
Line-based Registration of Photogrammetric Point Clouds with 3D City

Models by Means of Mixed Integer Linear Programming

Steffen Goebbels and Regina Pohle-Fröhlich

Institute for Pattern Recognition, Faculty of Electrical Engineering and Computer Science,

Niederrhein University of Applied Sciences, Reinarzstr. 49, 47805 Krefeld, Germany

Keywords: Point Cloud Registration, Linear Programming, Structure from Motion, Building Reconstruction, CityGML.

Abstract: This paper describes a method to align photogrammetric point clouds with CityGML 3D city models. Amongst

others, we use photogrammetric point clouds that are generated from videos taken from the driver’s perspective

of a car. Clouds are computed with the Structure-from-Motion algorithm. We detect wall planes to rotate these

clouds so that walls become vertical. This allows us to find buildings’ footprints by accumulating points that

are orthogonally projected to the ground. Thus, the main alignment step can be performed in 2D. To this end,

we match detected footprints with corresponding footprints of CityGML models in a x-y-plane based on line

segments. These line segments are detected using a probabilistic Hough transform. Then we apply a Mixed

Integer Linear Program to find a maximum number of matching line segment pairs. Using a Linear Program,

we optimize a rigid affine transformation to align the lines of these pairs. Finally, we use height information

along CityGML terrain intersection lines to estimate scaling and translation in z-direction. By combining the

results, we obtain an affine mapping that aligns the point cloud with the city model. Linear Programming is

not widely applied to registration problems; however the technique presented is a fast alternative to Iterative

Closest Point algorithms that align photogrammetric point clouds with clouds sampled from city models.

1 INTRODUCTION

Virtual 3D city models are used for simulations (eg

noise maps, lighting models, solar potential analy-

zes, flood maps, heat requirement mapping) as well

as for planning purposes like Building Information

Modeling (BIM). CityGML is the XML based des-

cription standard for city models. It offers a concept

of Level of Detail (LoD), see (Gröger et al., 2012)

Most models currently are given in LoD 2 with de-

fined roof facets and walls but without detailed fa-

cade information. Window and door objects belong

to LoD 3. Facade models do not only serve for visua-

lization or planning purposes. For example, gateways

and routes for rescue workers are very interesting in

smart-city applications. Whereas airborne laserscan-

ning point clouds are provided as open data in our

country, they only show roofs but no facades. Facade

data have to be acquired individually. An inexpensive

way to obtain photogrammetric point clouds of faca-

des from videos or overlapping photos is to use the

Structure-from-Motion algorithm (SfM).

We generate dense point clouds from videos taken

either through the front window of a car or by UAVs

with the SfM tool Agisoft Photoscan, see Figure 1.

The tool delivers a cloud of colored points, estima-

ted camera position and camera parameters for video

frames, and a textured mesh.

It is difficult to do a manual registration of pho-

togrammetric point clouds with sufficient precision to

cleanly project points or textured meshes to CityGML

walls. Therefore, we apply an automatic precise re-

gistration of the point cloud with the city model. As

a preliminary, the cloud has to be coarsely registe-

red with UTM coordinates, either manually or using

GPS/GLONASS information. The next section dis-

cusses some approaches to do such a precise registra-

tion. In Sections 3–5 we in detail describe our ap-

proach to match line segments by solving a combi-

natorial problem with fast Linear and Mixed Integer

Linear Programs. Section 6 summarizes results.

2 VARIOUS REGISTRATION

APPROACHES

There exists a large variety of point cloud registration

algorithms, see (Maiseli et al., 2017). Most of them

can be classified as non-feature- or feature-based. Ho-

Goebbels, S. and Pohle-Fröhlich, R.
Line-based Registration of Photogrammetric Point Clouds with 3D City Models by Means of Mixed Integer Linear Programming.
DOI: 10.5220/0006533002990306
In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 4: VISAPP, pages
299-306
ISBN: 978-989-758-290-5
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

299



Figure 1: SfM point cloud, and cloud sampled from Ci-
tyGML walls and merged with terrain points from airborne
laserscanning.

wever, our input consist of only one (colored) point

cloud. The city model basically is a set of poly-

gons. The easiest way to apply non-feature-based al-

gorithms is to sample a point cloud from the city mo-

del. We work with 100 points/m2. Experiments sho-

wed that increased sampling rates only do have mi-

nor influence on registration results. In contrast to

simultaneous localization and mapping (SLAM) ap-

plications, the point clouds might be very different:

