
On using Pollard’s p-1 Algorithm to Factor RPrime RSA Modulus

Maya Silvi Lydia1, Mohammad Andri Budiman1 and Dian Rachmawati1 

1Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara, Medan, 
Indonesia 

Keywords: Public Key Cryptography, Cryptanalysis, Factorization, RPrime RSA, Pollard’s p-1 

Abstract: RPrime RSA is a variant of RSA public key algorithm that uses the multiplication of two or more prime 
numbers to construct its modulus. The larger the prime numbers are being used, the better the security of the 
RPrime RSA becomes. Thus, the security of RPrime RSA depends on the hardness of factoring one big integer 
into its prime factors. In this study, we attempt to factorize the modulus of RPrime RSA using a modified 
version of Pollard’s p-1 algorithm, an exact algorithm used to factor an integer into its factors. The modified 
version of Pollard’s p-1 algorithm makes use of Fermat’s algorithm in order to make sure that all of the factors 
are primes. The results show that the correlation between RPrime RSA modulus and the factoring time is 
directly proportional, but the value of RPrime RSA modulus does not always reflect the number of iterations 
the Pollard’s p-1 algorithm is going through.   

1 INTRODUCTION 

The concept of public key cryptography (Diffie and 
Hellman, 1976) was introduced in 1976 and the 
Rivest-Shamir-Adleman (RSA) algorithm (Rivest, 
Shamir, and Adleman, 1978) is one of the oldest 
algorithms that implement the concept. Nowadays, 
the use of RSA is still very popular since the RSA is 
easy to implement and it can also be utilized in both 
encryption scheme and digital signature scheme 
(Verma, Dutta, and Vig, 2018). 

The RSA has a lot of variants; one of them is the 
RPrime RSA (Paixao and Filho, 2003). Both the RSA 
and the RPrime RSA base their security on the 
hardness of factoring a very large integer into its 
prime factors. The difference is that there are exactly 
two prime factors that make the modulus of the RSA; 
while in the case of RPrime RSA, there can be two or 
more prime factors. Therefore, it is intuitively clear 
that the RPrime RSA is harder to cryptanalyze than 
the original RSA.  

The Pollard’s p-1factorization algorithm (Pollard, 
1974) is an exact algorithm studied in the field of 
number theory whose purpose is to factorize an 
integer into its two factors. This algorithm makes use 
of Fermat’s Little Theorem (Beatty, Barry, and 
Orsini, 2018), B-smooth integers (Monaco and 
Vindiola, 2017), and Euclidean GCD (Marouf, 2017) 

to quicken its process. Pollard’s rho algorithm, which 
is the other Pollard’s factorization algorithm, has 
been known to be more efficient to factorize the RSA 
modulus than random restart hill-climbing, a 
metaheuristic algorithm (Budiman and Rachmawati, 
2017). 

In our study, we use the Pollard’s p-1 algorithm to 
factor the modulus of the RPrime RSA. Factoring the 
RPrime RSA modulus can be expected to be harder 
and slower than factoring the RSA modulus since the 
RPrime RSA modulus can have more than two prime 
factors. Therefore, the Pollard’s p-1 algorithm should 
be modified so it can factor a large integer into infinite 
numbers of prime factors. The graphical relationships 
amongst factoring time, the size of the modulus, and 
the size of its prime factors will be shown as a result. 

2 METHODS 

In this section we give explanations about the RPrime 
RSA key generation, the original Pollard’s p-1 
algorithm, and the modified version of Pollard’s p-1 
to factor the RPrime RSA modulus in Python 
programming language. The example of each 
algorithm is explained. 
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2.1 RPrime RSA Key Generation 

As with any other public key cryptography algorithm 
(Batten, 2013), the RPrime RSA has three stages: key 
generation, encryption, and decryption. In this study, 
the key generation of the modulus is the most 
relevant, and, therefore, it is put forward as follows 
(Paixao and Filho, 2003): 

1. Choose k, the number of prime numbers 
which will be used in forming the modulus. 

2. Generate k random prime numbers, namely, 
p1, p2, ..., pk, so that gcd(p1 – 1, p2 – 1, … 
pk – 1) = 2. 

3. Compute n = p1 × p2 × … × pk. 

As an example, let us select k = 3. We then 
generate 3 random prime numbers, p1 = 37, p2 = 47, 
p3 = 71, and we check that gcd(37 – 1, 47 – 1) = 
gcd(47 – 1, 71 – 1) = gcd(37 – 1, 71 – 1) = 2, so they 
all can be used as the prime numbers for the RPrime 
RSA. Lastly, we compute n = 37 × 47 × 71 = 123469. 

