A New Procedure of Two Stage Data Envelopment Analysis Model under Strict Positivity Restriction

M. D. Nasution ${ }^{1}$, M. R. Syahputra ${ }^{* 1}$, H. Mawengkang ${ }^{1}$, A. A. Kamil ${ }^{2}$
${ }^{l}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Padang Bulan 20155, Medan, Indonesia
${ }^{2}$ Telkom University, West Java, Bandung, Indonesia

Keywords: Positivity Restriction, Two Stage DEA.

Abstract

Data Envelopment Analysis (DEA) is a mathematical non-parametric approach for measuring relative efficiency of homogenous decision making units (DMUs) performing. This approach will evaluates the efficiency score of entities. The efficiency is defined as the maximum of the ratio of the sum of its weight output to the sum of its weight inputs. The objective value is subject to the conditions that are corresponding to ratios for each DMU be less than or equal to one. Strict positivity of the weights in the theoretical and the computational result is an important condition to identify whether the DMUs_{s} is efficient or not. One method that can be used to achieve this condition was considering a positive lower bound on its weights, known as a non-Archimedean infinitesimal, ε. In fact, it is very hard to find a set of positive weights among all the alternative solutions of multiplier model. This paper show that a new procedure two-stage approach can solve the decision-making problems that are modelled on the DEA-CCR model under strict positivity restriction.

1 INTRODUCTION

In determining the performance of an organization and increasing productivity, the efficiency level must be measured. In general, efficiency is expressed in the form of a comparison between input (input) and output (output). But in a company there may be different input and output entities, in aspects of resources, activities, environmental factors. So in general measurement of efficiency is difficult to use. So to be able to measure the level of efficiency with different input and output entities can be done using Data Envelopment Analysis (DEA) (Charnes et al., 1978).

Charnes et al (1979) proposed the model as a fractional programming problem. After that, the model was transformed as a simple linear programming problem with a objective function and some criteria. DEA's main objective is to determine efficient conditions based on existing problem scenarios. In this case the efficiency can be interpreted as the maximum ratio of the weighted output to the weighted input with the constraints corresponding to each DMU.

Based on the basic concept of the CCR model found by Charnes et al., (1978), known as the DEA CCR, that the unit shows performance the best is with
one efficiency score. This shows that the score it is part of the production boundary that cannot be compared to the boundary area. Further techniques that combine principles the basic DEA is known as "Super Efficiency Analysis" introduced by Andersen and Peterson (1993).

In his paper, Thompson et al (1993) discussed several ways to eliminate zero weight in the DEA problem. Various methods have been carried out, including modifying the DEA model as carried out by Charnes et al (1997). In his paper, Charnes et al (1979) added a positivity requirement, using the parameter ε. This method is the right way to do it, but this method has complex limitations and complexities because we don't know the right value for ε. By this situation, Yao (2003) and Amin \& Toloo (2004) conducted related research and found the right number for ε.

Cooper et al (2001) in his paper discuss about a method that solved zero weight problem in DEA. proposed two-stage method. This procedure is for selecting non zero weights from the alternative optimal solution of the multiplier model in a DEA. Saen (2010) said that it is very hard to find a set of positive weight among all the alternative solutions of multiplier models.

2 BASIC DEA-CCR MODEL

In this study the author uses the DEA-CCR model as the basis for the model that will later be developed. The basic DEA-CCR model in (1) is formed for evaluating the efficiency of $\mathrm{DMU}_{\mathrm{s}}$ (Charnes et al, 1978). Suppose there are $\mathrm{n} \mathrm{DMU}_{\mathrm{s},} D M U_{j}$, $(j=$ $1,2, \ldots, n)$, that will be evaluate the efficiency values. Each of DMU consumes the amounts $x_{j}=\left[x_{i j}\right]$ of m inputs ($i=1,2, \ldots, m$), and will produce the amounts $y_{j}=\left[y_{r j}\right]$ of s outputs $(r=1,2, \ldots, s) x_{j} \geq 0_{m}, x_{j} \neq$ $0_{m}, y_{j} \geq 0_{s}, y_{j} \neq 0_{s}$. Then the DEA-CCR model is defined as follows

$$
\max \theta=\sum_{r=0}^{s} u_{r} y_{r o}
$$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{i=1}^{m} v_{i} x_{i o}=1 \tag{1}\\
\sum_{r=1}^{s} u_{r} y_{r j}-\sum_{i=i}^{m} v_{i} x_{i j} \leq 0 & j=1,2, \ldots, n \\
v_{i} \geq 0 & i=1,2, \ldots, m \\
u_{r} \geq 0 & r=1,2, \ldots, s
\end{array}
$$

Where $x_{j}=\left[x_{i j}\right]$ and $y_{j}=\left[x_{r j}\right]$ are inputs and output respectively. Meanwhile the weights of i-th input and r-th output are indicated by v_{i} and u_{r} respectively.