The photogrammetric point cloud covers ground and

vegetation whereas our city models do not. With re-

gard to the ground, the problem can be healed by mer-

ging the sampled model cloud with a filtered cloud

from airborne laserscanning that only consists of last

pulse terrain points, see see Figure 1. Another pro-

blem is that buildings are modeled separately in Ci-

tyGML. Thus, there exist walls between neighboring

buildings that are not visible from the outside. The-

refore, we only consider model walls for sampling if

they are visible from outside the buildings. We also

limit the sampled scene roughly to the area that is co-

vered by the photogrammetric point cloud.

The standard means to align point clouds is the

non-feature-based Iterative Closest Point (ICP) algo-

rithm, see (Rusinkiewicz and Levoy, 2001).

We did several experiments with Point

Cloud Library’s ICP implementations (version

1.8.0) in point-to-point and in point-to-plane

mode (see (Holz et al., 2015) and tutorials on

http://pointclouds.org/documentation/tutorials), both

with a maximum correspondence distance of 5m that

fits with data. Whereas the base implementation of

point-to-point ICP might converge very slowly or get

stuck in a sub-optimum, ICP based on Levenberg-

Marquard optimization and point-to-plane ICP find

good solutions. In point-to-plain mode, distances

are not measured between points but between points

and planes defined by estimated local normal vectors

(see (Chen and Medioni, 1992)). This allows for

sliding along wall planes and is better suited to

match segments of planes like facades. Whereas the

Levenberg-Marquard based point-to-point algorithm

takes 4507 seconds1 to align the clouds shown in

Figure 1, point-to-plane ICP finishes in 719 seconds.

However, our proposed method terminates in less

than 30 seconds (see St. Anton street scenario in

Table 1).

A somewhat related approach is the Normal Dis-

tribution Transform (NDT). Its idea is to replace all

cloud points within a grid cell of the target cloud by

a normal distribution that describes the probability of

finding a point at a certain position. Instead of ma-

tching single points to each other, the probability of

points being at the right place (with regard to the tar-

get cloud) can be optimized with Newton iterations,

see (Magnusson et al., 2009). This technique elimina-

tes the time of ICP’s nearest neighbor search. With a

resolution parameter set to 5 and a step size parame-

ter set to 2.5 Point Cloud Library’s algorithm aligns

the two previously investigated clouds in 396 seconds.

For chosen settings, this indeed is faster than ICP in

point-to-plane mode but still significant slower than

our proposed method. In our scenario, success and

running time of NDT heavily depend on choice of

parameters. For example, the method converges to

a wrong alignment for step size 3 but converges to the

correct global optimum for step sizes 1, 2.5, and 5.

For clouds of structured environments, examples

of (Ma et al., 2016) show that there might be problems

with iterative non-feature-based methods. Such pro-

blems occur if clouds overlap only partially or initial

coarse alignment is bad. Also, running times strongly

depend on cloud size and parameters. Another dis-

advantage is that we need additional information like

digital terrain models to enrich sampled clouds.

In our scenarios, walls are dominant structures

and reference surfaces are very simple. Therefore,

we concentrate on pairing specific geometric primiti-

ves as do most feature-based registration methods (cf.

(Chuang and Jaw, 2015)). One could directly detect

plane segments that represent walls and align them

with CityGML wall polygons. However, both de-

tected segments and CityGML polygons are only ap-

proximations of real walls. Also CityGML polygons

are simplified due to their level of detail. But most

CityGML models use high quality building footprints

from cadastral data. Therefore, we work with walls’

footprints. Based on RANSAC estimates of wall pla-

nes, we rotate the point cloud so that walls become

straightened up and ground is oriented parallel to the

x-y-plane. By orthogonally projecting points to the x-

y-plane, walls become visible as dense contours. This

1Running times are measured on a single core of a
2.4GHz i5 processor (2013) with 4GB RAM.

