Robayo, A., Koyanagi, R., Hsu, Y., Hollinger, D., and
Hashmi, A. (1996). Graphpack: Design and features.
Software visualization, 7:83–100.

Lank, E., Thorley, J., Chen, S., and Blostein, D. (2001).
On-line recognition of UML diagrams. In Document
Analysis and Recognition, 2001. Proceedings. Sixth
International Conference on, page 356360.

Lank, E., Thorley, J. S., and Chen, S. J.-S. (2000). An
interactive system for recognizing hand drawn UML
diagrams. In Proceedings of the 2000 conference of
the Centre for Advanced Studies on Collaborative re-
search, page 7.

Opmanis, R. (2017). Benchmark test suite. [On-
line https://drive.google.com/open?id=
0B7EhFSCsLEv9Rm9VMjBXeVNEanc; accessed 11-
June-2017].

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods
for visual understanding of hierarchical system struc-
tures. Systems, Man and Cybernetics, IEEE Transac-
tions on, 11(2):109125.

Von Gioi, R. G., Jakubowicz, J., Morel, J.-M., and Randall,
G. (2008). On straight line segment detection. Journal
of Mathematical Imaging and Vision, 32(3):313–347.

Optical Graph Edge Recognition

191