Completion of the model (1) will get the optimal value for multipliers. Therefore, the model (1) is often referred to as the multipliers form of the CCR problem.

3 AN IMPROVED DEA-CCR MODEL

The issue of strict positivity is important in the DEA. Although there are many alternative optimal solutions, it is still difficult to determine the level of efficiency of each DMU. Therefore, Charnes et al (1979) modifies the model (1) as follows:

$$
\begin{aligned}
& \qquad \max \theta=\sum_{r=0}^{s} u_{r} y_{r o} \\
& \text { s.t. } \sum_{i=1}^{m} v_{i} x_{i o}=1 \\
& \sum_{r=1}^{s} u_{r} y_{r j}-\sum_{i=i}^{m} v_{i} x_{i j} \leq 0 j=1,2, \ldots, n \\
& v_{i} \geq \varepsilon \\
& u_{r} \geq \varepsilon
\end{aligned} \quad \begin{aligned}
& \\
& i=1,2, \ldots, m \\
& r=1,2, \ldots, s
\end{aligned}
$$

where $\varepsilon>0$ is an infinitecimal element that smaller than any positive real number.

4 AN IMPROVED FORMULA OF TWO STAGE DEA

The first step we must take to develop the DEA-CCR model is to complete the model (1) in the first stage. If the value $\theta_{o}^{*}<1$, then $\mathrm{DMU}_{\mathrm{o}}$ is said to be CCRinefficient. If the model (1) has obtained its efficiency value, then the next step is to solving the following model (3) in the second stage.

$$
\begin{array}{ll}
\max & \delta \\
\text { s.t. } & \sum_{i=1}^{m} v_{i} x_{i o}=1 \tag{3}\\
& \sum_{r=1}^{s} u_{r} y_{r o}-\sum_{i=i}^{m} v_{i} x_{i o}=0 \\
& \sum_{r=1}^{s} u_{r} y_{r j}-\sum_{i=i}^{m} v_{i} x_{i j} \leq 0 \quad j \neq o \\
v_{i}-\delta \geq 0 & \forall i \\
u_{r}-\delta \geq 0 & \forall r \\
v_{i}, u_{r}, \delta \geq 0 & \forall i, r
\end{array}
$$

After solving the model (3) in the second stage, the next step is to check the optimal solution. If the value of $\delta^{*}>0$, then we get $\left(u^{*}, v^{*}\right)>0_{s+m}$. If that so, the $\mathrm{DMU}_{\mathrm{o}}$ is called to be efficient.

In model (1) and (3), we replace the constrain $\sum_{i=1}^{m} v_{i} x_{i o}=1$ with $\sum_{i=1}^{m} v_{i} x_{i o}=K, K$ is an arbitrary nonnegative number to improve the recent procedure of two stage DEA. Therefore, we rewrite the models (1) and (3) respectively as follows:

$$
\begin{align*}
& \max \Theta_{o}=\sum_{r=0}^{s} u_{r} y_{r o} \\
& \text { s.t. } \sum_{i=1}^{m} v_{i} x_{i o}=K \tag{4}\\
& \sum_{r=1}^{s} u_{r} y_{r j}-\sum_{i=i}^{m} v_{i} x_{i j} \leq 0 j=1,2, \ldots, n \\
& v_{i} \geq 0 \quad i=1,2, \ldots, m \\
& u_{r} \geq 0 \quad r=1,2, \ldots, s \\
& \max \Delta
\end{align*}
$$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{i=1}^{m} v_{i} x_{i o}=1 \tag{5}\\
& \sum_{r=1}^{s} U_{r} y_{r o}-\sum_{i=i}^{m} V_{i} x_{i o}=0
\end{array}
$$

$$
\begin{array}{ll}
\sum_{r=1}^{s} U_{r} y_{r j}-\sum_{i=i}^{m} V_{i} x_{i j} \leq 0 & \\
v_{i}-\Delta \geq 0 & \forall i \\
u_{r}-\Delta \geq 0 & \forall r \\
V_{i}, U_{r}, \delta \geq 0 & \forall i, r
\end{array}
$$

In this paper a simple example will be given to seeing the proposed DEA model application. In addition, there will also be case example from bank performance. As a tool, we use LINDO for solving and making analysis of the models.