2.2 Pollard’s p-1 Algorithm 

The Pollard’s p-1 algorithm works as follows (see 
Pollard (1974), Batten (2013), and Yan (2009)): 

1. Get n, an odd integer to be factored. 
2. Let a = 2 and i = 2. 
3. Compute a = ai mod n. 
4. Compute d = gcd(a – 1, n). 
5. If 1 < d < n, then output d as a factor of n. 
6. If d = 1, then i = i + 1, and go to step 3. 

For example, let us factor n = 209. Let a = 2 and i 
= 2. Compute a = 22 mod 209 = 4. Compute d = gcd(4 
– 1, 209) = 1. Since d = 1, compute i = 2 + 1 = 3, and 
go to step 3. Compute a = 43 mod 209 = 64. Compute 
d = gcd(64 – 1, 209) = 1. Since d = 1, compute i = 3 
+ 1 = 4, and go to step 3. Compute a = 644 mod 209 
= 159. Compute d = gcd(159 – 1, 209) = 1. Since d = 
1, compute i = 4 + 1 = 5, and go to step 3. Compute a 
= 1595 mod 159 = 144. Compute d = gcd(144 – 1, 
209) = 11. Since 1 < d < 209, d = 11 is a factor of 209. 
The other factor of 209 is 209/11 = 19.  

 

2.3 A Modified Version of Pollard’s p-1 
Algorithm to Factor the RPrime 
RSA Modulus 

The original Pollard’s p-1 algorithm can handle 
factorization of an integer into its two factors. In order 
to factor RPrime RSA modulus, the Pollard’s p-1 

algorithm has to be modified so that it can handle 
factorization of an integer into two or more factors 
and it can ensure that all of these factors are primes 
(by using Fermat’s algorithm to test the primality of 
those factors). Our modified version of Pollard’s p-1 
algorithm to factor the RPrime RSA modulus is 
shown as a Python code as follows. 

 

iterations = 1 

 

def Pollard(n): 

 global iterations 

 a = 2 

 i = 2 

 factor = [1] 

 while (n % 2 == 0): 

  factor.append(2) 

  n = n // 2 

 while (n != 1): 

  print "Factoring ", n 

  if Fermat(n): 

   print n, "is already a 
prime, thus it is a factor"  

   factor.append(n) 

   factor.sort() 

   return factor 

    

  a_old = a 

  a = modexp(a, i, n) 

  print "iterations =", 
iterations 

  print "a =", a_old, "^", i, 
"mod", n, "=", a 

  d = gcd(a - 1, n) 

  n_old = n 

  if 1 < d < n: 

   factor.append(d) 

   n = n // d 
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   i = 1 

  if d == 1: 

   print "d = gcd(", a, "- 
1,", n_old, ") =", d 

  else: 

   print "d = gcd(", a, "- 
1,", n_old, ") =", d, "is a factor" 

   print "Now, factoring ", 
n_old, "/", d, "=", n_old / d  

  print 

  iterations += 1 

  i += 1 

 

The above code assumes that we have a function 
gcd(m, n) to compute the greatest common divisor 
of m and n, a function modexp(a, i, n) to compute  
ai mod n and a function Fermat(n) that returns True 
if n is prime and False if n is composite.  

3 RESULTS AND DISCUSSIONS 

Let us run the code to factor RPrime RSA modulus, n 
= 123469 we got from Section 2.1. When the code 
runs, it produces the following output. 