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

300



basically simplifies the 3D alignment problem to a 2D

task of aligning these contours with CityGML buil-

ding footprints. The RANSAC-based rotation step is

similar to the use of angle-features in the general pur-

pose point cloud alignment algorithm of (Ma et al.,

2016). They compute a rotation matrix based on an

angle histogram. Rotation leads to translation of the

histogram that, for example, can be detected using the

Fourier transform shift property2. However, angle-

features become disturbed if different scaling factors

are used for different coordinate directions during co-

arse registration. This also is a problem if one tries to

detect rotation between 2D footprint images based on

an angle histogram of Hough lines. In our scenario,

Hough space registration (cf. (Zhao, 2006)) additio-

nally suffers from different lengths of line segments.

Established alignment procedures for 2D images

mostly avoid to solve an NP-complete combinatorial

optimization problem. But footprint images of point

clouds and city models are quite different so that com-

binatorial optimization promises to deliver results that

are more robust against distortions. We investiga-

ted combinatorial alignment procedures based on cor-

ners of footprints, based on line segments of foot-

prints and based on straight lines covering line seg-

ments. For UAV point clouds covering larger urban

areas, corner-based alignment works well if there are

sufficient many building corners (of different height)

in a scene. In our experiments, we detected building

corners using Harris corner detector and aligned them

with vertices of the city model using a Mixed Integer

Linear Program (MIP) similar to the one in Section

4, see Figure 2. Unfortunately, the videos that we use

Figure 2: Left: Corner-based matching of building walls
detected from a UAV point cloud (see Section 6) with Ci-
tyGML model’s walls. Right: Lines that are detected in the
point cloud are matched with CityGML model lines.

for facade detection mostly are taken from street level.

They cover more detail, and corner detection does not

only find significant building corners but also corners

of smaller structures. Also, in a straight street with

2Sarvaiya, J., Patnaik, S., and Kothari K.: Feature Ba-
sed Image Registration Using Hough Transform. http://
psrcentre.org/images/extraimages/48.%2050.pdf (Accessed
07 July 2017)

few intersections, the number of significant corners is

small. Therefore, our implementation of corner based

matching does not work well with this type of point

clouds. Instead, straight lines of building footprints

are significant. Line-based matching approaches have

been used successfully to align images with digital

surface models and airborne laserscanning data, see

for example (Avbelj et al., 2013; Cui et al., 2017).

They have been also used to align two point clouds,

see for example (Li et al., 2012). One can either

match unbounded straight lines or the short bounded

line segments that are part of footprints. There might

be several line segments approximately lying on the

same straight unbounded line. Thus joining line seg-

ments to unbounded lines reduces the number of pos-

sible matching combinations. Whereas matching of

unbounded straight lines works for simple street sce-

narios (cf. Figure 2), it might fail for complex UAV

point clouds that lead to a variety of similar lines.

Therefore, we propose to match line segments (cf.

Figure 4). Whereas (Avbelj et al., 2013) use a sta-

tistical, accumulator based approach to match lines,

(Li et al., 2012) present an iteration scheme and (Cui

et al., 2017) apply non-linear least-squares optimiza-

tion, we use a simpler Mixed Integer Linear Program

to find matching line segment pairs in combination

with a Linear Program (LP) to compute a 2D trans-

formation matrix. However, this requires pre- and

post-processing steps that utilize the vertical nature

of walls.

3 PRE-PROCESSING

First, we both translate photogrammetric cloud and

city model into a local coordinate system with origin

at −~t ∈ R3 to avoid large numerical errors: The cor-

responding translation is given by

T =

(
E ~t

(0,0,0) 1

)
∈ R4×4

with unity matrix E ∈ R3×3. Then we rotate the pho-

togrammetric cloud to correctly align with the z-axis

and generate a 2D building footprint image as fol-

lows:

Figure 3: Density of point cloud and binary image of likely
wall footprints superposed with CityGML building foot-
prints.

Line-based Registration of Photogrammetric Point Clouds with 3D City Models by Means of Mixed Integer Linear Programming

301



• To generate a preliminary binary image of li-

kely wall footprints, a resolution of 9 pixels per

square meter is sufficient for our data, see Fi-

gure 3. We compute minimum and maximum z-

coordinates (height values) of all points with x-

and y-coordinates within the pixel’s area. If these

values at least differ 3.5m in height (one building

level) and if there exist at least eight points with

z-coordinates pairwise belonging to disjoint inter-

vals of width 0.5m then we classify the pixel as

being part of a wall footprint. One could also

generate a density image by counting the points

above the pixel’s area. Then thresholding could

give a wall map. Unfortunately, we work with

point clouds of very different local densities so

that it is difficult to find or generate a suitable

threshold value.