5 NUMERICAL EXAMPLE

As a simple numerical example, we evaluate 7 DMU with two inputs and two outputs as shown in Table 1.

First, applying stage I to evaluate each DMUs. We have four DMU which efficiency score is 1 as shown in Table 2.

Table 1: Input and output of 7 bank

DMU	Input $_{1}$	Input $_{2}$	Output $_{1}$	Output $_{2}$
DMU $_{1}$	19	3	5	4
DMU $_{2}$	6	4	2	4
DMU $_{3}$	7	2	2	2
DMU $_{4}$	3	3	5	5
DMU $_{5}$	1	5	3	3
DMU $_{6}$	9	2	2	6
DMU $_{7}$	3	4	2	3

We evaluate the data on Table 1 using LINDO. By means of δ^{*} of the DMU_{4} and DMU_{6} is greater than zero, it means that both of them are efficient.

Table 2: The result of numerical example using LINDO

DMU	Stage I					Stage II				
	θ_{o}^{*}	v_{1}^{*}	v_{2}^{*}	u_{1}^{*}	u_{2}^{*}	δ^{*}	v_{1}^{*}	v_{2}^{*}	u_{1}^{*}	u_{2}^{*}
DMU_{1}	1.0000	0.0000	0.5000	0.2500	0.0000	0.0000	0.0000	0.5000	0.2500	0.0000
DMU_{2}	0.4710	0.0588	0.1961	0.0000	0.1569		.			
DMU_{3}	0.5000	0.0000	1.0000	0.3750	0.1250					
DMU_{4}	1.0000	0.2500	0.0000	0.2500	0.0000	0.1250	0.1875	0.1250	0.1250	0.1250
DMU_{5}	1.0000	0.5000	0.0000	0.0000	0.5000	0.0000	0.5000	0.0000	0.5000	0.0000
DMU_{6}	1.0000	0.0000	1.0000	0.0000	0.2000	0.0625	0.2500	0.3750	0.6250	0.1875
DMU_{7}	0.5000	0.2500	0.0000	0.0000	0.2500	-				

Table 2 shows the results of stages I and II obtained using LINDO. From Table 2 it can be seen that the efficient DMUs are DMU_{4} and DMU_{6}. This is due to the optimal value of DMU_{4} and DMU_{6} which are $\delta^{*}=0.1250 ; \delta^{*}=0.0625$.

As another example, data from 50 banks was provided. There are three inputs and 3 outputs. This
problem is solved by an improved two-stage DEA. The optimal values of the first stage and the objective function of the second stage are showed by the last two columns of Table 3. There are eight $\mathrm{DMU}_{\mathrm{s}}$ whose optimal value $\delta^{*}>0$.