 

Factoring  123469 

iterations = 1 

a = 2 ^ 2 mod 123469 = 4 

d = gcd( 4 - 1, 123469 ) = 1 

 

Factoring  123469 

iterations = 2 

a = 4 ^ 3 mod 123469 = 64 

d = gcd( 64 - 1, 123469 ) = 1 

 

Factoring  123469 

iterations = 3 

a = 64 ^ 4 mod 123469 = 108901 

d = gcd( 108901 - 1, 123469 ) = 1 

 

Factoring  123469 

iterations = 4 

a = 108901 ^ 5 mod 123469 = 32697 

d = gcd( 32697 - 1, 123469 ) = 1 

 

Factoring  123469 

iterations = 5 

a = 32697 ^ 6 mod 123469 = 41441 

d = gcd( 41441 - 1, 123469 ) = 37 is 
a factor 

Now, factoring  123469 / 37 = 3337 

 

Factoring  3337 

iterations = 6 

a = 41441 ^ 2 mod 3337 = 2801 

d = gcd( 2801 - 1, 3337 ) = 1 

 

Factoring  3337 

iterations = 7 

a = 2801 ^ 3 mod 3337 = 1883 

d = gcd( 1883 - 1, 3337 ) = 1 

 

Factoring  3337 

iterations = 8 

a = 1883 ^ 4 mod 3337 = 1820 

d = gcd( 1820 - 1, 3337 ) = 1 

 

Factoring  3337 

iterations = 9 

a = 1820 ^ 5 mod 3337 = 900 

d = gcd( 900 - 1, 3337 ) = 1 

 

Factoring  3337 
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iterations = 10 

a = 900 ^ 6 mod 3337 = 2593 

d = gcd( 2593 - 1, 3337 ) = 1 

 

Factoring  3337 

iterations = 11 

a = 2593 ^ 7 mod 3337 = 1563 

d = gcd( 1563 - 1, 3337 ) = 71 is a 
factor 

Now, factoring  3337 / 71 = 47 

 

Factoring  47 

47 is already a prime, thus it is a 
factor 

Thus, our code shows that the factors of RPrime 
RSA modulus n = 123469 are 37, 47, and 71, and 
these are the prime numbers we have generated in 
Section 2.1. 

The code is then tested with RPrime RSA moduli 
of different sizes. The result is pictured in Table 1 and 
Table 2. 

Table 1: Factoring different RPrime RSA modulus n with 
modified version of Pollard’s p-1 algorithm into p1, p2, p3 

n digit  factors  

  p1 p2 p3 

604
21 5 23 37 71 

251
905 6 5 83 607 

482
353 6 19 53 479 

353
1581 7 23 233 659 

194
585749 9 563 577 599 

229
858861 9 499 557 827 

539
715601 9 547 653 

151
1 

309
1706464

9 11 1471 2393 
878

3 

841
4353423
21699 15 92251 94847 

961
67 

152
0587019
820740 16 47303 49811 

645
353 

 

Table 2: Iterations and time to factor different RPrime RSA 
modulus 

n time (seconds) iterations 

60421 0.125804186 11 

251905 0.452283144 43 

482353 0.197597027 17 

3531581 0.474875927 38 

194585749 0.315865994 27 

229858861 1.497702837 140 

539715601 1.726655006 162 

30917064649 0.375844002 35 

841435342321
699 12.35400701 1048 

152058701982
0740 7.281822205 644 

In Table 1, it is shown that the various sizes of n 
have been successfully factorized into p1, p2, and p3 
which are the RPrime RSA prime numbers. One may 
check that n = p1× p2 × p3 for every n shown in that 
table. The trend shown in Table 2 shows that while it 
is intuitively true that the larger the value of the 
RPrime RSA modulus, the longer it takes time to 
factorize it, sometimes irregularities do happen. One 
example of the irregularities is that factoring n = 
539715601 (9 digits) takes 1.726655006 seconds, 
while factoring n = 30917064649 (11 digits) takes 
0.375844002 seconds. This irregularity is due to the 
fact that factoring n = 539715601 takes 162 iterations, 
while factoring n = 30917064649 only takes 35 
iterations. The number of iterations depends on the 
relationship amongst the prime numbers that form the 
RPrime RSA modulus. 
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4 CONCLUSIONS 

The conclusions of our study are as follows. First, the 
modified version of Pollard’s p-1 algorithm which 
makes use of Fermat’s algorithm is able to factor 
RPrime RSA modulus into its all its prime factors. 
Second, the correlation between RPrime RSA 
modulus and the time to factor it with Pollard’s p-1 
tends to be directly proportional. Third, the value of 
RPrime RSA modulus does not always reflect the 
number of iterations the Pollard’s p-1 algorithm is 
going through.     
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