• Walls might not be exactly vertical. Before we re-

duce the cloud to wall and ground points, we have

to rotate it with a matrix D to make walls upright.

To this end, we divide the ground into 10m×10m

sections. For each section we iteratively apply a

RANSAC algorithm to the section’s subset of the

cloud that also corresponds roughly with previ-

ously computed pixels of wall footprints. With

RANSAC we estimate nearly vertical planes for

each section. We collect the normal vectors of

the third of planes with largest number of inliers.

Let N be the set of these normals. We estimate

the common upward-direction of all walls with a

RANSAC algorithm as well: We iteratively select

a plane through the origin and through two non-

collinear points in N. Out of all selected planes

we choose one with the largest number of inliers

p, p ∈ N. Then we apply a rotation D,

D =




cos(β) −sin(β)sin(α) −sin(β)cos(α) 0

0 cos(α) −sin(α) 0

sin(β) cos(β)sin(α) cos(β)cos(α) 0

0 0 0 1


 ,

to the point cloud that aligns this plane’s normal

vector (n.x,n.y,n.z), n.z > 0, with the z-axis. Let

h = sin(α) ·n.y+ cos(α) ·n.z. Angles are

α = sign(n.y)arccos(n.z/
√

n.y2 + n.z2),

β = sign(n.x)arccos(h/
√

n.x2 + h2).

The approach requires the existence of walls with

different orientations.

• Now we compute a sharper version of the binary

wall footprint image. Since walls should exactly

point upwards after applying D, we can reduce

noise by filtering for even larger height differen-

ces (5m instead of 3.5m) to detect walls.

Our goal is to match the footprint image with a si-

milar image that we obtain from the city model. To

this end, we draw a single picture of filled footprints

of all CityGML buildings, only considering the area

of the photogrammetric point cloud. Then we detect

edges with the Canny operator. These edges corre-

spond with facades but not with walls between hou-

ses.

Both on the footprint image and on the edge pic-

ture, we apply a probabilistic Hough transform to de-

tect line segments, see Figure 4. In the following

section we use the sets P and Q that contain line seg-

ments of the footprint image and the model’s edge

picture, respectively.

4 LINEAR PROGRAMS

Linear and Mixed Integer Linear Programming have

been used for registration purposes, see for exam-

ple (Sakakubara et al., 2007; Wang et al., 2017).

However, most alignment procedures use non-linear

optimization. Linear optimization isn’t even listed

amongst the optimization methods for point cloud

alignment in the overview article (Tam et al., 2013).

But if one seeks for a linear or affine transformation

and if one is allowed to measure errors in l1-norm

(sum of absolute values) instead of the widely used

l2-norm (least squares) then Linear Programming is a

very powerful tool. MIP and LP also have been consi-

dered for the generation of CityGML models and 3D

modeling. For example, (Boulch et al., 2014) use a

MIP to reconstruct surfaces from point clouds.

The difficulty of our registration task is that we

have to select from a candidate set of line pairs

before we can compute a linear transformation to

align line segments of P with line segments of

Q. Let P = {(p1,1, p1,2), . . . ,(pm,1, pm,2)} and Q =
{(q1,1,q1,2), . . . ,(qn,1,qn,2)}. Each line segment is de-

fined by its two endpoints that are given in homogene-

ous coordinates, for example pi,k = (pi,k.x, pi,k.y,1)
⊤.

Figure 4: First two pictures: Detected line segments of point
cloud and CityGML model; third picture: Matching line
segments are connected with thin bright lines.

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

302



Now we have to determine a linear transform L

that aligns the largest possible subset of P with a cor-

responding subset of Q by using translation, scaling

and rotation as feasible operations.

A common method to find large corresponding

sets of line features is to use RANSAC in Hough

space. For example, (Colleu et al., 2008) use this ap-

proach to match video frames with city model data. In

contrast to this we match bounded line segments with

a MIP that automatically also computes an initial ver-

sion of the transformation matrix.

