The Activity of Alkaloid Fraction of *Litsea cubeba* Lour. Heartwoods on Down Regulation Cyclin D1 Expression against HeLa Cell Line

Aminah Dalimunthe\(^*\), Poppy Anjelisa Zaitun Hasibuan\(^1\), Denny Satria\(^2\)

\(^1\)Department of Pharmacology, University of Sumatera Utara, Jl.Tri Darma, Medan, Indonesia
\(^2\)Doctoral Programme, University of Sumatera Utara, Jl.Tri Darma, Medan, Indonesia

Keywords: Anticancer, *Litsea Cubebae* Lour. heartwood, Alkaloid, Cervic Cancer.

Abstract: Objective: This study was to determined the activity of *Litsea cubeba* Lour. heartwood alkaloid fraction on down regulation cyclin D1 expression towards HeLa cell line. Methods: The heartwood powder of *Litsea cubeba* Lour. was macerated by ethanol 96% and fractionated with n-hexane and chloroform at pH 3,7 and 9. Antiproliferation study was using MTT assay and cyclin D1 expression analysis was using flow cytometry method from chloroform fraction at pH 7. Results: The IC\(_{50}\) of chloroform fractions at pH 7 was 52.46 ± 0.34 µg/mL. The fractions of chloroform at pH 7 in concentration of 25 and 10 µg/mL were as antiproliferation assay with viable cells at 53.57 ± 0.28% and 68.43 ± 0.48% respectively after 72 h incubation and decreased cyclin D1 expression (69.10 and 67.63%). Conclusion: The results reveal that *Litsea cubeba* Lour. heartwood alkaloid fractions provide effective as anticancer with mechanism through down regulation of cyclin D1. Our further study is to isolate alkaloid compounds and assess its molecular mechanism.

1 INTRODUCTION

Cancer is a serious condition in human and nowadays there is a high amount of novel anti-cancer drugs out of natural substances (Sharma, 2011). Based on World Health Organization report, cancer is one of the high lead of death global especially cervical cancer (Berington and Lall 2012). Cervical cancer treatment with chemotherapy drugs has limited because of resistance problem and toxic impact on normal tissue which leads to cardiotoxicity and cause of immunosuppression (Tyagi, 2004) and (Jemal, 2010).

Attarasa or *Litsea cubeba* (Lour,) is a plant which contain volatile oils used as antimicrobial, antidepressant, antioxidant, anticancer on breast cancer, pesticide, antiinflammation and neuro pharmacology. Methanol extract of attarasa fruit of indicate active on HeLa cell lines (cervical cancer) promote apoptosis with induction of caspase 3 and 7 (Piyapat, 2013), (Trisonthi, 2014). *Litsea* genus contain over than 40 isoquinoline alkaloids in which are active as antibacterial activity (Feng, 2009). The *Litsea cubeba* heartwood is conceived superior amount of flavonoid, phenolic and active as antioxidant and has anti breast cancer effect through cell cycle inhibition. Alkaloids which isolated from *Litsea cubeba* heartwood have radical scavenging activity with ABTS and DPPH (Dalimunthe, 2018), (Dalimunthe, 2016) and (Dalimunthe, 2017) The aim of this research was to evaluate antiproliferative activity and cyclin D1 expression of alkaloid fraction of *Attarasa* heartwood towards HeLa cells.

2 MATERIAL AND METHOD

2.1 Extraction and Fractination

Extract and fractions were obtained as previously describe (Dalimunthe, 2018), (Hasibuan, 2016), (Rosidah, 2018) dan (Satria, 2015).
2.2 Cytotoxic Activity

The inoculums seeded on a 96 well plate (1 x 10^4 cells/mL) and incubated at 37°C for 24 hours. The medium was discharged and treated with CF-7 and incubation for 24 h, the further procedure were followed as previously describe (Nurrochmad, 2011), (Satria, 2017) and (Hasibuan, 2015).

2.3 Antiproliferative Activity

Alkaloid fraction was submitted for antiproliferative activity. In that way, HeLa cell line (2.5 x 10^3 cells/mL) was grown in RPMI complete medium. After 24; 48 and 72 h treatment, MTT assay was performed and cell viability was counted to calculate the antiproliferative activity (Zihlif, 2013), (Harahap, 2018).

2.4 Cyclin D1 Expression

HeLa cells (750,000 cells/well) were seeded into 6-well plate and incubated for 24 h in incubator CO2 5%. for the treatment, harvested and analysis of cells with flow cytometer were followed procedure from (Satria, 2017) with added cylin D1 antibody which labelled with FITC.

3 RESULTS

3.1 Inhibitory Concentration 50% (IC₅₀)

The result of treatment CF-7 can be seen in the Table 1.

Table 1. IC₅₀ value of alkaloid fraction at pH 7 of Litsea cubeba heartwood with MTT assay

<table>
<thead>
<tr>
<th>Treatment</th>
<th>IC₅₀ (µg/mL) (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform Fraction pH 7</td>
<td>25.88 ± 0.16</td>
</tr>
<tr>
<td>(CF-7)</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Antiproliferative Activity

To evaluate the effect of CF-7 to decrease the number of cells by inhibiting cell proliferation. The percentage of viable cells after treatment with alkaloid fraction in 25 µg/mL and 10 µg/mL and incubation for 24, 48 and 72 h (79.08 ± 0.45 and 86.05 ± 0.31; 64.24 ± 0.41 and 77.27 ± 0.28; 53.57 ± 0.28 and 68.43 ± 0.48) respectively showed the inhibition effect of alkaloid fraction towards proliferation of HeLa cells. The effect of CF-7 is given in Figure 2.
3.3 Analysis of Cyclin D1 Expression

![Graphs showing flow cytometry analysis of cyclin D1 expression in HeLa cells treated with various concentrations of CF-7.]

Figure 3. Analysis of cyclin D1 with flow cytometry. HeLa cells were treated by CF-7. (a) control cells unstaining; (b) control cells; (c) CF-7 25 µg/mL; (c) CF-7 10 µg/mL.

To evaluate the effect of CF-7 to decrease cyclin D1 expression, we concentrated on it for further studies using the flow cytometry method. The effect of CF-7 is given in Figure 3. While treatment of CF-7 in 25 and 10 µg/mL caused cell accumulation in M1 area (14.60% and 13.06%) and for control cell.

4 DISCUSSION

Alkaloids have cytotoxic activity through various pathway (Sun, 2009). *Litsea* genus contain many of isoquinoline alkaloids (Feng, 2009). Alkaloids are the main compound which potentially in prevents the proliferation of cancer which inhibits proliferation of multiple cancer cell line by apoptosis stimulation and inducing cell cycle arrest at G0/G1 or G2/M phases (Tang, 2009), (Burgeiro, 2011) and (Eom, 2010). Interdiction of invasion and metastasis in tumor is the one of mechanism of action of isoquinoline alkaloids in inhibits cancer growth (Ho, 2009) and (Liao, 2005). The other mechanism of quinolone alkaloid are induces DNA damage, inhibits topoisomerase enzyme, exhibit G0/M phase arrest (Huang, 2004) and (Kans, 2004)

ACKNOWLEDGEMENTS

This research finance was supported by Universitas Sumatera Utara through “Hibah Penelitian Dasar 2018”.

REFERENCES

Berrington D and Lall N., 2012. Anticancer activity of certain herbs and spices on the cervical epithelial carcinoma (HeLa) cell line. eCAM. Article ID 564927.