Table 3: Input and output of the $50 \mathrm{DMU}_{\mathrm{s}}$

| DMU $_{\text {s }}$ | Inputs | | | | Outputs | | | Stage 1 | Stage II |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| | Empl. | Cost | Debt. | | Deposits | Income | Loan | θ_{o}^{*} | |
| DMU $_{1}$ | 32 | 161 | 446,869 | | 551,768 | 2,068 | $1,209,876$ | 1.0000 | 0.000005448 |
| DMU $_{2}$ | 19 | 2,026 | 22,345 | | 87,365 | 2,848 | 103,573 | 1.0000 | 0.000017493 |
| DMU $_{3}$ | 14 | 1,456 | 12,830 | | 50,206 | 2,755 | 208,456 | 0.8943 | |
| DMU $_{4}$ | 5 | 4,566 | 145 | | 77,436 | 1,554 | 12,789 | 1.0000 | 0.000096789 |
| DMU $_{5}$ | 18 | 1,324 | 21,567 | | 24,794 | 1,638 | 45,790 | 0.6360 | |
| DMU $_{6}$ | 18 | 1,562 | 25,689 | | 25,894 | 1,448 | 44,567 | 0.7862 | |
| DMU $_{7}$ | 16 | 1,468 | 54,243 | | 95,804 | 1,578 | 80,942 | 0.6453 | |
| DMU $_{8}$ | 17 | 1,884 | 39,453 | | 25,266 | 1,895 | 35,790 | 0.8543 | |
| DMU $_{9}$ | 9 | 1,636 | 12,456 | | 28,885 | 1,572 | 55,782 | 1.0000 | 0.000036918 |
| DMU $_{10}$ | 13 | 1,993 | 7,623 | | 34,226 | 1,277 | 209,765 | 0.8764 | |
| DMU $_{11}$ | 8 | 1,934 | 34,562 | | 87,990 | 1,445 | 45,674 | 1.0000 | 0.000032445 |
| DMU $_{12}$ | 11 | 1,279 | 2,487 | | 77,567 | 2,051 | 77,833 | 0.4325 | |
| DMU $_{13}$ | 17 | 2,426 | 11,453 | | 45,698 | 2,745 | 50,975 | 0.5543 | |
| DMU $_{14}$ | 14 | 1,236 | 10,934 | | 78,965 | 2,774 | 120,987 | 0.5547 | |

DMU_{15}	14	2,011	22,176	88,784	2,341	35,678	0.5722	
DMU_{16}	7	2,894	26,832	33,489	1,090	58,542	0.3974	
DMU_{17}	12	1,500	8,643	56,779	1,462	556,709	0.3894	
DMU_{18}	9	1,475	3,411	69,055	1,572	450,097	0.4490	
DMU_{19}	5	1,290	1,421	67,784	1,635	169,005	0.5768	
DMU_{20}	6	2,094	3,744	92,675	1,725	33,789	0.5947	
DMU_{21}	6	2,068	5,321	38,000	1,613	87,734	0.3462	
DMU_{22}	8	2,848	31,589	65,470	2,025	56,733	0.5231	
DMU_{23}	9	2,755	4,215	34,226	1,486	34,098	0.5279	
DMU_{24}	8	1,554	65,782	87,990	3,566	66,990	0.4469	
DMU_{25}	7	1,638	20,021	77,567	2,324	59,032	0.5103	
DMU_{26}	9	1,448	25,072	95,804	4,572	133,456	0.3974	
DMU_{27}	7	1,578	14,081	25,266	1,498	12,500	0.5478	
DMU_{28}	7	1,895	16,702	28,885	1,874	31,567	0.4580	
DMU_{29}	7	1,572	6,574	34,226	1,536	51,578	0.4356	
DMU_{30}	6	1,277	5,432	87,990	1,984	76,890	0.5569	
DMU_{31}	7	1,445	7,331	77,567	1,935	34,590	0.5021	0.000034526
DMU_{32}	7	2,051	2,361	45,698	1,289	98,004	0.4592	
DMU_{33}	8	2,745	2,093	78,965	2,426	95,709	0.3678	
DMU_{34}	9	2,774	2,100	88,784	1,236	39,056	0.5946	0.000033468
DMU_{35}	5	2,341	1,946	33,489	2,011	34,781	0.5793	
DMU_{36}	7	1,090	1,421	56,779	2,894	72,890	0.5198	
DMU_{37}	8	1,462	3,744	37,586	1,500	39,357	0.5356	0.000005549
DMU_{38}	6	1,572	5,321	77,895	1,475	55,490	0.5782	
DMU_{39}	5	1,635	31,589	76,880	1,290	33,789	0.5583	
DMU_{40}	9	1,725	4,215	34,556	2,094	87,734	0.5932	
DMU_{41}	5	1,545	65,782	67,032	1,678	56,733	0.5435	
DMU_{42}	6	1,792	25,689	87,004	1,568	65,470	0.5321	
DMU_{43}	6	1,227	54,243	79,034	3,899	34,226	0.5271	
DMU_{44}	7	1,967	39,453	66,503	1,257	87,990	0.4367	
DMU_{45}	5	1,215	12,456	80,933	1,065	77,567	0.3561	
DMU_{46}	5	1,157	7,623	79,335	1,803	95,804	0.5519	
DMU_{47}	6	1,592	34,562	44,897	2,560	56,903	1.0000	1-10
DMU_{48}	5	1,278	2,487	76,449	1,774	103,466	0.4706	
DMU_{49}	6	1,373	11,453	77,803	1,356	12,890	0.5335	
DMU_{50}	4	1,298	10,934	69,067	2,508	33,390	1.0000	