First, we have to find matching candidate pairs

between P and Q. If a binary variable xi, j, 1 ≤
i ≤ m, 1 ≤ j ≤ n, equals one, then the pair

((pi,1, pi,2),(q j,1,q j,2)) is selected for matching. It is

not selected if xi, j = 0. We can a-priori exclude pairs

by setting their binary variables fixed to zero. We do

this if their lines have a distance in Hough space above

a threshold value. Also, we compute a bounding box

for each line segment and extend it by the expected

error of coarse alignment. If bounding boxes of two

line segments do not intersect then we also exclude

the pair. This is the sole step in our alignment method

that might cause it to only find a local but no global

optimum. In contrast to ICP and other non-feature-

based algorithms, what follows describes global opti-

mization.

We have to maximize an objective function like

m

∑
i=1

n

∑
j=1

xi, j (1)

subject to the restriction that there is a linear mapping

L =




s1 cos(α) −s1 sin(α) d1

s2 sin(α) s2 cos(α) d2

0 0 1


 ∈ R3×3

that approximately maps line of segment (pi,1, pi,2)
onto line of (q j,1,q j,2) if xi, j = 1. Manual coarse re-

gistration should be done so that scaling s1 in x- and

scaling s2 in y- direction is equal: s := s1 = s2. Then

there is less uncertainty and more stability.

There need to exist scalars r1,i, j and r2,i, j such that

for k ∈ {1,2} and

d+
k,i, j − d−

k,i, j := q j,1 + rk,i, j(q j,2 − q j,1)−Lpi,k (2)

there holds true 0 ≤ d±
k,i, j.x ≤ ε, 0 ≤ d±

k,i, j.y ≤ ε.

Thus, the coordinate-wise distance between transfor-

med points Lpi,1, Lpi,2 and the straight line through

q j,1 and q j,2 has to be bounded by a fixed threshold

value ε. We work with ε := 0.5 for selection of candi-

date pairs (distances will be further minimized in a se-

cond optimization step). The source line segment has

to be approximately mapped onto a straight line going

through the target line segment. There is no need to

actually hit the target segment. This allows for sli-

ding like in ICP point-to-plane mode. Nevertheless,

we match segments and not straight lines because we

a-priori exclude pairs (i, j) of distant segments by set-

ting xi, j = 0.

To obtain a linear problem, we do not compute

sine and cosine functions but seek for a matrix

L =




l1,1 l1,2 l1,3
l2,1 l2,2 l2,3
0 0 1




under restrictions

l1,1 = l2,2,
l1,2 =−l2,1

}
if s1 = s2, (3)

−µ ≤ l1,1 − l2,2 ≤ µ,
−µ ≤ l1,2 + l2,1 ≤ µ

}
if s1 6= s2, (4)

1− δ ≤ l1,1 ≤ 1+ δ, −δ ≤ l1,2 ≤ δ, (5)

where δ = 0.3 and µ = 0.1 are small threshold values.

These restrictions avoid that L describes mirroring.

Instead of using simple objective function (1) we

consider the lengths of point cloud line segments as

weights. Let wi be the length of the i-th point cloud

line segment. We extend the objective function to

∑m
i=1 ∑n

j=1 wixi, j. Maximization favors selection of

long line segments.

We write the optimization problem as an Integer

Linear Program with the help of a large number M.

M is used to restrict the distance condition to selected

pairs of line segments while keeping the problem li-

near. Let distances d+
k,i, j, d−

k,i, j ∈ (R≥0)3 and matrix

coefficients lr,c ∈ R, 1 ≤ r ≤ 2, 1 ≤ c ≤ 3:

Max.
m

∑
i=1

n

∑
j=1

wixi, j s.t.

m

∑
i=1

xi, j ≤ 1 for 1 ≤ j ≤ n,
n

∑
j=1

xi, j ≤ 1 for 1 ≤ i ≤ m,

conditions (2) and ((3) or (4)) and (5), and

max{d+
k,i, j.x,d

+
k,i, j .y,d

−
k,i, j.x,d

−
k,i, j.y}+Mxi, j ≤ ε+M.

A MIP in general is NP complete. It very much

depends on the number of candidate corresponden-

ces and on the size of ε how long a solver takes to

find a solution. We use the GNU Linear Programming

Kit library GLPK (Makhorin, 2009) to solve LPs and

MIPs. In most scenarios of this paper, solutions of

the MIPs are found in less than a second. Neverthe-

less, running times can be decreased. It turns out that

the exclusion of distant line segments from the mat-

ching task allows for an LP relaxation of the MIP. In

the relaxed problem, binary variables xi, j are repla-

ced by real-valued variables xi, j ∈ [0,1]. It turns out

Line-based Registration of Photogrammetric Point Clouds with 3D City Models by Means of Mixed Integer Linear Programming

303



that values of xi, j become indeed very close either to

zero or to one. We then round them. The tradeoff of

relaxation is that one has to deal with a few wrong

matchings during the following second optimization

step that improves the mapping L:

Based on an optimal solution of the MIP, we de-

fine the set R of pairs (i, j) for which xi, j = 1 so that

for all (i, j) ∈ R distances fulfill 0 ≤ d±
k,i, j.x,d

±
k,i, j.y ≤

ε. To further minimize the errors, we apply another

LP. By using the same variable names as for the MIP,

this LP has to minimize

∑
(i, j)∈R

2

∑
k=1

wi(d
+
k,i, j.x+ d+

k,i, j.y+ d−
k,i, j.x+ d−

k,i, j.y)

subject to (2) for (i, j) ∈ R, and conditions (3) or (4),

and (5).

Weights wi now enforce large line segments to be

matched with higher precision than short ones.

Based on L, we can align the point cloud in the

x-y-plane using matrix

A :=




l1,1 l1,2 0 l1,3
l2,1 l2,2 0 l2,3
0 0 1 0

0 0 0 1


 .

5 POST-PROCESSING

It remains to estimate an additional z-scaling factor

and a z-translation. To this end, we look at terrain in-

tersection points of CityGML models. For each such

point, we have a true z-value zg of the ground and also

determine the height zr of the roof above this point.

Figure 5: Height maps showing minimum and maximum
values of adjusted photogrammetric point cloud and sam-
pled model cloud

Figure 6: A video frame used for point cloud generation,
projection of point cloud onto city model prior to alignment,
and projection of aligned point cloud onto city model.

We also determine a corresponding lowest and hig-

hest point of the pre-processed point cloud that has

been transformed with A, see Figure 5. Let zl and zh

be the z-coordinates of these two points, respectively.

Then we get a local z-scaling factor
zr−zg

zh−zl
. If the same

scaling factor was applied to all directions during ma-

nual coarse registration, z-scaling factor should be

s =
√

l1,1 · l2,2 − l1,2 · l2,1. We allow a small deviation

by considering all local scaling factors within the in-

terval [s−0.2,s+0.2]. To avoid outliers, we compute

the median value zs of these feasible local scaling fac-

tors. Using zs we determine the z-translation value zt

as the median of all local translation values zg − zl · zs.

Then we finally align the cloud with the city model by

multiplying its points with

T−1ZADT, Z :=




1 0 0 0

0 1 0 0

0 0 zs 0

0 0 0 zt


 .

Figure 7: Perspective projection of video frame areas onto
CityGML walls.

Figure 8: A city model is drawn onto a video frame using
the frame’s SfM camera transformation and estimated ca-
mera projection. The upper picture is based on a course
manual alignment between SfM point cloud and UTM coor-
dinate system. The second picture shows optimized align-
ment.

After aligning the point cloud with the city model,

we can match model walls with areas in video frames

or orthogonally project points to walls, see Figures 6

and 7. Fortunately, the SfM tool provides camera pa-

rameters and, in a bundle output file, for each frame

k ∈ {1, . . . ,n} a translation vector~tk ∈ R3 and a rota-

tion matrix Rk ∈ R3×3 that together define a transfor-

mation Ck of the original, non-aligned photogramme-

tric cloud into the frame’s camera coordinate system:

Ck :=

(
Rk ~tk

(0,0,0) 1

)
.

After applying this mapping, the camera’s position is

the origin and the camera looks into the direction of

the negative z-axis. We multiply the photogramme-

tric point cloud with matrix T−1ZADT to align with

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

304



the city model. Thus, the transformation of the city

model into the camera’s coordinate system is given

via matrix Ck(T
−1ZADT )−1 = CkT−1D−1A−1Z−1T .

We can now render the model using camera parame-

ters so that it exactly fits with the camera frame (see

Figure 8 for the UAV city center scenario that is des-

cribed in Section 6). Vice versa, CityGML walls can

be textured either based on the point cloud (Figure 6),

or based on the corresponding textured mesh or based

on single video frames (Figure 7).