Table 4: The strictly positive weights of the efficient $D M U_{s}$

$\mathrm{DMU}_{\mathrm{s}}$	Inputs				Outputs			Stage II
	v_{1}^{*}	v_{2}^{*}	v_{3}^{*}		u_{1}^{*}	u_{2}^{*}	u_{3}^{*}	δ^{*}
DMU $_{1}$	0.00000544	0.00007144	0.00002824		0.0000544	0.0000544	0.0000544	0.0000544
DMU $_{2}$	0.00001749	0.00037749	0.00001049		0.0001749	0.0003669	0.0001749	0.0001749
DMU $_{4}$	0.00009678	0.00009678	0.00078578		0.0002578	0.0009678	0.0009678	0.0009678
DMU $_{9}$	0.00003691	0.00003691	0.00014991		0.0003691	0.0003691	0.0003691	0.0003691
DMU $_{11}$	0.00003244	0.00003244	0.00093744		0.0003244	0.0003244	0.0003244	0.0003244
DMU $_{31}$	0.00003452	0.00003452	0.00067452		0.0003452	0.0003452	0.0003452	0.0003452
DMU $_{34}$	0.000033468	0.004733468	0.000031569		0.00033468	0.00033468	0.00033468	0.0003346
DMU $_{37}$	0.000005549	0.000391549	0.000101549		0.00005549	0.00005549	0.00005549	0.0000554

DMU with optimal value will then determine its strictly positive weight value as shown in table 4. From table 3 it can be seen that there are 8 DMUs that have optimal values in stage 2 , they are DMU_{1}, $\mathrm{DMU}_{2}, \mathrm{DMU}_{4}, \mathrm{DMU}_{9}, \mathrm{DMU}_{11}, \mathrm{DMU}_{31}, \mathrm{DMU}_{34}$ and DMU_{37}. The eight efficient DMUs will then be
determined its strictly positive weight as shown by Table 4.

6 CONCLUSIONS

In this paper, in order to achieving strictly positive of multipliers, we have to eliminate the role of nonArchimedean (ε), in the DEA models. The model used in this study is the multiplier form of the DEACCR model. By considering that all weights on its constraints are non-negative number.

In the first stage, we solved a new CCR model to specifying the CCR-efficient DMUs using LINDO. At this stage we get an efficient DMUs. In the second stage we will evaluate the efficient DMU that we get in the first stage to get the strictly positive value for their inputs and outputs.

On the other hand, from the computational test result using LINDO, we have to pay attention to gain the accuracy of computations result. This method is able to provide better efficiency results for cases of positive strictly constraints. This will help decision makers in making decisions on issues with scenarios that correspond to the proposed model.

REFERENCES

Amin, G. R. and Toloo, M., 2004. A polynomial-time algorithm for finding ε in DEA models. Computers \& Operations Research, 31, 803-805.
Andersen, P., \& Petersen, N. C., 1993. A procedure for ranking efficient units in data envelopment analysis. Management Science, 39, 1261-1264.
Yao, C., 2003. Measuring super-efficiency in DEA in presence of infeasibility, European Journal of Operational research, 161-2, 429444.
Charnes, A., Cooper, W. W. and Rhodes, E., 1978. Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429-444.
Charnes, A., Cooper, W. W. and Rhodes, E., 1979. Measuring the efficiency of decision-making units. Short Communication European Journal of Operational Research, 3, 339.
Cooper, W.W., Li, S., Seiford, L.M., Tone, K., Thrall, R.M., Zhu, J., 2001. Sensitivity and stability analysis in DEA: Some recent developments. Journal of Productivity Analysis 15, 217-246.
Saen R. F., 2010. Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data. International Journal of Advanced Manufacturing Technology Vol. 51,p.1243-1250.
Thompson, R. G., Thrall, R. M. and Dharmapala, P. S., 1993. Importance for DEA of zeros in data, multipliers, and solutions. The Journal of Productivity Analysis, 4, 379-390.