6 RESULTS

We apply the algorithm to three different point clouds.

So far, we have used a dense point cloud (now deno-

ted as St. Anton street) as example. The point cloud

of Knight street (see Figure 9) also is taken through

the front window of a car, but it is much thinner than

the one of St. Anton street. The third cloud (see Fi-

gure 10) originates from a UAV video of a city center.

This scenario also allows for alignment by matching

corners, see Figure 2. To visualize transformations,

we worsened coarse manual registration by shifting

the clouds by 4 meters in x- and y-directions, respecti-

vely. Table 1 and Figures 9 and 10 summarize results

of computation.

Precision of the registration corresponds with re-

solution 1/3 meter of the pictures used to detect wall

lines. It can be slightly improved by increasing pictu-

res’ resolution. However, if the resolution is too high,

it becomes difficult to detect walls.

To investigate the limits of our algorithm, we align

sampled model point clouds with transformed versi-

ons of themselves in a local coordinate system. These

small clouds are free of noise and lead to a high num-

ber of correspondences. This increases running time

of our MIP optimization step whereas such clouds

are simple to match for ICP in point-to-plane mode.

For example, our algorithm takes 82 seconds to (ap-

proximately) undo the transformation B−1 (rotations

by 0.01 degrees around all axes, scaling factor 0.99

and translation with (−4,−4,4)) applied to the mo-

del cloud of Figure 1. It computes a matrix B̃ that is

a good approximation of ground truth matrix B. In

comparison, ICP in point-to-plane mode3 converges

to a corresponding matrix B̂ in 89 seconds. In this ex-

ample, our algorithm finds 136 candidate pairs of cor-

responding line segments. The single MIP step runs

67 seconds. If we do not compute the exact solution

of the MIP but use a solution of the relaxed MIP then

3Point Cloud Library’s class IterativeClosestPointWith-
Normals is used with parameters TransformationEpsilon =
10−8 and EuclidianFitnessEpsilon = 0.1.

Table 1: Three investigated scenarios.

St. Anton Knight UAV city

street street scenario

number of points 8.593.746 1.995.498 5.017.262

line segments of point cloud 114 71 68

line segments of city model 61 73 338

candidate pairs of line 71 95 56

segments

pairs selected by relaxation 24 24 24

of MIP

pairs selected by MIP 17 20 21

model vertices used for 32 48 33

z-operations

running time pre-processing 14s < 4s < 1s

running time MIP and LP < 1s < 1s < 1s

running time post-processing 15s 6s 2s

overall running time decreases to 14 seconds and the

optimization steps finish in less than a second with

outcome matrix ˜̃B. The overall running time can be

further decreased by limiting the number of RANSAC

plane estimates in the pre-processing step.

Figure 9: Knight street scenario: matching between line
segments, thin point cloud, points projected to model walls.

Figure 10: Left: UAV point cloud and points projected to
model walls. Right: matching between line segments.

The l2-vector norm is defined via ‖(a1, . . . ,an)‖2

:=
√

a2
1 + · · ·+ a2

n, and the l2-matrix (spectral) norm

‖B− B̃‖2 := sup

{‖(B− B̃) ·~a‖2

‖~a‖2
:~0 6=~a ∈ R4

}

is a measure for the quality of the computed alignment

mapping B̃. Let ~v ∈ R3 be a point of the cloud and

~e = (e.x,e.y,e.z) ∈R3 the difference between the cor-

Line-based Registration of Photogrammetric Point Clouds with 3D City Models by Means of Mixed Integer Linear Programming

305



rectly and approximately aligned versions of~v. Then

‖(e.x,e.y,e.z,0)‖2 =
∥∥∥(B− B̃) · (v.x,v.y,v.z,1)⊤

∥∥∥
2

≤ ‖B− B̃‖2

√
‖~v‖2

2 + 1.

Our non-relaxed algorithm aligns best with ‖B −
B̃‖2 ≈ 0.1407 in the current scenario, followed by

the relaxed version (‖B− ˜̃B‖2 ≈ 0.2069) and by ICP

(‖B− B̂‖2 ≈ 0.288).

7 CONCLUSIONS

One can utilize the vertical orientation of walls to re-

duce the problem of aligning photogrammetric point

clouds with 3D city models to two space dimensi-

ons if at least two wall segments with linear inde-

pendent directions are detected. This might be given

if the scene covers an intersection of streets. Then,

instead of ICP, feature-based alignment using Linear

Programming is a suitable means. Useful results

are obtained by matching line segments of wall foot-

prints. While the algorithm is designed to align with

city models, it can also be used to align two point

clouds in which walls are dominant. Although not

so fast, the point-to-plane version of ICP also aligns

well with sampled CityGML models.

REFERENCES

Avbelj, J., Iwaszczuk, D., Müller, R., Reinartz, P., and
Stilla, U. (2013). Line-based registration of DSM and
hyperspectral images. ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-1/W1:13–18.

Boulch, A., de La Gorce, M., and Marlet, R. (2014).
Piecewise-planar 3D reconstruction with edge and
corner regularization. Computer Graphics Formum,
33(5):55–64.

Chen, Y. and Medioni, G. (1992). Object modelling by re-
gistration of multiple range images. Image and Vision
Computing, 10(3):145–155.

Chuang, T.-Y. and Jaw, J.-J. (2015). Automated 3D feature
matching. The Photogrammetric Record, 30(149):8–
29.

Colleu, T., Sourimant, G., and Morin, L. (2008). Automa-
tic initialization for the registration of GIS and video
data. In Proc. 2008 3DTV Conference: The True Vi-
sion - Capture, Transmission and Display of 3D Video,
pages 49–52, Washington, DC. IEEE.

Cui, T., Ji, S., Shan, J., Gong, J., and Liu, K. (2017). Line-
based registration of panoramic images and lidar point
clouds for mobile mapping. Sensors, 17(1).

Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K. H.
(2012). OpenGIS City Geography Markup Language
(CityGML) Encoding Standard. Version 2.0.0. Open
Geospatial Consortium.

Holz, D., Ichim, A. E., Tombari, F., Rusu, R. B., and
Behnke, S. (2015). Registration with the point cloud
library: A modular framework for aligning in 3-D.
IEEE Robotics Automation Magazine, 22(4):110–124.

Li, W., Li, X., Bian, Y., and Zhao, H. (2012). Multiple view
point cloud registration based on 3D lines. In Proc.
International Conference on Image Processing, Com-
puter Vision, and Pattern Recognition (IPCV), pages
1–5.

Ma, Y., Guo, Y., Zhao, J., Lu, M., Zhang, J., and Wan, J.
(2016). Fast and accurate registration of structured
point clouds with small overlaps. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 643–651.

Magnusson, M., Nüchter, A., Lörken, C., Lilienthal, A. J.,
and Hertzberg, J. (2009). Evaluation of 3D regis-
tration reliability and speed — a comparison of ICP
and NDT. In Proc. IEEE International Conference on
Robotics and Automation (ICRA), pages 3907–3912,
Washington, DC. IEEE.

Maiseli, B., Gu, Y., and Gao, H. (2017). Recent deve-
lopments and trends in point set registration methods.
Journal of Visual Communication and Image Repre-
sentation, 46:95–106.

Makhorin, A. (2009). The GNU Linear Programming Kit
(GLPK). Free Software Foundation, Boston, MA.

Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of
the ICP algorithm. In Proc. Third International Con-
ference on 3-D Digital Imaging and Modeling, pages
145–152.

Sakakubara, S., Kounoike, Y., Shinano, Y., and Shimizu,
I. (2007). Automatic range image registration using
mixed integer linear programming. In Yagi, Y., Kang,
S. B., Kweon, I. S., and Zha, H., editors, Proc. 8th
Asian Conference on Computer Vision, Tokyo 2007,
Part II, pages 424–434, Berlin. Springer.

Tam, G. K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu,
Y., Marshall, D., Martin, R. R., Sun, X.-F., and Rosin,
P. L. (2013). Registration of 3D point clouds and mes-
hes: A survey from rigid to non-rigid. IEEE Trans.
Visualization and Computer Graphics, 19(7):1–20.

Wang, Y., Moreno-Centeno, E., and Ding, Y. (2017).
Matching misaligned two-resolution metrology data.
IEEE Transactions on Automation Science and Engi-
neering, 14(1):222–237.

Zhao, S. (2006). Hough-domain image registration by me-
taheuristics. In Proc. 9th International Conference on
Control, Automation, Robotics and Vision 2006, pages
1–5.

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

306


